

Analysis of Semivolatile Organic Compounds with US EPA 8270E Using the Agilent 7000E Triple Quadrupole GC/MS

Abstract

This application note illustrates a sensitive method used to analyze semivolatile organic compounds (SVOCs) on an Agilent 7000E triple quadrupole GC/MS system (GC/TQ). The use of GC/TQ instrumentation for analysis of SVOCs offers significant advantages. High selectivity afforded by multiple reaction monitoring (MRM) mode results in faster batch review and increased confidence due to the elimination of matrix interferences. These interferences are often present when using selective ion monitoring (SIM) or scan acquisition modes. Increased sensitivity can facilitate smaller extraction volumes that improve sustainability, reduce waste, and decrease costs associated with sample preparation, solvent usage, and waste disposal. A primary objective of this work was to demonstrate the ability of a GC/TQ to detect SVOCs at low levels to meet these laboratory needs while maintaining an excellent dynamic range.

Authors

Eric Fausett, Rachael Ciotti, and Dale Walker Agilent Technologies, Inc.

Introduction

The analysis of SVOCs can be challenging as there is a wide variety of target analytes that include bases, neutrals, and acids. These analytes span a wide range of molecular weights and boiling points. The United States **Environmental Protection Agency** (US EPA) has issued regulations and guidelines in Method 8270E for the analysis of these analytes by GC/TQ. Typical samples that are analyzed for SVOCs include surface or ground water as well as solid samples. These samples are then extracted before analysis. If method sensitivity can be improved, there is an opportunity to reduce sample and extract volumes that can result in decreased costs and increased lab sustainability. A preferable analytical method can also demonstrate a wide dynamic range to reduce the need for sample dilution and reanalysis.

Experimental

Sample preparation

A 2,000 µg/mL stock standard of SVOCs was sourced from Agilent (part number US201-1). Initial calibration curve standards were prepared by dilution of the stock and working standards into dichloromethane. Eleven calibration levels were prepared at the following concentrations: 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, and 10 µg/mL. A 2,000 µg/mL internal standard (ISTD) solution was also sourced from Agilent (part number ISM-560-1). This solution contained six internal standards: 1,4-dichlorobenzene-d4, acenaphthene-d10, chrysene-d12, naphthalene-d8, phenanthrene-d10, and pervlene-d12. This ISTD solution was diluted and added to the calibration vials at a concentration of 4 µg/mL.

Instrumental method

An Agilent 8890 GC system and 7693A automatic liquid sampler (ALS) were used for sample introduction. The 8890 GC was configured with a split/splitless (SSL) inlet. An Agilent 7000E triple quadrupole mass spectrometer (TQ/MS) was used as the detector.

Initial method parameters were obtained from two Agilent application notes.^{1,2} GC and MS method settings are shown in in the following tables.

The key techniques below were employed which increased method success:

 Using a GC/TQ provided greater sensitivity for low level analysis and simplified data reduction due to increased selectivity.

- A pulsed split injection with a 5:1 split ratio offered excellent sensitivity while preserving the advantages of a split injection.
- The 9 mm extractor lens enhanced linearity and improved overall performance for challenging analytes.
- Retention time locking protected against losing peaks, which may have otherwise drifted out of an MRM analysis window after column trimming.
- Dynamic MRM (dMRM) analysis mode reduced the number of simultaneous transitions that were monitored and simplified the process of adding and removing analytes.

GC Settings					
Analytical Column	Agilent J&W DB-8270D UI, 30 m × 0.25 mm, 0.25 μm (p/n 122-9732)				
Injection Volume	1 µL				
Inlet Temperature	Isothermal 280 °C				
Injection Mode	Pulsed split				
Split Ratio	5:1				
Injection Pulse Pressure	30 psi until 0.6 min				
Liner	Ultra Inert split, low pressure drop glass wool (p/n 5190-2295)				
Oven Temperature Program	40 °C, hold for 0.5 min Ramp at 25 °C /min to 260 °C, hold 0 min Ramp at 5 °C /min to 280 °C, hold 0 min Ramp at 25 °C /min to 320 °C, hold 2 min				
Run Time	16.9 min				
Equilibration Time	1 min				
Carrier Gas	Helium, constant flow at 1.55 mL/min (adjusted by RT locking)				
Transfer Line Temperature	320 °C				

MS Settings					
Ion Source	Extractor with 9 mm lens				
Ion Source Temperature	300 °C				
Quadrupole Temperature	150 °C				
Collision Gas	Nitrogen at 1.5 mL/min				
Quench Gas	Helium at 2.25 mL/min				
Ionization Mode	El				
Solvent Delay	1.7 min				
EMV mode	Gain factor				
Gain Factor	3				
Scan Type	Dynamic MRM				

Several injection techniques were evaluated including split and splitless modes, with and without pulsed injections. A pulsed split injection with a 5:1 split ratio was selected as it offered excellent sensitivity while preserving the advantages of a split injection. Split injections allow for faster sample transfer from the inlet to the column. This faster transfer can improve performance for thermally sensitive analytes as they spend less time at high temperature in the GC inlet. Split injections also diminish the deposition of nonvolatile matter at the head of the GC column.

