

# A Forensic Triple Quadrupole GC/MS MRM Database for Forensic and Toxicological Workflows



## **Authors**

Celine Gys<sup>1</sup>, Anna Klimowska<sup>1,2</sup>, and Adrian Covaci<sup>1</sup>

- <sup>1</sup> Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- <sup>2</sup> Department of Toxicology, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, 80-416, Poland

Remko van Loon and Anastasia Andrianova Agilent Technologies, Inc.

# **Abstract**

Systematic toxicological analysis is crucial in forensic laboratories, requiring robust and reliable analytical methods. Gas chromatography coupled to triple quadrupole mass spectrometry (GC/TQ) is a versatile and widely used technique that provides uniform results across instruments and laboratories. The aim of this study was to establish a database of multiple reaction monitoring (MRM) transitions for toxicologically relevant compounds amenable to GC/MS. The resulting curated database includes 176 entries, including 154 unique compounds with up to 12 transitions per compound. The database allows for instantly building methods for targeted screening and confident quantitation of GC-amenable, forensic, and toxicologically relevant compounds.

The database is available for download as a CSV file in Appendix 1 of this application note.

# Introduction

Systematic toxicological analysis in forensic investigation demands continuous adaptability to an ever-evolving toxicant landscape. The three main challenges are low concentrations of the toxicants, an ever-growing number of analytes to be monitored and quantitated, and the limitations in obtaining analytical standards for every chemical. These variables complicate method development. Historically, forensic laboratories have relied primarily on single quadrupole GC/MS to identify and quantitate unknowns.1 In recent years, the compounds amenable to liquid chromatography (LC) have been analyzed with LC/MS with an emphasis on an LC/TQ workflow.2 To maximize analytical performance, the Agilent Forensic Toxicology tMRM Database for triple quadrupole LC/MS<sup>3</sup> has been established, streamlining the otherwise time-consuming and costly process of manually developing the method.

For volatile and semivolatile GC-amenable compounds, GC/MS in full scan acquisition mode remains the method of choice when analyzing forensic drugs and toxicants. <sup>4,5</sup> A GC/MS forensic toxicological workflow also greatly benefits from the selectivity and sensitivity of an MRM approach enabled with GC/TQ. Therefore, the aim of this work was to develop an MRM database to help toxicological researchers build screening and quantitation methods, simplifying method development.

The database of MRM transitions for relevant toxicants was established and successfully applied to create GC/TQ methods for analyzing real-world authentic samples with greater sensitivity and confidence than the conventional GC/MS approach.

# **Experimental**

## GC/TQ analysis

Agilent 7000 Series triple quadrupole GC/MS (GC/TQ) was used for developing the MRM transitions for 176 entries, including 154 unique compounds, which were analyzed underivatized, as well as their trimethylsilylated and acetylated derivatives. Agilent MassHunter Optimizer software for GC/TQ (available with MassHunter data acquisition software, version 10.0 and above) was used for developing 1,803 MRM transitions.

Chromatographic separation was achieved using an Agilent J&W DB-5ms capillary column, 30 m  $\times$  0.25 mm, 0.25  $\mu$ m (part number 122-5532) with a method retention time locked to cocaine at 12.26 minutes. Identification of toxicants in

an authentic postmortem sample was compared between full scan and MRM acquisition. The instrument operating parameters are listed in Table 1.

**Table 1.** GC and MS and conditions for forensic toxicological analysis.

| Parameter                              | Value                                                                                      |
|----------------------------------------|--------------------------------------------------------------------------------------------|
| Inlet                                  | Multimode MMI inlet                                                                        |
| Mode                                   | Pulsed splitless                                                                           |
| Injection Pulse Pressure               | 25 psi until 1.5 min                                                                       |
| Purge Flow to Split Vent               | 50 mL/min at 1.5 min                                                                       |
| Injection Volume                       | 2 μL                                                                                       |
| Inlet Temperature                      | 275 °C                                                                                     |
| Inlet Liner                            | Agilent Ultra Inert, splitless, double taper (part number 5190-4007)                       |
| Column                                 | Agilent J&W DB-5ms, 30 m × 0.25 mm, 0.25 μm (part number 122-5532)                         |
| Column Temperature<br>Program          | 80 °C (1 min hold)<br>20 °C/min to 290 °C (8 min hold)<br>Run time 19.5 min                |
| Carrier Gas and Flow Rate              | Helium, 1.027 mL/min constant flow<br>Retention time locked to cocaine at 12.26 min        |
| Transfer Line Temperature              | 300 °C                                                                                     |
| Triple Quadrupole<br>Mass Spectrometer | Agilent 7000 Series GC/TQ with extractor El source                                         |
| Electron Energy                        | 70 eV                                                                                      |
| Quench Gas Helium                      | 2.25 mL/min                                                                                |
| Collision Gas Nitrogen                 | 1.5 mL/min                                                                                 |
| Ion Source Temperature                 | 230 °C                                                                                     |
| Quadrupole Temperature                 | 150 °C                                                                                     |
| EM Voltage Gain Mode                   | 15                                                                                         |
| Mode                                   | dMRM When developing MRM transitions: scan ( <i>m/z</i> 100 to 450), product ion scan, MRM |
| Tune                                   | atunes.eiex.tune.xml                                                                       |

