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Introduction
Gene expression profiling is widely applied in cancer research to identify biomarkers 
for clinical endpoint prediction such as diagnosis, prognosis, or prediction of 
therapeutic response. The advent of RNA deep sequencing (RNA-Seq) technologies 
has revolutionized eukaryotic transcriptome analysis by providing, in addition to 
the ability to decipher global gene expression patterns, the capability to discover 
novel genes and splice variants. Data generated by the Sequencing Quality Control 
Consortium (SEQC) have shown that RNA-Seq and microarray-based gene expression 
models are comparable in clinical endpoint prediction performance, even when the 
additional information unique to RNA-Seq is included in the prediction models1.

To evaluate the technical performance of both platforms, we performed a series of 
experiments using spike-in control transcripts to provide information on sensitivity, 
specificity, dynamic range and much more. The use of commercially available RNA 
samples and spike-ins allowed us to focus on the technical performance of the 
platforms, eliminating the bias linked to sample variability. 

We used the exogenous RNA spike-in controls that were developed by the External 
RNA Controls Consortium (ERCC)2. Reproducible analysis using a standard set of 
metrics associated with the ERCC controls was developed into an R-scripted software 
tool that is widely available from Bioconductor3. This “erccdashboard” software tool 
was used to generate the metrics used to evaluate the microarray and RNA-Seq gene 
expression measurement platforms.

Material and methods
In order to evaluate microarray and RNA-Seq performance, we conducted a series of 
experiments using the same two RNA samples from the FDA-led MAQC and SEQC 
projects. The use of commercial RNA samples makes it easier for any lab to reproduce 
these experiments and use them as a starting point to evaluate the platform and 
perform quality control experiments in their laboratory. The two selected samples are: 
Universal Human Reference RNA (UHRR, Agilent p/n 740000) and the Human Brain 
Reference RNA (HBRR, Ambion p/n AM6050). 
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In order to add positive control transcripts 
to this experiment, we spiked the ERCC 
controls into the total RNA at defined 
abundances and ratios, providing data that 
measures the technical performance of 
gene expression profiling methods. The 
ERCC consortium developed a library of 
96 exogenous control transcripts from 
synthetic or bacterial sequences that can 
be added to RNA samples to perform 
comprehensive comparative experiments2. 

Two ERCC spike-in RNA transcript 
mixtures (Mix 1 and Mix 2) were obtained 
from Ambion (p/n 4456739) and are 
composed as follows: 

—  The 92 ERCC RNA control 
transcripts are divided into 4 
different sub-pools (a - d), with each 
sub-pool containing 23 transcripts.  
The sub-pools are combined to 
create two mixtures, defined as 
Mix 1 and Mix 2 in four defined 
abundance ratios of 4:1, 1:2, 1:1.5, 
and 1:1 between the mixtures 
(Figure 1a).  

—  The 23 transcripts present in each 
of the four sub-pools within the two 
ERCC mixes span a large dynamic 
range of 220 or 6 orders of magnitude 
as illustrated in Figure 1b.

These ERCC control transcript mixes 
are technology-independent and can be 
spiked into the RNA at the beginning of 
any gene expression analysis experiment. 

For this experiment, the two ERCC 
spike-in RNA transcript mixtures (Mix 1 
and Mix 2) were diluted 1:10, and 2 µl of 
each respective spike-in mix was added 
to 10 µg of either the Universal Human 
Reference RNA (UHRR, Agilent p/n 
740000) or to the Human Brain Reference 
RNA (HBRR, Ambion p/n AM6050). 

Four (4x) technical replicate 100 ng 
aliquots of total RNA from each sample 
were prepared for Agilent one-color gene 
expression microarray analysis using the 
Agilent Low Input Quick Amp kit  

Figure 1. ERCC RNA ratio/abundance in mixtures. Schematic representation of spike-in mix preparation 
and final relative concentration of the different sub-pools. Figure reproduced from Assessing technical 
performance in differential gene expression experiments with external spike-in RNA control ratio mixtures, 
https://www.nature.com/articles/ncomms6125.pdf3 

Figure 2. Schematic representation of the 
experimental design. There were four 100 ng 
technical replicates for each RNA for the microarray 
experiment and three 2 ug technical replicates for 
each RNA for the RNA-Seq experiment. All RNA 
aliquots used in this experiment were derived from 
the same original pooled RNA samples.

(p/n 5190-2305) and run on the SurePrint 
G3 Human Gene Expression v3 8x60K 
Microarrays (p/n G4851C). 

Three (3x) technical replicate 2 µg 
aliquots of total RNA from each sample 
were prepared for RNA-Seq analysis using 
the Agilent SureSelect Strand-Specific 
RNA Library Preparation Kit (p/n G9691A/
G9692A). The barcoded libraries for both 
the UHRR and HBRR technical replicates 
were pooled and prepared for paired-end 
multiplexed sequencing on the Illumina 
platform. The mean number of mapped 
reads per indexed library was 151,155,130 
for UHRR samples and 115,602,753 for 
HBRR samples. 

