Polycyclic aromatic hydrocarbons

Application Note

Environmental

Introduction

GC with an Agilent VF-Xms column separates 13 polycyclic aromatic hydrocarbons in 30 minutes.

The FactorFour VF-Xms bonded phase has an optimized stabilization structure. Combined with fused silica surface treatment a temperature stability of at least 340 °C is obtained which results in very low bleed. Accurate quantification of trace components as well as fast stabilization and reduced contamination of detection systems (such as ms) are obtained. Due to the higher arylene content the column will be a little more polar then the VF-5ms phase.
Conditions

Technique: GC-capillary
Column: Agilent VF-Xms, 0.25 mm x 30 m fused silica (df = 0.10 μm) (Part no. CP8805)
Temperature: 100 °C → 340 °C, 3 °C/min
Carrier Gas: Hydrogen, 100 kPa
Injector: Split, T = 275 °C
Detector: FID
Sample Size: 1 μL
Concentration Range: ca. 3 ng per component on the column
Solvent Sample: hexane

Courtesy: J. Peene, Agilent R&D laboratories, Middelburg, The Netherlands

Peak identification
1. fluoranthene
2. pyrene
3. benz(a)anthracene
4. chrysene
5. benzo(b)fluoranthene
6. benzo(k)fluoranthene
7. benzo(a)pyrene
8. indeno[1,2,3-cd]pyrene
9. dibenz(a,h)anthracene
10. benzo(g,h,i)perylene
11. dibenzo(a,e)pyrene
12. dibenzo(a,l)pyrene
13. dibenzo(a,h)pyrene

www.agilent.com/chem
This information is subject to change without notice.
© Agilent Technologies, Inc. 2011
Printed in the USA
31 October, 2011
First published prior to 11 May, 2010
A01962