#### Database curation

MassHunter Optimizer software offers several workflows that can be used when developing and optimizing MRM transitions that include<sup>6,7</sup>:

- Start from scan data
- Start from SIM ions
- Start from MRMs

When developing the database, the "Start from scan data" workflow was used. This workflow covers the entire development process. The starting GC acquisition method was optimized for successful GC analysis of toxicants. In the "Start from scan data" workflow, the MS was operated in full scan mode to acquire the scan data file for compound identification and precursor ion selection, performing the scan over a range of m/z 100 to 450 with a scan time of 100 ms.

The "Start from scan data" workflow includes the following steps, performed sequentially:

- 1. Acquisition or import of full scan data to identify target compounds
- 2. Precursor ion identification
- 3. Product ion identification
- 4. Collision energy optimization

First, Agilent MassHunter Unknowns Analysis software was used for identifying the target compounds through searching against the Mass Spectral Library of Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites.<sup>8</sup> The deconvoluted spectra of the identified compounds were exported to the MassHunter Library Editor to create a spectral library comprising the 176 target entries.

Next, MRM development was carried out in MassHunter Optimizer for GC/TQ. The first step was identification of the analytes using a library search of deconvoluted spectra against the spectral library created using MassHunter Library Editor as described previously. This allowed for correct identification of target analytes and enabled reliable selection of precursor ions, even in the presence of chromatographic interferences such as column bleed, coeluting analytes, or matrix interference.

The next three steps of MRM development, including precursor ion identification, product ion identification, and collision energy optimization, were carried out in MassHunter Optimizer. These steps can be highly automated with no user intervention. Alternatively, the result of each step can be reviewed before proceeding to the next step, as was done in this work.

After MRM development and collision energy optimization were completed, the resulting 1,803 MRM transitions were exported as a CSV file.

#### How to use the database

The database created in this work can be used to simplify creation of dMRM data acquisition methods with Agilent GC/TQ. The MassHunter Optimizer for GC/TQ can be used to simplify the method creation process as described later. MassHunter Optimizer is installed automatically with MassHunter GC/MS data acquisition, version 10.0 and above. The database needs to be downloaded as a CSV file and saved on the computer.

The following simple steps describe how to create a data acquisition method using the database:

- In MassHunter data acquisition software, create and save a GC/MS data acquisition method with the conditions provided in Table 1, and retention time lock it to cocaine at 12.26 minutes. If a cocaine standard is not available, the method can be retention time locked to any other compound included in the database at the respective retention time.
- 2. In MassHunter Optimizer, under **Setup**, specify the Acquisition method created in step 1, with the GC parameters that will be retained (Figure 1).
- 3. Under **Setup**, click **CSVFile** in the Import Compound Info section and specify the database (Figure 1).

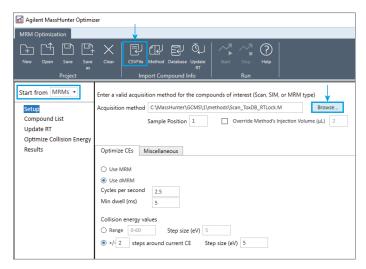



Figure 1. Agilent MassHunter Optimizer for GC/TQ Setup window.

4. Once the compound information import is completed, all 176 entries will appear under the Compound List tab, as shown in Figure 2. By default, all of the compounds are checked.