This method also used a 9 mm diameter extractor lens (part number G3870-20449) in the MS source. The 9 mm lens has been shown to significantly enhance method performance for polycyclic aromatic hydrocarbons and for many other challenging analytes such as 2,4-dinitrophenol by Anderson *et al.*³

The implementation of retention time locking (RTL) was critical to ensure exact retention time fidelity even after repeated inlet maintenance and column trimming. After trimming the column during maintenance, a single injection was made that allowed the Agilent MassHunter acquisition software for GC/MS systems to make a slight adjustment to the GC flow. This adjustment realigned all the analyte retention times. The method was retention time locked to acenaphthene-d10 at 7.08 minutes. This technique protects against losing peaks that may otherwise drift out of a dMRM analysis window after column maintenance

The method also used dMRM acquisition mode. This approach addresses the limitations of time segment methods for a large batch of compounds by replacing the group segmentation with individual time windows for every analyte transition. It also dramatically reduces, the number of individual MRM transitions that are monitored during each MS scan.⁴ Dynamic MRM mode simplifies the addition and removal of analytes of interest. The dMRM mode overcomes many challenges associated with time segmented methods targeting an abundance of analytes in a short elution window.

Early method experiments used a 25 °C oven ramp from 40 to 320 °C. The oven ramp was modified such that the oven ramp rate from 260 to 280 °C was decreased to 5 °C per minute. By optimizing the oven ramp. improved chromatographic resolution was achieved for benzo[b]fluoranthene and benzo[k]fluoranthene. Isomers are considered resolved if the height of the valley between two isomer peaks is less than 50% of the average of the two peak heights.⁵ As shown in Figure 1, 88.6% resolution was achieved at a concentration of 2.0 µg/mL. Indeno[1,2,3-cd]pyrene and dibenz[a,h] anthracene were also acceptably separated at 62.6% resolution, as shown in Figure 2.

Figure 1. Benzo(b)fluoranthene and benzo(k)fluoranthene at 2.0 µg/mL (88.6% resolution).

Results and discussion

Manufacturer recommended tune

On a single quadrupole MS, the instrument would be challenged with a DFTPP (decafluorotriphenylphosphine) solution to verify mass accuracy and resolution. DFTPP tune checks are not appropriate for tandem MS analysis using MRM. However, the laboratory must demonstrate, prior to the initial calibration, that the MS system achieves mass accuracy and mass resolution criteria specified by the instrument manufacturer for the perfluorotributylamine (PFTBA) internal calibrant or another appropriate chemical.⁵ The MS tune was verified using the Agilent manufacturer recommended tune protocol for the GC/TO. Figure 4 shows an example check tune report from the Agilent manufacturer recommended tune. This procedure assists the analyst in using the GC/TQ by generating tune evaluation tests and reports to quickly evaluate and document the operability of the MS system.

Figure 2. Indeno[1,2,3-cd]pyrene and dibenz[a,h]anthracene at 2.0 µg/mL (62.6% resolution).

Calibration

The initial calibration included 74 analytes. The 3- and 4-methyl phenol isomers were not separated and were reported as a combined result. The initial calibration was performed by introducing 11 different calibration solutions across more than three orders of magnitude in the range of 0.005 to 10 µg/mL. Each analyte was monitored using at least two MRM transitions, one of which was selected to quantify the results while the second was used as a qualifier. Some calibration curve ranges were trimmed at the top and/or bottom of the working range to meet method criteria.

Figure 3. Total ion chromatogram from composite of all dMRM transitions showing separation in 16.9 minutes.

