

# Determination of Catecholamines by Agilent Ultivo LC/TQ with an InfinityLab Poroshell 120 Aq-C18 Column

#### **Authors**

Jia Sheng, Zhiming Zhang, and Rongjie Fu Agilent Technologies (Shanghai) Co., Ltd.

## **Abstract**

In this application note, a quantification method was established for catecholamines (3-MT, DA, E, NE, MN, and NMN) using the Agilent Ultivo liquid chromatography/triple quadrupole mass spectrometer (LC/TQ) system with a newly developed Agilent InfinityLab Poroshell 120 Aq-C18 column. The Poroshell 120 Aq-C18 column shows good performance with baseline separation of these six catecholamine compounds. The validation test results give a wide linearity range of 5 to 500 pg/mL in bovine serum albumin (BSA) matrices with excellent accuracy.

## Introduction

Catecholamines (CA) include norepinephrine (NA or NE), epinephrine (AD or E), and dopamine (DA), the metabolic products of which, in vivo, are methoxynorepinephrine (NMN), methoxyepinephrine (MN), and 3-methoxytyramine (3-MT), respectively. Catecholamines are a kind of neurotransmitter that plays an important regulatory role in the nervous system, cardiovascular system, endocrine system, and other tissue systems. Due to their strong molecular polarity, a newly developed Agilent InfinityLab Poroshell 120 Aq-C18 column was used for catecholamines analysis. This column has been developed based on superficially porous particles with optimized C18 ligands and a proprietary endcapping process on the particle surface. A larger pore size of 120 Å coupled with the newly optimized C18 chemistry enables column use with a highly aqueous mobile phase to avoid retention loss. Also, the column has stronger retention for the polar compounds such as the catecholamines separated in this application note.

# **Experiment**

## Standards and reagents

Catecholamine compounds were purchased from Alta Scientific Co., Ltd. (Tianjin, China); the BSA matrices were purchased from Sigma-Aldrich. Other reagents and solvents were LC/MS grade, including acetonitrile, ultrapure water, and other chemical reagents.

#### Instruments and equipment

The Agilent 1260 Infinity II LC coupled with the Agilent Ultivo LC/TQ was configured as follows. The liquid chromatograph was equipped with a binary pump (part number K7112B), a high-throughput autosampler (part number K7167A), and a column compartment (part number K7116A). The Ultivo LC/TQ was equipped with MassHunter acquisition 1.2, qualification, and quantification software. Sample pretreatment equipment included a low-temperature centrifuge (centrifugal force  $\geq$  12,000  $\times$  g) and a vortex mixer.

#### Solution preparation and sample pretreatment

**Preparation of standard working solution:** 0.1% formic acid aqueous solution was used to prepare 1,000 ng/mL six catecholamine stock solution (3-MT, DA, E, NE, MN, and NMN). The stock solution was mixed and diluted to the secondary stock solutions with the same solution in sequence, and the final concentration was listed in Table 1.

**Table 1.** Concentrations of secondary stock solutions.

| Compound | Mixed<br>Catecholamines |
|----------|-------------------------|
| S1 pg/mL | 50                      |
| S2 pg/mL | 100                     |
| S3 pg/mL | 200                     |
| S4 pg/mL | 500                     |
| S5 pg/mL | 1,000                   |
| S6 pg/mL | 2,000                   |
| S7 pg/mL | 5,000                   |

Then, 100  $\mu$ L of the preceding serial standard solutions were accurately pipetted into 900  $\mu$ L of 1% BSA matrices (1 g BSA in 100 mL water that contains 0.1% formic acid and 25 mg/mL citric acid). This step was followed by vortexing to mix thoroughly and obtain the final matrix standard working solutions, which had a concentration range listed in Table 2. The working solutions were then stored at 2 to 8 °C for later use.

**Table 2.** Concentrations of matrix standard working solutions.

| Compound | Mixed<br>Catecholamines<br>with 1% BSA |  |
|----------|----------------------------------------|--|
| S1 pg/mL | 5                                      |  |
| S2 pg/mL | 10                                     |  |
| S3 pg/mL | 20                                     |  |
| S4 pg/mL | 50                                     |  |
| S5 pg/mL | 100                                    |  |
| S6 pg/mL | 200                                    |  |
| S7 pg/mL | 500                                    |  |

The low- and high-concentration spiked matrix solutions (QCs) were prepared as in the previous method, with concentrations of 8 pg/mL, 40 pg/mL, and 400 pg/mL, respectively.

### Preparation of isotope internal standard solution

(10 ng/mL): 0.1% formic water solution was used to prepare six catecholamines internal standard stock solution with a final mixed solution concentration of 10 ng/mL, which was stored at 2 to 8 °C for later use.