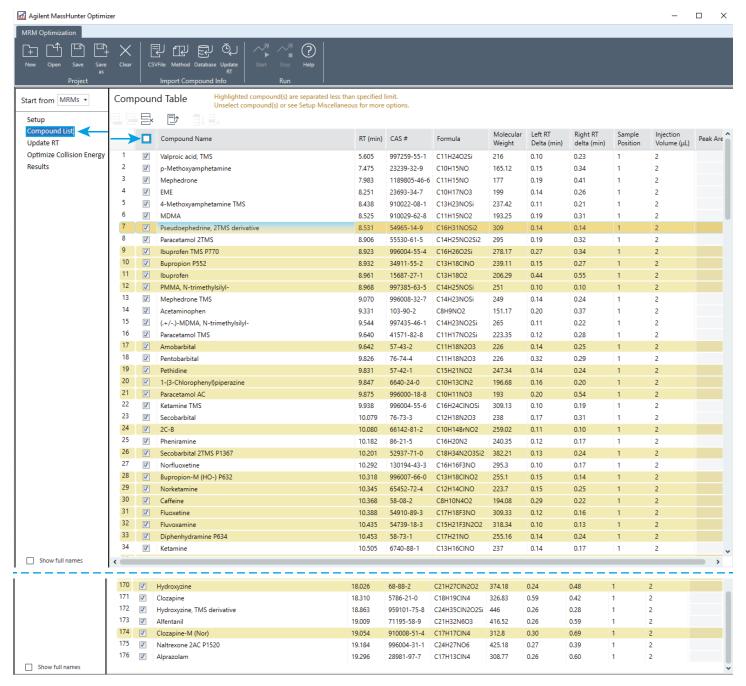



Figure 2. Agilent MassHunter Optimizer for GC/TQ Compound Table window displaying compounds imported from the database.

- 5. Next, only the compounds that are to be included in the acquisition method need to remain checked in the Compound Table. The quickest way to leave only the target compounds checked is to deselect all compounds by double-clicking the check box at the top of the Compound Table (shown with the blue arrow in Figure 2), and to select, one-by-one, the compounds that need to be included in the acquisition method. The Compound Table can be sorted in alphabetical order by clicking the Compound Name table header.
- Figure 3 shows an example of the Compound Table, in which the targets are sorted in alphabetical order and only the compounds from the fentanyls group are selected.
- 6. If the retention times need to be updated because a different GC column configuration or oven program is used, or the starting GC method was not retention time locked, click **Update RT**. MassHunter Optimizer will prompt the user to perform analysis of the sample containing the target compounds, and will automatically update the retention times.

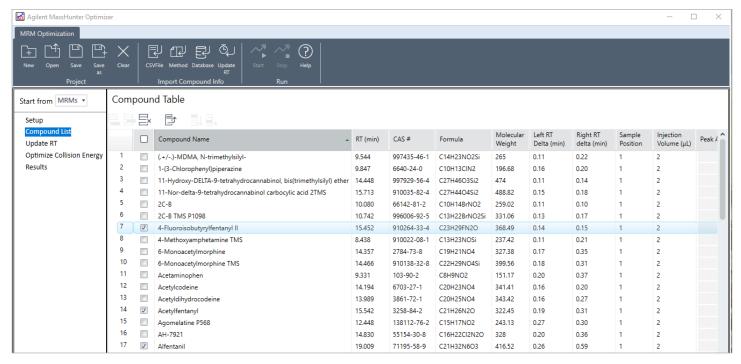



Figure 3. Compound Table with the targets from the fentanyls group selected.

7. Next, the final list of MRM transitions that will be included in the method can be reviewed under the Results tab. By default, all the MRM transitions available for the compounds will be selected. Note that there are up to 12 MRM transitions for some targets in the database; hence, the user may prefer to deselect some of the transitions for the selected targets to limit the number of MRMs per compound in the final method. The quickest way to review the MRM transitions for the selected compounds is to sort the table so that the selected compounds will be at the top. Double-click the gray square at the top of the Results table (shown with the

blue arrow in Figure 4), which will sort the list so that the selected compounds are at the top. Then, some of the MRM transitions can be deselected if desired. In the example shown in Figure 4, the four most abundant MRM transitions per each of the selected compounds remain deselected. The % column shows the relative abundance for each of the MRMs compared to the MRM with the highest response.

Finally, in the Results window shown in Figure 4, the left and right dMRM windows can be specified. The default value of 0.2 minutes is a good starting point.