Instrument In	formatior	1 EI wi	th E	xtractor I	on Sou	rce – H	ligh S	Sensiti	vity '	Tune			
MS Model	G70	000E						Tune Tin	nestam	D	2022-03	-30	11:30:51-04:00
Instrument Name								Save Tim	nestam	, р	2022-03	-30	11:30:56-04:00
SW/FW Version								Tune File	2		first.eiex	t i	
								Tune Lev	/el		Full Auto	otun	e
Instrument Actu	als												
Emission (µA)		35	.1 F	Rough Vac (m	Torr)		1	.04E+2	Colun	nn 1 (mL/r	nin)		1.550
Source Temp. (°C)		30)0 H	High Vac (Tor	·)		7	7.64E-5	Colun	n 2 (mL/r	nin)		0.000
MS1 Quad Temp. (°	C)	15	i0 1	Turbo 1 Speed	l (%)			100.0	Collisi	on Cell (m	ıL/min)		1.500
MS2 Quad Temp. (°	C)	15	i0 1	Furbo 1 Powe	r (W)			0.0	Quen	ch Flow (n	nL/min)		2.250
Transfer Line (°C)		32	20										
MS1/MS2 Quadr	upole Cheo	cktune Res	sults										
Target Mass	Actual Ma	ass (m/z)			MS1 At	oundance					MS2 Abunda	ince	
(m/z)	MS1	MS2		Abundance	Rat	io %	Accep	table %	Ab	undance	Ratio %		Acceptable %
69.0	69.0	- 69	.0	11,924,296		100.00	50.0	- 110.0	39	580,079	100.0	00	50.0 - 110.0
219.0	219.0	219	0.0	10,837,233		90.88	70.0	- 110.0	15	324,358	38.7	/2	10.0 - 40.0
414.0	204.U 414.0	264	.0	3,749,068		7 99	10.0	- 40 0	12	333 806	31.5	50 42	10.0 - 60.0
502.0	502.0	502	.0	560,987		4.70	0.1	- 40.0	,	964,475	2.4	- <u>-</u> 14	0.1 - 12.0
Isotope M+1			MS1 /	Abundance						MS2 A	bundance		
(m/z)	Iso M+1	Abund I	so M	+1 Ratio %	Accept	table %	Is	o M+1 Al	bund	Iso M+	-1 Ratio %	A	cceptable %
70.0	1	137,009		1.15	0.63	- 1.72		54	5,237		1.38		0.63 - 1.72
220.0	4	171,869		4.35	2.94	- 6.42	_	68	7,613		4.49	4.49 2.94 - 6.42	
265.0	4	213,584		5.70	5./0 4.09-8.3/ /31,141 5.0		5.85		4.09 - 8.37				
503.0		55 587		9.91	8.75	- 12.00	_	25	4 539		9.80 8.75 - 12.0		8 75 - 12 88
Maximum Gain Facto)r bocktupo P	loculte						1	.00		≥ 10	0	
		cesuits							(0)			_	
AIr / Water PETBA(69)			ADSOI	ute Abundand	e 357 567	1	kelative	Abundar	nce (%	100	Recom	mer	-
Water				11,	21.511					0.19		≤ 2	20
Oxygen					22,816					0.20		≤ 2	.5
Nitrogen*					85,036					0.75		≤ 1	10

Figure 4. Example check tune report for manufacturer recommended tune.

Some analytes in the 8270 list are prone to difficulty in calibration. These analytes may be labile or active in the GC inlet, particularly at lower concentrations. This may manifest as variation in response factor relative to analyte concentration. Section 1.4.7 of the 8270 method⁵ lists several such analytes and notes that they may be subject to erratic chromatographic behavior. 2,4-Dinitrophenol is one of the most difficult from this list and the calibration is shown in Figure 5. The response factor moderately increases with concentration, but method requirements were met as the average response factor (avg RF) relative standard deviation was 18.07%, which is less than the requirement of 20%. Method 8270 allows curve fitting for some analytes to alleviate this difficulty, provided that the coefficient of determination (R^2) is greater than 0.99. An alternate quadradic curve fit for 2-4-dinitrophenol is shown in Figure 6 with a R² of 0.9979. Pentachlorophenol is another of these listed potentially difficult analytes and the calibration curve is shown in Figure 8. In this case, a quadradic curve fit was selected with a R² value of 0.9966. These calibration curves demonstrate that calibration criteria may be met even with difficult analytes at low concentrations. An example of a more ideal calibration curve is shown for NDMA in Figure 9. NDMA itself can be a difficult analyte if chromatographic conditions are not optimized due to early elution and potential difficulty in complete resolution from the solvent. In this example, NDMA has an avg RF relative standard deviation of 5.71% and demonstrates exemplary linearity across the calibrated range.

Table 1. Calibration results.