## Sample pretreatment

Each matrix standard was precisely pipetted to 200  $\mu$ L, then 5  $\mu$ L of 10 ppb mixed internal standard solution was added. The solution was vortexed to mix well, followed by the addition of 80  $\mu$ L of 10% TCA aqueous solution to precipitate the protein. After centrifugation, 100  $\mu$ L of supernatant was aspirated for sample analysis.

#### LC conditions

Table 3. LC conditions.

| Parameter          | Value                                                                                                             |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Column             | Agilent InfinityLab Poroshell 120 Aq-C18, 4.6 × 100 mm, 2.7 µm (part number 695975-742)                           |  |  |  |
| Flow Rate          | 0.5 mL/min                                                                                                        |  |  |  |
| Column Temperature | 40 °C                                                                                                             |  |  |  |
| Mobile Phase       | A: 10 mmol NH <sub>4</sub> Ac + 0.25 mmol NH <sub>4</sub> F in water;<br>B: Acetonitrile                          |  |  |  |
| Injection Volume   | 25 μL                                                                                                             |  |  |  |
| Gradient Program   | Time (min) %A %B 0 98 2 1.5 98 2 4.0 85 15 7.0 5 95 9.0 5 95 Flow (mL/min): 0.5 Maximum pressure limit (bar): 600 |  |  |  |

## MS conditions

Table 4. MS conditions.

| Parameter              | Value                                                  |  |  |
|------------------------|--------------------------------------------------------|--|--|
| Ion Source             | Jet Stream Technology ion source, positive mode (AJS+) |  |  |
| Capillary Voltage      | 2,000 V                                                |  |  |
| Nebulizer Gas Pressure | 45.0 psi                                               |  |  |
| Drying Gas Temperature | 180 °C                                                 |  |  |
| Drying Gas Flow Rate   | 5 L/min                                                |  |  |
| Sheath Gas Temperature | 370 °C                                                 |  |  |
| Sheath Gas Flow Rate   | 11 L/min                                               |  |  |
| Nozzle Voltage         | 0 V                                                    |  |  |

Table 5. MRM parameters.

| Compound<br>Name | Precursor (m/z) | Product (m/z) | Fragmentor (V) | CE<br>(V) |
|------------------|-----------------|---------------|----------------|-----------|
| 3-MT*            | 168.1           | 91            | 80             | 26        |
| 3-MT             | 168.1           | 65            | 80             | 42        |
| 3-MT-D4          | 172.1           | 95.1          | 80             | 26        |
| DA*              | 154.1           | 91            | 75             | 26        |
| DA               | 154.1           | 65            | 75             | 38        |
| DA-D4            | 158.1           | 141.1         | 75             | 6         |
| E*               | 184.1           | 166           | 70             | 6         |
| Е                | 184.1           | 107           | 70             | 22        |
| E-D3             | 187.1           | 169.1         | 70             | 6         |
| MN*              | 198.1           | 180.1         | 70             | 6         |
| MN               | 198.1           | 165.1         | 70             | 18        |
| MN-D3            | 201.1           | 183.1         | 70             | 6         |
| NE*              | 170.1           | 152.1         | 70             | 2         |
| NE               | 170.1           | 107           | 70             | 18        |
| NE-D6            | 176.1           | 158           | 70             | 2         |
| NMN              | 184.1           | 78.9          | 80             | 30        |
| NMN*             | 166.1           | 134           | 110            | 14        |
| NMN-D3           | 187.1           | 169.1         | 80             | 2         |

<sup>\*</sup> Quantitative transition

# **Results and discussion**

The chromatogram in Figure 1 showed a good peak shape of six catecholamines with proper retention time. All had a linear range of 5 to 500 pg/mL, except epinephrine with a range of 10 to 500 pg/mL. The recovery of the spiked sample was between 80 and 120%.