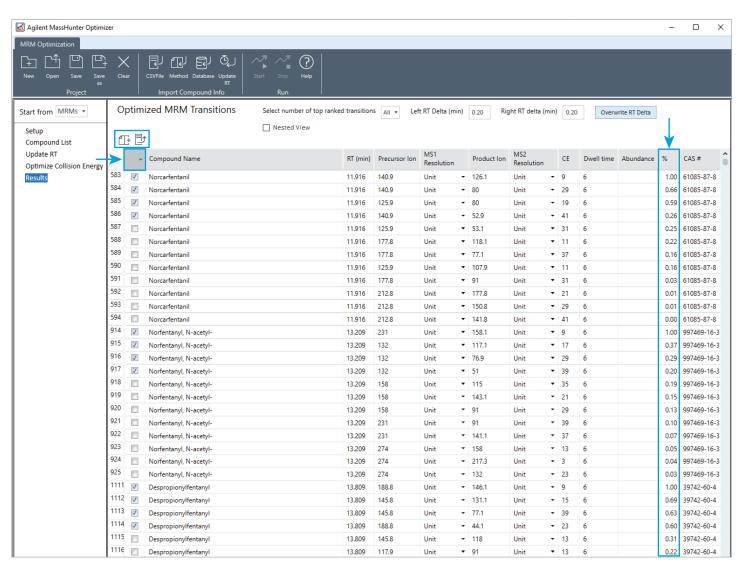



Figure 4. The Results table showing the MRM transitions. The selected transitions will be included in the final data acquisition method.

8. Click the **Create a method** icon at the top of the Results table to prompt a pop-up window (shown in Figure 5) to save the data acquisition method.

The developed MRM acquisition method can be saved as either a time-segment MRM method or a dMRM method. The minimum dwell time and the number of cycles per second can be defined when saving the method.

Alternatively, the developed transitions can be exported as a CSV file and imported into an existing GC/MS data acquisition method in MassHunter data acquisition software.

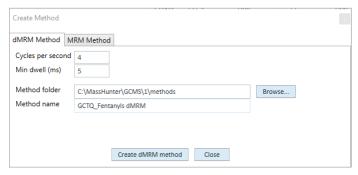



Figure 5. Creating a method with Agilent MassHunter Optimizer for GC/TQ.

Once the method is saved, it can be opened in MassHunter data acquisition software for review. The MS component of the method created for 15 fentanyls using the database with four transitions selected per compound is shown in Figure 6. The acquisition method is ready for use

Note that if using an Agilent 7000 GC/TQ model E and above, or a 7010 GC/TQ model C and above, full scan data can be collected simultaneously in a dMRM method. To enable this mode, select **Enable** next to Full Scan Parameters (Figure 6). This data acquisition mode will allow the collection of full scan data in addition to the MRM transitions, enabling retrospective analysis, additional compound confirmation by the MS spectrum, and providing understanding of the matrix components and in-source loading.

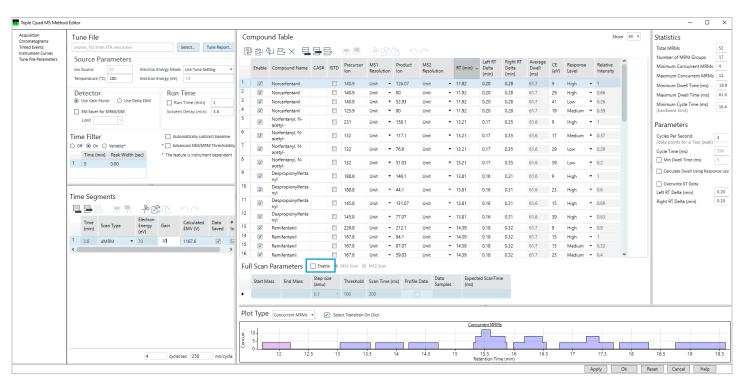


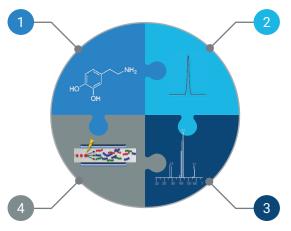

Figure 6. Triple Quad MS Method Editor window of Agilent MassHunter GC/MS data acquisition software, demonstrating the dMRM table of the method created from the database.

# Results and discussion

## Forensic GC/TQ database

The database is available for download as a CSV file in Appendix 1 of this application note.

The database created in this work includes 176 entries in total that include 154 unique compounds, 124 of which are underivatized entries, 32 are trimethylsilylated, and 20 are acetylated (Figure 7). The compounds include benzodiazepines, antidepressants, opioids, and drugs of abuse. The complete list of the database entries is shown in Appendix 2.


# Application of the database to real-world samples

The proof of concept using the developed database involved the analysis of archived postmortem blood samples. A comparison was made between full scan data acquisition mode and MRM, with a focus on the identification of compounds. The MRM method was created from the database as described in the "Experimental" section.

All compounds were found with the MRM approach, while some of the toxicants present in the sample at a low concentration were missed with the full scan approach. For example, fentanyl was detected in the sample with the MRM approach and quantitated at 1.7 ng/mL, while it was not detected in full scan data acquisition mode (Figure 8).