				Low Std (ppm)	High Std (ppm)
Compound	Curve Fit	% RSE	R ²	(default is 0.0	05 to 10 ppm)
1,2,4-Trichlorobenzene	Avg RF	5.7			
1,2-Dichlorobenzene	Avg RF	5.3			
1,3-Dichlorobenzene	Avg RF	4.5			
1,3-Dinitrobenzene	Avg RF	16.4		0.025	5
1,4-Dichlorobenzene	Avg RF	7.8			
1,4-Dinitrobenzene	Avg RF	11.8		0.025	
1-Methylnaphthalene	Avg RF	6.8			
2,2'-oxybis[1-chloropropane]	Avg RF	4.3		0.050	
2,3,4,6-Tetrachlorophenol	Avg RF	14.1			
2,3,5,6-Tetrachlorophenol	Avg RF	9.6		0.025	
2,4,5-Trichlorophenol	Avg RF	8.2			
2,4,6-Trichlorophenol	Avg RF	5.2			
2,4-Dichlorophenol	Avg RF	4.2			
2,4-Dimethylphenol	Avg RF	3.4		0.010	
2,4-Dinitrophenol	Avg RF	18.1		0.050	5
2,4-Dinitrotoluene	Quadratic	5.4	0.9967	0.025	
2,6-Dinitrotoluene	Quadratic	8.3	0.9937	0.010	
2-Chloronaphthalene	Avg RF	3.5			
2-Chlorophenol	Avg RF	6.5			
2-methyl-4,6-dinitrophenol	Avg RF	13.0		0.025	5
2-Methylnaphthalene	Avg RF	4.1			
2-Methylphenol	Avg RF	6.7		0.010	
2-Nitroaniline	Avg RF	10.4			
2-Nitrophenol	Avg RF	7.8			
3+4-Methylphenol	Avg RF	3.5			
3-Nitroaniline	Avg RF	14.7			5
4-bromophenyl phenyl ether	Avg RF	3.9			
4-chloro-3-methylphenol	Avg RF	4.9			
4-Chloroaniline	Avg RF	3.0			
4-Chlorophenyl phenyl ether	Avg RF	2.1			
4-Nitroaniline	Quadratic	7.0	0.9954		
4-Nitrophenol	Avg RF	11.9			5
Acenaphthene	Avg RF	9.8		0.010	
Acenaphthylene	Avg RF	4.3		0.010	
Aniline	Avg RF	7.6		0.010	
Anthracene	Avg RF	5.2			
Azobenzene	Avg RF	3.9			
Benz[a]anthracene	Avg RF	6.7			
Benzo[a]pyrene	Avg RF	7.9			
Benzo[b]fluoranthene	Avg RF	7.2			
Benzo[g,h,i]perylene	Avg RF	8.0			
Benzo[k]fluoranthene	Avg RF	8.7			
Benzyl alcohol	Avg RF	2.7		0.010	
bis(2-Chloroethoxy)methane	Avg RF	3.2			
bis(2-Chloroethyl)ether	Avg RF	7.1			

				Low Std (ppm)	High Std (ppm)
Compound	Curve Fit	% RSE	R ²	(default is 0.0	05 to 10 ppm)
Bis(2-ethylhexyl) phthalate	Avg RF	14.3		0.025	
Butyl benzyl phthalate	Avg RF	10.3			
Carbazole	Avg RF	5.0			
Chrysene	Avg RF	5.7			
Dibenz[a,h]anthracene	Avg RF	14.4			5
Dibenzofuran	Avg RF	5.0			
Diethyl phthalate	Avg RF	7.6		0.100	
Dimethyl phthalate	Avg RF	4.1			
Di-n-butyl phthalate	Avg RF	3.2		0.025	
Di-n-octyl phthalate	Quadratic	6.2	0.9960		
Diphenylamine	Avg RF	4.9		0.025	
Fluoranthene	Avg RF	3.9			
Fluorene	Avg RF	3.0			
Hexachlorobenzene	Avg RF	7.1			
Hexachlorobutadiene	Avg RF	3.7			
Hexachlorocyclopentadiene	Avg RF	14.4		0.010	
Hexachloroethane	Avg RF	2.6		0.010	
Indeno[1,2,3-cd]pyrene	Avg RF	7.9			5
Isophorone	Avg RF	5.6			
Naphthalene	Avg RF	6.8			
NDMA	Avg RF	5.7		0.010	
Nitrobenzene	Avg RF	10.9		0.010	
N-Nitrosodi-n-propylamine	Avg RF	3.4		0.050	
Pentachlorophenol	Quadratic	6.7	0.9966	0.010	
Phenanthrene	Avg RF	5.7			
Phenol	Avg RF	5.7			
Pyrene	Avg RF	3.6			
Pyridine	Avg RF	5.2		0.025	
	Average	= 7.0			

In this data set, 69 of the 74 analytes were calibrated using an avg RF fit with a relative standard deviation of less than or equal to 20%. The remaining five analytes (2,4-dinitrotoluene, 2,6-dinitrotoluene, 4-nitroaniline, di-*n*-octyl phthalate, and pentachlorophenol) were calibrated using weighted least squares regression with quadratic fits having R² values above 0.99. The relative standard error was calculated for each analyte and found to be less than or equal to 20% for each calibration curve. The mean relative standard error across all analytes was 6.96%. Also, the accuracy for all calibration points used was within ±30% of the theoretical value for each concentration. At least six data points were used for each calibration curve. If a calibration working range is desired which covers higher concentrations, it is recommended to either dilute the samples or increase the ratio of the pulsed split injection. This modification would have the additional benefit of reducing matrix that reaches the column and detector and would likely reduce maintenance frequency.

Figure 5. Avg RF calibration curve for challenging analyte 2,4-dinitrophenol 0.05 to 5 μ g/mL. Avg. RF RSD = 18.07. Calibration points 1, 2, 3, and 11 are excluded.

Figure 6. Alternate calibration curve for 2,4-dinitrophenol with a quadradic curve fit 0.05 to 5 μ g/mL. R² = 0.9979. Calibration points 1, 2, 3, and 11 are excluded.

Figure 7. Avg RF calibration curve for benzo[g,h,i]perylene 0.005 to 10 µg/mL. Avg RF RSD = 7.98.