Analysis – erccdashboard tool
In order to facilitate data analysis, we 
employed a Bioconductor tool developed 
by a team of scientists from the National 
Institute of Standards and Technology 
(NIST) called “erccdashboard” that 
produces ERCC performance metrics 
from expression values such as 
microarray signals or RNA-Seq read 
counts3. 

Thanks to the erccdashboard tool, any 
laboratory can easily perform technical 
analysis of platform performance by 
simply adding the ERCC spike-in control 
transcripts to their samples before 
performing the experiments. 

Using the erccdashboard analysis tool, 
we compare the performance of the 
Agilent gene expression microarray and 
Agilent RNA-Seq platforms run with the 
same total RNA samples and were able 
to easily process data and highlight 
performance differences between the 
two different Agilent gene expression 
measurement technologies. More details 
on the analysis performed are included in 
the discussion of results. 

The erccdashboard software package 
was developed in the R statistical 
scripting language and the package is 

https://www.nature.com/articles/ncomms6125.pdf
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RATIO 
LODR ESTIMATE 90% CI LOWER BOUND 90% CI UPPER BOUND 

Microarray RNA Seq Microarray RNA Seq Microarray RNA Seq 

4:1 10 10 7.2 6.3 13 11 

1:1.5 36 55 20 30 43 62 

1:2 21 26 12 12 24 32 

Figure 4. Estimating Limit of Detection Rates (LODR). Shown are the average fluorescence intensity 
(microarrays) or the average counts (RNA-Seq) versus the differential expression test P-values calculated 
by the erccdashboard program. The heavy black dashed line indicates the false discovery rate (FDR) 
cutoff of FDR = 0.01 chosen for this analysis. Colored arrows indicate the LODR estimate (average 
intensity or average counts) for each fold change that crosses the line indicating the upper boundary of 
the 90% confidence interval.
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Figure 3. ERCC signal-abundance plot comparisons. While the microarray experiments are able to 
accurately detect the ERCC transcripts that are spiked at the lower concentrations (less than 5 attomole 
per microgram total RNA) as compared to the RNA-Seq measurements, there are several ERCC control 
transcripts that consistently give lower than expected signals (ERCC-00022, ERCC-00131, ERCC-00144) 
on the microarray experiments. Note: the linear dynamic range on these plots spans 220 (microarrays) or 
216 (RNA-Seq), with microarrays showing higher dynamic range with respect to a whole transcriptome 
RNA-Seq experiment that averaged over 100M reads/sample.

freely available from GitHub (https://
github.com/usnistgov/erccdashboard) 
and Bioconductor.

Results & Discussion
All samples run both on microarray and 
NGS provided high-quality results and 
were analyzed using the erccdashboard 
tool. We focused the analysis on 4 main 
technical parameters: 

—  Dynamic range 

—  Sensitivity 

—  Specificity

—  Reproducibility

Dynamic Range 
Erccdashboard derived signal-abundance 
plots compare the dynamic range 
capabilities of the two different gene 
expression experimental platforms using 
the same RNA samples. In Figure 3, the 
points are colored by ratio sub-pool, error 
bars represent the standard deviation 
of the replicate ratio measurements, 
and shape represents the sample type 
(UHRR or HBRR). In the RNA-Seq results, 
ERCC controls that did not have at least 
one count in three libraries for either 
sample were not included in the signal-
abundance plot.

It is interesting to note that the microarray 
platform has higher sensitivity at the 
lower end of the dynamic range as 
compared to the RNA-Seq data, resulting 
in a higher dynamic range for the 
microarrays as compared to the RNA-Seq 
data when averaging over 100M reads per 
indexed sample. 

Sensitivity & Specificity
Sensitivity is calculated taking into 
consideration both estimated Limit 
of Detection Rates (LODR) and False 
Discovery Rate (FDR) cut off. This 
analysis demonstrates the ability of each 
platform to detect small changes in 
ERCC spike-in concentration between the 
UHRR and HBRR samples. 

Results are summarized in Figure 4. 

https://github.com/usnistgov/erccdashboard
https://github.com/usnistgov/erccdashboard
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RATIO 
AUC DETECTED SPIKED 

Microarray RNA Seq Microarray RNA Seq Microarray RNA Seq 

4:1 0.909 0.946 23 16 23 23 

1:1.5 0.919 0.883 23 16 23 23 

1:2 0.955 0.890 23 17 23 23 

Figure 6. ROC Curves and AUC Statistics. ROC curves and the corresponding areas under the curve 
(AUC) statistics change based on the discrimination of true-positive and true-negative values, where ideal 
performance is represented by AUC = 1 for all 23 spike-in controls spiked at a given ratio.
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From this analysis of the ERCC data, we 
can conclude that we need at least 10 
counts on a microarray or 10 mapped 
reads in the RNA-Seq experiment to have 
99% confidence in in a gene expression 
ratio difference of one to four between 
the two RNA samples. For confidence in 
detecting a 1:2 ratio, we would need 21 
counts on the microarray and 26 mapped 
reads on the RNA-Seq experiment, and 
for confidence in detecting a very small 
1:1.5 ratio difference between the two 
samples, we would need 36 counts 
on the microarray and 55 mapped 
reads on the RNA-Seq experiment. As 
demonstrated by the ERCC spike-in 
controls, both Agilent gene expression 
measurement platforms provide high 
confidence in detecting very small fold-
change differences between the two 
RNA samples.