#### 176 entries in total

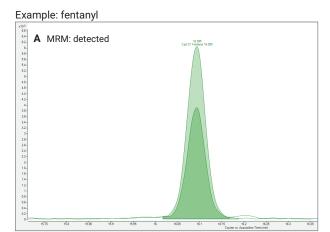
- 154 unique compounds:
  - 124 underivatized entries
  - 32 trimethylsilylated entries
  - 20 acetylated entries



#### Retention times for all entries

- Retention time locked to cocaine
- Allows a new column or instrument to have retention times that match the retention times provided in the database

## 1,803 MRM transitions


- 3 to 12 transitions per compound
- Optimized collision energies

optimized demoidir energies

Figure 7. Overview of the entries and information included in the forensic database.

## Relative ion abundances

For additional confirmation and optimal dwell time distribution



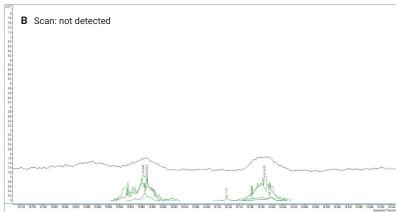



Figure 8. Fentanyl in the archived postmortem blood sample, which was detected in the MRM GC/TQ data acquisition mode (A), but was not detected with the spectral deconvolution approach in the full scan data (B).

# Conclusion

The forensic toxicology database, with a curated set of 1,803 MRM transitions for 176 toxicologically relevant compounds, was successfully developed. The compounds included benzodiazepines, antidepressants, opioids, and drugs of abuse. The application of this MRM method to an authentic real-world sample showcased its ability to detect and quantitate toxicants at trace levels due to the high sensitivity and selectivity of the MS/MS approach. This approach addresses limitations when relying solely on full scan data acquisition mode.

The developed MRM database can be used for simplified data acquisition method creation, providing a valuable resource for the development of screening and quantitation methods in forensic labs. The developed MRM curation workflow showed promise for continuous expansion, offering a uniform and practical approach for adding new chemicals to the database.

# **Appendix 1**

The database, in CSV file format, can be downloaded here.

The simple steps describing how to create a data acquisition method using the database are provided in the "How to use the database" section of this application note.

# **Appendix 2**

A complete list of the targets included in the forensic database. The nomenclature follows the MPW database.<sup>8</sup>

**Table A1.** List of the targets included in the forensic database.

| Compound Name                    | CAS Number   | RT    |
|----------------------------------|--------------|-------|
| Valproic Acid TMS                | 997259-55-1  | 5.605 |
| p-Methoxyamphetamine             | 23239-32-9   | 7.475 |
| Mephedrone                       | 1189805-46-6 | 7.983 |
| EME                              | 23693-34-7   | 8.251 |
| 4-Methoxyamphetamine TMS         | 910022-08-1  | 8.438 |
| MDMA                             | 910029-62-8  | 8.525 |
| Pseudoephedrine, 2TMS Derivative | 54965-14-9   | 8.531 |
| Paracetamol 2TMS                 | 55530-61-5   | 8.906 |
| Ibuprofen TMS P770               | 996004-55-4  | 8.923 |
| Bupropion P552                   | 34911-55-2   | 8.932 |
| Ibuprofen                        | 15687-27-1   | 8.961 |
| PMMA, N-trimethylsilyl-          | 997385-63-5  | 8.968 |
| Mephedrone TMS                   | 996008-32-7  | 9.070 |
| Acetaminophen                    | 103-90-2     | 9.331 |
| (+/-)-MDMA, N-Trimethylsilyl-    | 997435-46-1  | 9.544 |
| Paracetamol TMS                  | 41571-82-8   | 9.640 |
| Amobarbital                      | 57-43-2      | 9.642 |