Figure 8. Calibration curve for pentachlorophenol 0.01 to 10 µg/mL. R² = 0.9966. Calibration point 1 excluded.

Figure 9. Calibration curve for NDMA. 0.01 to 10 µg/mL. Avg. RF RSD = 5.71. Calibration point 1 excluded.

Figure 10. NDMA 0.01 µg/mL, 2,4-dinitrophenol 0.05 µg/mL, PCP 0.01 µg/mL, benzo[g,h,i]perylene 0.005 µg/mL, and chrysene 0.005 µg/mL.

Conclusion

A sensitive method for analysis of SVOCs has been developed that also demonstrates an extended dynamic range. Many analytes were shown to have a wide working calibration range over more than three orders of magnitude from 0.005 to 10 μ g/mL. The collected data were evaluated with the quality criteria outlined in EPA 8270E.

GC/TQ offers significant advantages over the single quadrupole GC/MSD system in the analysis of SVOCs:

- High selectivity results in faster batch review by reducing the complexity of the data due to elimination of matrix interferences.
- Increased sensitivity opens the door for reduced sample sizes and smaller extraction volumes, which may:
 - Reduce waste while improving sustainability
 - Decrease costs associated with sample transport, solvent usage, and waste disposal
- Dynamic MRM mode generally reduces the number of individual MRM transitions during each MS scan. This improves instrument performance and makes adding and removing analytes from the method easy.
- The manufacturer recommended tune protocol simplifies tuning verification on the GC/TQ.

Key techniques for SVOC analysis by GC/MS which can improve results are

- Retention time locking ensures exact retention time fidelity even after column trimming which:
 - Eliminates the need to manually adjust retention times after maintenance
 - Makes data interchangeable across multiple instruments and multiple laboratories
- A pulsed split injection can enhance sensitivity over a standard split injection while maintaining a wide dynamic range.
- A 9 mm extractor lens gives outstanding linearity for all compounds while affording excellent sensitivity for many difficult analytes.

References

- Churley, M. et al. A Fast Method for EPA 8270 in MRM Mode Using the 7000 Series Triple Quadrupole GC/MS. Agilent Technologies application note, publication number 5991-0694EN, **2019**.
- 2. M. Churley, et al, EPA 8270 Re-Optimized for Widest Calibration Range on the 5977 Inert Plus GC/MSD. Agilent Technologies application note, publication number 5994-0349EN, **2018**.

- Anderson, Kim A. et al. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses. J. Chromatog. A 2015, 1419, 89–98. doi:10.1016/j. chroma.2015.09.054
- Stone, P. et al. New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses. Agilent Technologies technical overview, publication number 5990-3595, 2009.
- 5. Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); Method 8270E Sections 1.4.7, 11.3.1.2, and 11.6.1.4; United Stated Environmental Protection Agency, Revision 4, June **2018**.

Disclaimer

Although reference is made to EPA documents for review of the data, the contents of this publication have not been subjected to EPA review and the opinions of the authors do not reflect EPA policy.

Appendix

A List of calibrated compounds and transitions is shown in the following table.