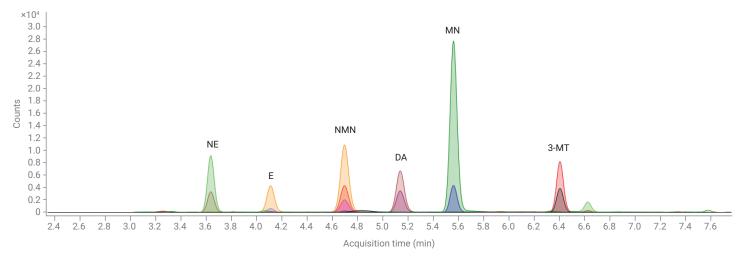
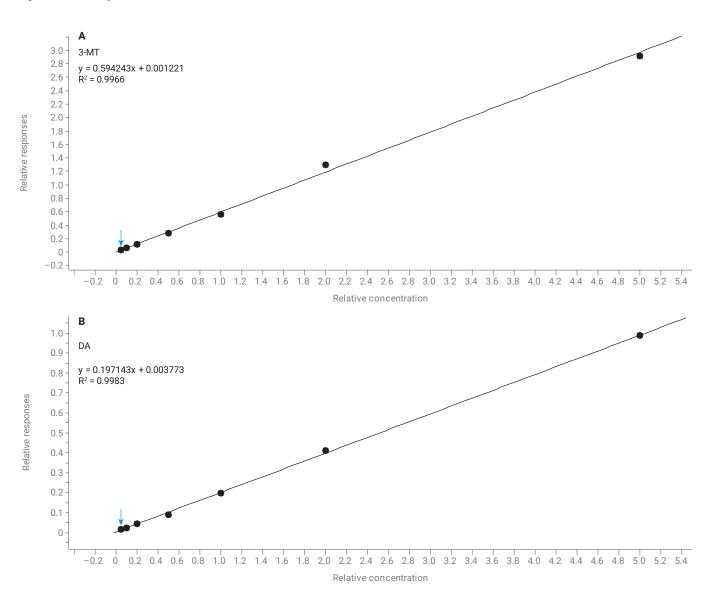
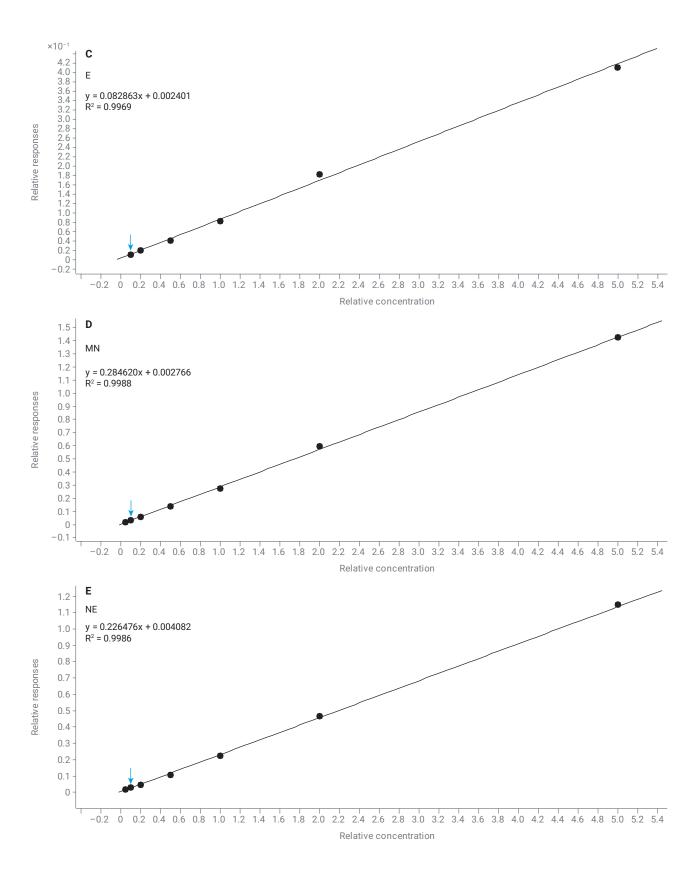





Figure 1. Chromatogram of six catecholamines.





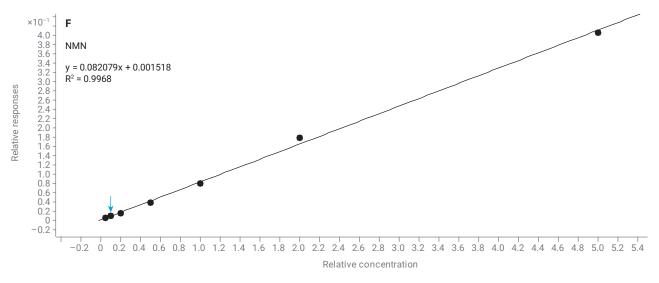



Figure 2. Calibration curves.

## Conclusion

The method using Agilent Ultivo LC/TQ with an AJS source and the Agilent InfinityLab Poroshell 120 Aq-C18 column was developed for determination of catecholamines in BSA matrices. The method gives a wide linearity range of 5 to 500 pg/mL in BSA matrices (10 to 500 pg/mL for epinephrine), as well as excellent accuracy.

## **Statement**

The experimental results involved in this document were obtained by Agilent under certain conditions. The document only serves as a technical reference for proving that the Agilent instrument is able to test and analyze target analyte under certain conditions. For any inquiries, please contact the Agilent Customer Center.

## Reference

1. Fu, R.-J.; Wei, T.-C. Analysis of Polar Compounds Using an Agilent InfinityLab Poroshell 120 Aq-C18 Column with Improved and Reliable Performance, *Agilent Technologies application note*, publication number 5994-5555EN, **2022**.

## www.agilent.com

For Research Use Only. Not for use in diagnostic procedures.

RA45442.5321412037

This information is subject to change without notice.