| Compound Name                              | CAS Number  | RT     |
|--------------------------------------------|-------------|--------|
| Pentobarbital                              | 76-74-4     | 9.826  |
| Pethidine                                  | 57-42-1     | 9.831  |
| 1-(3-Chlorophenyl)piperazine               | 6640-24-0   | 9.847  |
| Paracetamol AC                             | 996000-18-8 | 9.875  |
| Ketamine TMS                               | 996004-55-6 | 9.938  |
| Secobarbital                               | 76-73-3     | 10.079 |
| 2C-B                                       | 66142-81-2  | 10.080 |
| Pheniramine                                | 86-21-5     | 10.182 |
| Secobarbital 2TMS P1367                    | 52937-71-0  | 10.201 |
| Norfluoxetine                              | 130194-43-3 | 10.292 |
| Bupropion-M (HO-) P632                     | 996007-66-0 | 10.318 |
| Norketamine                                | 65452-72-4  | 10.345 |
| Caffeine                                   | 58-08-2     | 10.368 |
| Fluoxetine                                 | 54910-89-3  | 10.388 |
| Fluvoxamine                                | 54739-18-3  | 10.435 |
| Diphenhydramine P634                       | 58-73-1     | 10.453 |
| Ketamine                                   | 6740-88-1   | 10.505 |
| Thiopental P565                            | 76-75-5     | 10.508 |
| Brallobarbital P812                        | 561-86-4    | 10.553 |
| 2C-B TMS P1098                             | 996006-92-5 | 10.742 |
| N-Acetyl-3,4-methylenedioxymethamphetamine | 181765-92-4 | 10.864 |
| Phenobarbitone 2TMS                        | 910187-11-0 | 10.944 |
| Tramadol                                   | 27203-92-5  | 10.977 |
| Cyclobarbital 2TMS P1358                   | 996005-49-6 | 11.020 |
| MDEA AC P597                               | 996003-27-1 | 11.066 |
| Phenobarbital                              | 50-06-6     | 11.094 |
| Cyclobarbital                              | 52-31-3     | 11.136 |
| Ketamine-M (nor-) AC P685                  | 996007-82-6 | 11.180 |
| Levamisole                                 | 14769-73-4  | 11.185 |
| Tramadol-M (HO-) -H20 P666                 | 996006-75-6 | 11.201 |
| Chlorpheniramine                           | 132-22-9    | 11.236 |
| Metoprolol                                 | 37350-58-6  | 11.320 |
| Metoprolol TMS                             | 910252-91-4 | 11.330 |
| O-Desmethyl-tramadol                       | 80456-81-1  | 11.364 |
| Methadone-M (EDDP) P764                    | 996000-24-2 | 11.370 |
| Naproxen TMS                               | 74793-83-2  | 11.438 |
| Naproxen                                   | 22204-53-1  | 11.564 |
| Heroin                                     | 561-27-3    | 11.600 |
| Venlafaxine                                | 93413-69-5  | 11.625 |
| Fluconazole P943                           | 86386-73-4  | 11.802 |
| Propanolol, TMS Derivative                 | 959081-18-6 | 11.864 |
| Methadone                                  | 76-99-3     | 11.879 |
| Norcarfentanil                             | 61085-87-8  | 11.916 |
| Propranolol                                | 525-66-6    | 11.999 |
| Dextromethorphan                           | 125-71-3    | 12.025 |
| Norcocaine                                 | 18717-72-1  | 12.093 |
| Venlafaxine-M (O-Desmethyl)                | 910048-23-6 | 12.111 |
| Cannabidiol 2TMS                           | 910233-55-5 | 12.148 |