Compound Name	CAS No.	Retention Time (min)	Precursor Ion	Product Ion	Left RT Delta	Right RT Delta	CE
NDMA	62-75-9	2.25	74	44	0.3	0.3	6
NDMA	62-75-9	2.25	74	42	0.3	0.3	14
Pyridine	110-86-1	2.4	79	52	0.3	0.5	25
Pyridine	110-86-1	2.4	79	51	0.3	0.5	25
Phenol	108-95-2	3.92	94	66.1	0.3	0.3	15
Phenol	108-95-2	3.92	94	65.1	0.3	0.3	20
Aniline	62-53-3	3.96	93	66	0.3	0.3	10
Aniline	62-53-3	3.96	92	65	0.3	0.3	10
bis(2-Chloroethyl)ether	111-44-4	4.01	95.1	65	0.3	0.3	5
bis(2-Chloroethyl)ether	111-44-4	4.01	93.1	63	0.3	0.3	0
2-Chlorophenol	95-57-8	4.06	128	64	0.3	0.3	30
2-Chlorophenol	95-57-8	4.06	128	63	0.3	0.3	15
1,3-Dichlorobenzene	541-73-1	4.2	146	111	0.3	0.3	15
1,3-Dichlorobenzene	541-73-1	4.2	146	75	0.3	0.3	30
1,4-Dichlorobenzene-d4	3855-82-1	4.25	150	115	0.2	0.2	15
1,4-Dichlorobenzene-d4	3855-82-1	4.25	150	78	0.2	0.2	30
1,4-Dichlorobenzene	106-46-7	4.27	146	111	0.3	0.3	15
1,4-Dichlorobenzene	106-46-7	4.27	146	75	0.3	0.3	30
Benzyl alcohol	100-51-6	4.35	108	79	0.3	0.3	15
Benzyl alcohol	100-51-6	4.35	107	79	0.3	0.3	5
1,2-Dichlorobenzene	95-50-1	4.39	146	111	0.3	0.3	15
1,2-Dichlorobenzene	95-50-1	4.39	146	75	0.3	0.3	30
2-Methylphenol	95-48-7	4.44	108	107	0.3	0.3	15
2-Methylphenol	95-48-7	4.44	107	77	0.3	0.3	15
2,2'-oxybis[1-chloropropane]	108-60-1	4.47	121	77	0.3	0.3	5
2,2'-oxybis[1-chloropropane]	108-60-1	4.47	121	49	0.3	0.3	30
3+4-Methylphenol	108-39-4	4.57	108	107.1	0.3	0.3	15
3+4-Methylphenol	108-39-4	4.57	108	80	0.3	0.3	0
N-Nitrosodi-n-propylamine	621-64-7	4.58	113.1	71	0.3	0.3	10
N-Nitrosodi-n-propylamine	621-64-7	4.58	101	70	0.3	0.3	0
Hexachloroethane	67-72-1	4.69	200.9	165.9	0.3	0.3	15
Hexachloroethane	67-72-1	4.69	118.9	83.9	0.3	0.3	35
Nitrobenzene	98-95-3	4.74	123	77	0.3	0.3	10
Nitrobenzene	98-95-3	4.74	77	51	0.3	0.3	15
Isophorone	78-59-1	4.96	138	82	0.3	0.3	5
Isophorone	78-59-1	4.96	82	54	0.3	0.3	5
2-Nitrophenol	88-75-5	5.03	138.9	81	0.3	0.3	15
2-Nitrophenol	88-75-5	5.03	109	81	0.3	0.3	10
2,4-Dimethylphenol	105-67-9	5.06	121	107	0.3	0.3	10
2,4-Dimethylphenol	105-67-9	5.06	107.1	77.1	0.3	0.3	15
bis(2-Chloroethoxy)methane	111-91-1	5.15	95	65	0.3	0.3	5

Compound Name	CAS No.	Retention Time (min)	Precursor Ion	Product Ion	Left RT Delta	Right RT Delta	CE
bis(2-Chloroethoxy)methane	111-91-1	5.15	93	63	0.3	0.3	5
2,4-Dichlorophenol	120-83-2	5.25	163.9	63	0.3	0.3	30
2,4-Dichlorophenol	120-83-2	5.25	162	63	0.3	0.3	30
1,2,4-Trichlorobenzene	120-82-1	5.34	179.9	145	0.3	0.3	15
1,2,4-Trichlorobenzene	120-82-1	5.34	179.9	109	0.3	0.3	30
Naphthalene-d8	1146-65-2	5.39	136.1	108.1	0.2	0.2	20
Naphthalene-d8	1146-65-2	5.39	136.1	84.1	0.2	0.2	25
Naphthalene	91-20-3	5.41	128.1	102.1	0.3	0.3	20
Naphthalene	91-20-3	5.41	128.1	78.1	0.3	0.3	20
4-Chloroaniline	106-47-8	5.46	127	92	0.3	0.3	15
4-Chloroaniline	106-47-8	5.46	127	65	0.3	0.3	20
Hexachloro-1,3-butadiene	87-68-3	5.53	226.8	191.9	0.3	0.3	15
Hexachloro-1,3-butadiene	87-68-3	5.53	224.7	189.9	0.3	0.3	15
4-chloro-3-methylphenol	59-50-7	5.91	142	107	0.3	0.3	15
4-chloro-3-methylphenol	59-50-7	5.91	107	77	0.3	0.3	15
2-Methylnaphthalene	91-57-6	6.07	142	141	0.3	0.3	15
2-Methylnaphthalene	91-57-6	6.07	141	114.9	0.3	0.3	15
1-Methylnaphthalene	90-12-0	6.16	142	114.9	0.3	0.3	30
1-Methylnaphthalene	90-12-0	6.16	114.9	89	0.3	0.3	20
Hexachlorocyclopentadiene	77-47-4	6.22	236.7	143	0.3	0.3	20
Hexachlorocyclopentadiene	77-47-4	6.22	236.7	119	0.3	0.3	20
2,4,6-Trichlorophenol	88-06-2	6.34	197.8	97	0.3	0.3	25
2,4,6-Trichlorophenol	88-06-2	6.34	195.8	97	0.3	0.3	25
2,4,5-Trichlorophenol	95-95-4	6.37	197.8	97	0.3	0.3	30
2,4,5-Trichlorophenol	95-95-4	6.37	195.8	97	0.3	0.3	25
2-Chloronaphthalene	91-58-7	6.54	162	126.9	0.3	0.3	20
2-Chloronaphthalene	91-58-7	6.54	162	77	0.3	0.3	35
2-Nitroaniline	88-74-4	6.63	138	92	0.3	0.3	15
2-Nitroaniline	88-74-4	6.63	138	65	0.3	0.3	25
1,4-Dinitrobenzene	100-25-4	6.77	168	75	0.2	0.2	20
1,4-Dinitrobenzene	100-25-4	6.77	122	92	0.2	0.2	5
Dimethyl phthalate	131-11-3	6.82	163	92	0.3	0.3	30
Dimethyl phthalate	131-11-3	6.82	163	77	0.3	0.3	20
1,3-Dinitrobenzene	99-65-0	6.84	168	75	0.3	0.3	20
1,3-Dinitrobenzene	99-65-0	6.84	122	92	0.3	0.3	5
2,6-Dinitrotoluene	606-20-2	6.87	165	90.1	0.3	0.3	15
2,6-Dinitrotoluene	606-20-2	6.87	165	63	0.3	0.3	25
Acenaphthylene	208-96-8	6.94	151.9	102	0.3	0.3	30
Acenaphthylene	208-96-8	6.94	150.9	77	0.3	0.3	25
1,2-Dinitrobenzene	528-29-0	6.95	168	78	0.3	0.3	5
1,2-Dinitrobenzene	528-29-0	6.95	168	63	0.3	0.3	35
3-Nitroaniline	99-09-2	7.03	138	92	0.3	0.3	15
3-Nitroaniline	99-09-2	7.03	138	80	0.3	0.3	5
Acenaphthene-d10	15067-26-2	7.08	164.1	162.1	0.5	0.5	15
Acenaphthene-d10	15067-26-2	7.08	162.1	160.1	0.5	0.5	20
Acenaphthene	83-32-9	7.11	153.9	127	0.3	0.3	40
Acenaphthene	83-32-9	7.11	152.9	77	0.3	0.3	45