Reproducibility 
Magnitude of fold-change (log ratio) 
versus abundance or average signal/
count (MA) plots illustrate the differences 
between the two RNA samples analyzed 
in this experiment. The MA graphs in 
Figure 5 contain ERCC data points 
colored by expected ratio with error bars 
that represent the standard deviation 
of the replicate ratio measurements. 
Filled circles indicate ERCC ratios above 
the limit of detection (LODR) for the 4:1, 
1:2, and the 1:1.5 ratios. Endogenous 
biological transcript ratio measurements 
are shown as gray points.  

Because the two RNA samples 
tested contain different amounts of 
endogenous mRNA to total RNA, the 
estimate of mRNA fraction differences 
between the UHRR and HBRR RNA 
samples (rm) are calculated by the 
erccdashboard tool with weighted 
standard errors provided in an inset 
table. The nominal ratios are annotated 
with the light solid color lines for each 
ratio sub-pool and the adjusted ratios are 
annotated with the heavy dashed lines.

Figure 5. The magnitude versus abundance (MA) plot shows ratio measurement variability between the 
platforms. The x-axis represents the average gene expression abundance value in each platform (either 
normalized intensity or normalized counts), and the y axis shows the log2 expression ratios between the 
two RNA samples. Filled symbols indicate that statistically significant ratios were generated between the 
two samples based on the LODR analysis in Figure 4 and open symbols indicate no significant differential 
expression between the two samples. As expected, the green-colored 1:1 ratio ERCC controls and other 
ERCC transcripts spiked at the lowest concentrations have open symbols. Color code, error bars and 
nominal vs normalized ratio lines highlight the performance differences between microarrays and RNA 
sequencing. 
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As highlighted both from the difference 
between nominal and normalized 
ERCC ratios and the variability in the 
low expressed genes, both platforms 
perform efficiently on genes expressed 
at high and average expression levels, 
while gene expression microarrays 
provide more stable and precise results 
measuring the low expressed genes.

Another important parameter to 
consider when evaluating technologies 
is their ability to detect real changes 
in expression in the samples under 
evaluation. We can use the true-
positive and true-negative ERCC 
ratios to generate receiver operator 
characteristic (ROC) curve analysis of 
differential gene expression, as well as 
calculate the corresponding area under 
the curve (AUC) statistics. ROC is a 
probability curve and AUC represents 
the degree or measure of separability. 
It tells how much the model is capable 
of distinguishing between classes. The 
higher the AUC, the better the model is 
at predicting 0s as 0s and 1s as 1s. By 
analogy, the higher the AUC, the better 
the model is at distinguishing between 
patients with disease or without disease.

It is interesting to note that the microarray 
experiments were able to detect all 23 
spike-in controls at each fold-change 
tested with AUCs >90%, whereas the 
RNA-Seq experiments at a read depth 
averaging >100M reads detected only 
16 or 17 of the 23 spike-in controls with 
AUCs <90% for the smaller fold changes 
(1:2 fold and 1:1.5 fold) tested.

Conclusions
The technology-independent spike-in 
control transcripts developed by the 
ERCC, when included in Agilent gene 
expression measurement experiments, 
can serve as a truth set to benchmark 
the accuracy of endogenous transcript 
ratio measurements. Interpreting the 
data from the ERCC spike-in controls 
is made easier by the erccdashboard 

tool, a free of charge analysis package 
that enables rapid, reproducible, and 
automated analysis of the ERCC spike-
in control transcripts in any differential 
expression experiment, including both 
microarrays and RNA sequencing. 

Including the ERCC controls in this 
experiment allowed us to demonstrate 
that both the Agilent one-color gene 
expression microarray platform and 
the Agilent RNA WT NGS platform can 
generate linear gene expression data 
spanning 5 orders of magnitude with 
the ability to detect sensitive 1.5-fold 
changes at levels as low as 36 counts 
with the microarray workflow and 
55 mapped reads with the RNA-Seq 
workflow. Both platforms show similar 
technical ability in discriminating gene 
expression changes in analyzed samples, 
when starting from 100 ng RNA for 
microarrays and 100M reads for RNA 
sequencing, with microarrays showing 
better sensitivity and specificity at 
detecting low expressed genes. 

When performing gene expression 
experiments, it is important that 
orthogonal measurement tools 
provide concordant data. The use of 
the ERCC spike-in control transcripts 
and subsequent data analysis using 
the erccdashboard software in this 
experiment demonstrate that these 
two different platforms generate 
comparable results and highlight the 
strengths of each measurement tool. 
These results demonstrate the power 
of Gene Expression microarrays and the 
advantages of selecting the right platform 
for any experimental design.  This enables 
you to plan experiments and to maximize 
resources and minimize costs.
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