| Compound Name                                | CAS Number  | RT     |
|----------------------------------------------|-------------|--------|
| Ketamine AC                                  | 910019-83-9 | 12.178 |
| Amitriptyline                                | 50-48-6     | 12.241 |
| Cocaine                                      | 478-73-9    | 12.262 |
| Trimipramine                                 | 739-71-9    | 12.327 |
| Imipramine                                   | 50-49-7     | 12.399 |
| Fluconazole, Trimethylsilyl Ether            | 166173-18-8 | 12.434 |
| Agomelatine P568                             | 138112-76-2 | 12.448 |
| Diclofenac TMS                               | 910107-54-9 | 12.524 |
| Cocaethylene @P1013                          | 996000-46-6 | 12.537 |
| Benzoylecgonine, O-TMS Derivative            | 864281-94-7 | 12.537 |
| Nordoxepin                                   | 1225-56-5   | 12.549 |
| Moclobemide                                  | 71320-77-9  | 12.615 |
| Mirtazapine                                  | 61337-67-5  | 12.627 |
| Diclofenac                                   | 15307-86-5  | 12.634 |
| Desomorphine                                 | 427-00-9    | 12.636 |
| Norcocaine TMS                               | 910160-82-6 | 12.646 |
| Pentazocine                                  | 359-83-1    | 12.657 |
| Melitracen                                   | 5118-29-6   | 12.682 |
| Bisoprolol TMS                               | 910251-41-1 | 12.725 |
| Promethazine                                 | 60-87-7     | 12.731 |
| Mianserin-M (nor-) P606                      | 996002-24-5 | 12.769 |
| Delta-9-tetrahydrocannabinol, TMS Derivative | 55449-68-8  | 12.879 |
| Pentazocine AC                               | 910038-20-9 | 12.916 |
| Maprotiline-M (Nor)                          | 910068-96-1 | 13.021 |
| Oxazepam                                     | 604-75-1    | 13.037 |
| Reboxetine                                   | 98769-81-4  | 13.044 |
| Prothipendyl                                 | 303-69-5    | 13.148 |
| Maprotiline                                  | 10262-69-8  | 13.168 |
| Norfentanyl, N-acetyl-                       | 997469-16-3 | 13.209 |
| Desomorphine AC                              | 910171-95-8 | 13.216 |
| Cannabidiol                                  | 13956-29-1  | 13.247 |
| Sertraline P935                              | 79617-96-2  | 13.268 |
| Dosulepin                                    | 113-53-1    | 13.402 |
| Cannabidiol 2AC P1439                        | 996000-64-9 | 13.419 |
| Cannabinol TMS P1367                         | 996004-53-2 | 13.437 |
| Citalopram                                   | 59729-33-8  | 13.439 |
| Codeine                                      | 76-57-3     | 13.484 |
| Dihydrocodeine                               | 125-28-0    | 13.505 |
| Lorazepam                                    | 846-49-1    | 13.527 |
| Clomipramine P995                            | 303-49-1    | 13.528 |
| U-47700                                      | 82657-23-6  | 13.543 |
| Tetrazepam                                   | 10379-14-3  | 13.630 |
| Codeine, TMS Derivative                      | 74367-14-9  | 13.642 |
| Ethylmorphine                                | 76-58-4     | 13.697 |
| Citalopram-M (Nor)                           | 910126-73-7 | 13.698 |

| Compound Name                                                         | CAS Number  | RT     |
|-----------------------------------------------------------------------|-------------|--------|
| Diazepam @P799                                                        | 439-14-5    | 13.738 |
| Clomipramine-M (nor-) P908                                            | 303-48-0    | 13.782 |
| Despropionylfentanyl                                                  | 39742-60-4  | 13.809 |
| Flurazepam-M (Desalkyl)                                               | 2886-65-9   | 13.837 |
| Cannabinol, Acetate                                                   | 997724-40-7 | 13.887 |
| Hydrocodone                                                           | 125-29-1    | 13.912 |
| Morphine, 2TMS Derivative                                             | 55449-66-6  | 13.918 |
| Acetyldihydrocodeine                                                  | 3861-72-1   | 13.989 |
| Hydromorphone                                                         | 466-99-9    | 14.060 |
| Acetylcodeine                                                         | 6703-27-1   | 14.194 |
| Chlorpromazine                                                        | 50-53-3     | 14.202 |
| Nordazepam                                                            | 1088-11-5   | 14.282 |
| N-Acetylnorcocaine                                                    | 0-00-0      | 14.294 |
| Clotiazepam                                                           | 33671-46-4  | 14.294 |
| Levomepromazine                                                       | 60-99-1     | 14.300 |
| 6-Monoacetylmorphine                                                  | 2784-73-8   | 14.357 |
| Cannabinol                                                            | 521-35-7    | 14.362 |
| Remifentanil                                                          | 132875-61-7 | 14.389 |
| Oxycodone, Acetate                                                    | 997736-63-7 | 14.394 |
| Ethylmorphine, Acetate                                                | 997731-61-8 | 14.445 |
| 11-Hydroxy-delta-9-tetrahydrocannabinol,<br>Bis(trimethylsilyl) Ether | 997929-56-4 | 14.448 |
| U-49900                                                               | 67579-76-4  | 14.450 |
| 6-Monoacetylmorphine TMS                                              | 910138-32-8 | 14.466 |
| O <sup>6</sup> -Acetylmorphin, TMS Derivative                         | 997830-22-7 | 14.478 |
| Oxycodone                                                             | 76-42-6     | 14.524 |
| Clobazam                                                              | 22316-47-8  | 14.568 |
| Benzoylecgonine                                                       | 519-09-5    | 14.768 |
| AH-7921                                                               | 55154-30-8  | 14.830 |
| Paroxetine                                                            | 61869-08-7  | 14.883 |
| Midazolam                                                             | 59467-70-8  | 14.906 |
| Temazepam                                                             | 846-50-4    | 14.921 |
| Loxapine @P1074                                                       | 27833-64-3  | 14.957 |
| Hydromorphone AC                                                      | 910018-11-0 | 15.001 |
| Delorazepam                                                           | 2894-67-9   | 15.047 |
| Flunitrazepam                                                         | 1622-62-4   | 15.066 |
| Diacetylmorphine                                                      | 561-27-3    | 15.162 |
| Quetiapine-M (N-dealkyl-) P876                                        | 996006-43-8 | 15.197 |
| Bromazepam                                                            | 1812-30-2   | 15.336 |
| Prazepam                                                              | 2955-38-6   | 15.394 |
| 4-Fluoroisobutyrylfentanyl II                                         | 910264-33-4 | 15.452 |
| Acetylfentanyl                                                        | 3258-84-2   | 15.542 |
| Para-fluorofentanyl                                                   | 90736-22-4  | 15.631 |
| 11-Nor-delta-9-tetrahydrocannabinol<br>Carbocylic Acid 2TMS           | 910035-82-4 | 15.713 |