Compound Name	CAS No.	Retention Time (min)	Precursor Ion	Product Ion	Left RT Delta	Right RT Delta	CE
2,4-Dinitrophenol	51-28-5	7.14	184	107	0.3	0.3	25
2,4-Dinitrophenol	51-28-5	7.14	184	79	0.3	0.3	25
4-Nitrophenol	100-02-7	7.19	138.9	109	0.3	0.3	5
4-Nitrophenol	100-02-7	7.19	109	81	0.3	0.3	10
2,4-Dinitrotoluene	121-14-2	7.27	165	119	0.3	0.3	5
2,4-Dinitrotoluene	121-14-2	7.27	165	63	0.3	0.3	45
Dibenzofuran	132-64-9	7.29	167.9	139.1	0.3	0.3	25
Dibenzofuran	132-64-9	7.29	138.9	63	0.3	0.3	35
2,3,5,6-Tetrachlorophenol	935-95-5	7.36	232	167.9	0.2	0.2	15
2,3,5,6-Tetrachlorophenol	935-95-5	7.36	230	165.9	0.2	0.2	15
2,3,4,6-Tetrachlorophenol	58-90-2	7.4	231.9	167.9	0.3	0.3	15
2,3,4,6-Tetrachlorophenol	58-90-2	7.4	230	165.9	0.3	0.3	15
Diethyl phthalate	84-66-2	7.51	149	93	0.3	0.3	15
Diethyl phthalate	84-66-2	7.51	149	65	0.3	0.3	20
4-Chlorodiphenyl ether	7005-72-3	7.62	204	77	0.3	0.3	30
4-Chlorodiphenyl ether	7005-72-3	7.62	141.1	115.1	0.3	0.3	20
Fluorene	86-73-7	7.62	166	165.1	0.3	0.3	15
Fluorene	86-73-7	7.62	164.9	163.1	0.3	0.3	35
4-Nitroaniline	100-01-6	7.64	138	108.1	0.3	0.3	5
4-Nitroaniline	100-01-6	7.64	108	80	0.3	0.3	15
4,6-dinitro-o-cresol	534-52-1	7.66	198	167.9	0.3	0.3	5
4,6-dinitro-o-cresol	534-52-1	7.66	198	121	0.3	0.3	10
Diphenylamine	122-39-4	7.75	170	169.2	0.3	0.3	15
Diphenylamine	122-39-4	7.75	167	166.2	0.3	0.3	20
Azobenzene	103-33-3	7.79	105	77.1	0.3	0.3	5
Azobenzene	103-33-3	7.79	77	51	0.3	0.3	15
4-bromophenyl phenyl ether	101-55-3	8.1	250	141	0.3	0.3	20
4-bromophenyl phenyl ether	101-55-3	8.1	248	141	0.3	0.3	20
Hexachlorobenzene	118-74-1	8.16	283.7	213.8	0.3	0.3	30
Hexachlorobenzene	118-74-1	8.16	248.7	214	0.3	0.3	15
Pentachlorophenol	87-86-5	8.35	265.7	167	0.3	0.3	25
Pentachlorophenol	87-86-5	8.35	165	130	0.3	0.3	25
Phenanthrene-d10	1517-22-2	8.54	188.3	160.2	0.2	0.2	20
Phenanthrene-d10	1517-22-2	8.54	188.3	158.2	0.2	0.2	35
Phenanthrene	85-01-8	8.57	177.9	152	0.3	0.3	25
Phenanthrene	85-01-8	8.57	175.9	149.9	0.3	0.3	25
Anthracene	120-12-7	8.62	178.1	151	0.3	0.3	30
Anthracene	120-12-7	8.62	177.9	152	0.3	0.3	25
Carbazole	86-74-8	8.77	167	139	0.3	0.3	45
Carbazole	86-74-8	8.77	167	89	0.3	0.3	60
Di-n-butyl phthalate	84-74-2	9.13	149	121	0.3	0.3	15
Di-n-butyl phthalate	84-74-2	9.13	149	65	0.3	0.3	25
Fluoranthene	206-44-0	9.76	201.9	151.9	0.3	0.3	30
Fluoranthene	206-44-0	9.76	200.9	199.9	0.3	0.3	15
Pyrene	129-00-0	10.02	202.1	151	0.3	0.3	45
Pyrene	129-00-0	10.02	201.1	200	0.3	0.3	15