| Compound Name               | CAS Number  | RT     |
|-----------------------------|-------------|--------|
| Naloxone                    | 465-65-6    | 15.910 |
| Clotiapine P1173            | 2058-52-8   | 15.958 |
| Fentanyl                    | 437-38-7    | 16.211 |
| para-Fluorobutyryl Fentanyl | 244195-31-1 | 16.301 |
| Olanzapine                  | 132539-06-1 | 16.353 |
| Flurazepam                  | 17617-23-1  | 16.582 |
| Nitrazepam                  | 146-22-5    | 16.742 |
| Naloxone, O,O'-Diacetyl-    | 997851-29-6 | 16.840 |
| Ocfentanil                  | 101343-69-5 | 17.018 |
| Zolpidem                    | 82626-48-0  | 17.034 |
| Tiapride                    | 51012-32-9  | 17.055 |
| Papaverine                  | 58-74-2     | 17.326 |
| Cyclopropyl Fentanyl        | 910257-05-5 | 17.465 |
| Clonazepam                  | 1622-61-3   | 17.799 |
| Valerylfentanyl             | 122882-90-0 | 18.006 |
| Naltrexone                  | 16590-41-3  | 18.011 |
| Hydroxyzine                 | 68-88-2     | 18.026 |
| Clozapine                   | 5786-21-0   | 18.310 |
| Hydroxyzine, TMS Derivative | 959101-75-8 | 18.863 |
| Alfentanil                  | 71195-58-9  | 19.009 |
| Clozapine-M (Nor)           | 910008-51-4 | 19.054 |
| Naltrexone 2AC P1520        | 996004-31-1 | 19.184 |
| Alprazolam                  | 28981-97-7  | 19.296 |

## References

- Lehrer, M. The Role of Gas Chromatography/Mass Spectrometry. Instrumental Techniques in Forensic Urine Drug Testing. Clin. Lab Med. 1998 Dec, 18(4), 631–49.
- 2. Wood, M.; Laloup, M.; Samyn, N.; Ramirez Fernandez, M.; Bruijn, E. A.; Maes, R. A. A.; Boeck, G. D. Recent Applications of Liquid Chromatography-Mass Spectrometry in Forensic Science. *J. Chromatogr. A.* **2006** Oct 13, 1130(1), 3–15.
- 3. Forensic Toxicology tMRM Database for Triple Quadrupole LC/MS https://www.agilent.com/en/product/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-application-solutions/forensic-toxicology-tmrm-database-for-triple-quadrupole-lc-ms
- Lokits, K.; Ciotti, R.; Diaz, H. QuickProbe Dual Configurations for Forensic Workflows: Providing Flexibility and Robustness on a Single GC/MS System. Agilent Technologies application note, publication number 5994-6889EN, 2023.
- 5. Lokits, K.; Willey, A. Evaluation of Hydrogen Carrier Gas and the Agilent Hydrolnert Source for Forensic Street Drug Analysis. *Agilent Technologies application note*, publication number **5994-6982EN**, **2023**.
- Andrianova, A.; Liu, H.; Graettinger, A.; Churley, M. Automated MRM Method Development for US EPA Method 8270 with the Agilent MassHunter Optimizer for GC/TQ. Agilent Technologies application note, publication number 5994-2086EN, 2020.
- Andrianova, A.; Liu, H.; Graettinger, A. Automated MRM Method Development for Pesticides in Cannabis Using the Agilent MassHunter Optimizer for GC/TQ. Agilent Technologies application note, publication number 5994-2087EN, 2020.
- 8. Maurer, H. H.; Pfleger, K.; Weber, A. A. Mass Spectral Library of Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites, **2007** (3rd Edition).

#### www.agilent.com

For Forensic Use.

RA45433.6567824074

This information is subject to change without notice.