Compound Name	CAS No.	Retention Time (min)	Precursor Ion	Product Ion	Left RT Delta	Right RT Delta	CE
Butyl benzyl phthalate	85-68-7	10.9	149	65	0.3	0.3	25
Butyl benzyl phthalate	85-68-7	10.9	91	65	0.3	0.3	15
Benz[a]anthracene	56-55-3	11.75	228.1	226.1	0.3	0.3	30
Benz[a]anthracene	56-55-3	11.75	226.1	224.1	0.3	0.3	35
Chrysene-d12	1719-03-5	11.77	240.2	236.2	0.3	0.3	35
Chrysene-d12	1719-03-5	11.77	236.1	232.1	0.3	0.3	40
Chrysene	218-01-9	11.81	226.1	224.1	0.3	0.3	40
Chrysene	218-01-9	11.81	113.1	112.1	0.3	0.3	10
Bis(2-ethylhexyl) phthalate	117-81-7	11.9	167	149	0.3	0.3	5
Bis(2-ethylhexyl) phthalate	117-81-7	11.9	149	65	0.3	0.3	25
Di-n-octyl phthalate	117-84-0	13.29	149	93	0.3	0.3	20
Di-n-octyl phthalate	117-84-0	13.29	149	65	0.3	0.3	25
Benzo[b]fluoranthene	205-99-2	13.88	252.1	250.1	0.3	0.3	35
Benzo[b]fluoranthene	205-99-2	13.88	126	113.1	0.3	0.3	10
Benzo[k]fluoranthene	207-08-9	13.93	252.1	250.1	0.3	0.3	30
Benzo[k]fluoranthene	207-08-9	13.93	126.1	113.1	0.3	0.3	10
Benzo[a]pyrene	50-32-8	14.42	252.1	250.1	0.3	0.3	35
Benzo[a]pyrene	50-32-8	14.42	125	124.1	0.3	0.3	10
Perylene-d12	1520-96-3	14.5	264.2	260.1	0.3	0.3	35
Perylene-d12	1520-96-3	14.5	260.1	256.1	0.3	0.3	40
Indeno[1,2,3-cd]pyrene	193-39-5	16.05	276.1	274.1	0.3	0.3	40
Indeno[1,2,3-cd]pyrene	193-39-5	16.05	137	136	0.3	0.3	15
Dibenz[a,h]anthracene	53-70-3	16.1	278.1	276.1	0.3	0.3	35
Dibenz[a,h]anthracene	53-70-3	16.1	125	124	0.3	0.3	10
Benzo[g,h,i]perylene	191-24-2	16.47	276.1	274.1	0.3	0.3	45
Benzo[g,h,i]perylene	191-24-2	16.47	138	137	0.3	0.3	15

Consumables	Part Number				
Sample Containment	^ 				
Vials, screw top, amber, deactivated, 2 mL, 100/pk	5183-2072				
Cap, screw, PTFE/silicone septa, 100/pk	5040-4681				
Vial inserts, 250 µL, deactivated, 100/pk	5181-8872				
Instrument Supplies					
Syringe, Blue Line, 10 µL, fixed needle, 23-26s/42/cone, 6/pk	G4513-80200				
Inlet septa, Advanced Green, nonstick, 11 mm, 50/pk	5183-4759				
Inlet liner, Ultra Inert, split, low pressure drop, glass wool	5190-2295				
GC inlet seal, gold plated, with washer, Ultra Inert, 10/pk	5190-6145				
Lens, extraction, 9 mm	G3870-20449				
Separation					
J&W DB-8270D Ultra Inert GC column, 30 m × 0.25 mm, 0.25 µm	122-9732				

www.agilent.com

DE50589665

This information is subject to change without notice.

© Agilent Technologies, Inc. 2022 Printed in the USA, September 20, 2022 5994-4964EN

