

基于挥发性化合物和化学计量学方法 分析不同蜂蜜的植物来源

固相微萃取和气质联用系统

作者

中国北京

陈辉,金铃和,范春林 中国检验检疫科学研究院 农产品安全研究中心 中国北京 王雯雯 安捷伦科技(中国)有限公司

摘要

本文基于固相微萃取和气相色谱质谱 (SPME-GC/MS) 非靶向测定蜂蜜中挥发性组分, 结合化学计量学方法建立了不同植物来源蜂蜜判别和预测的方法。利用 SPME-GC/MS 对来自四种植物来源(包括洋槐蜜、椴树蜜、荆条蜜和油菜蜜)的 87 个真实蜂蜜样 品中的全谱挥发性化合物进行非靶向分析。通过主成分分析 (PCA) 对样品进行质量控 制。然后,建立基于偏最小二乘判别分析 (PLS-DA)、朴素贝叶斯 (NB) 和误差反向传 播人工神经网络 (BP-ANN) 的样品分类预测模型。模型的准确率为 100%,这表明不 同植物来源蜂蜜可以准确分类。此外,还通过另外一组独立的 20 个真实蜂蜜样品, 对模型的可靠性和实用性进行了验证。所有 20 个样品均得到准确分类。最后,对椴 树蜜的特征挥发性化合物进行初步鉴定。这表明,本研究建立的不同植物来源蜂蜜 判别方法是准确、可靠的,同时有助于寻找蜂蜜中的特征化合物。

前言

蜂蜜以其营养和药用特性成为了世界上最 受欢迎的天然产物之一。蜂蜜的植物来源 和产地受到消费者的日益关注。蜂蜜的价 格通常与其植物来源/产地有关。因此, 很有必要开发一种快速强大的方法来鉴定 不同来源的蜂蜜。GC/MS 在识别和定量 分析复杂样品中的有机化合物方面具有优 势,与固相微萃取 (SPME) 的组合可用于 分析蜂蜜中的挥发性化合物^[1]。

本应用简报介绍了最近发表的一项关于非 靶向挥发性化合物图谱的研究¹²,该研究 结合使用 SPME 和 GC/MS 与化学计量学 方法,对中国蜂蜜的植物来源进行分类。 该研究开发出一种基于非特异性挥发性化 合物指纹图谱和多变量分析分类并预测蜂 蜜植物来源的方法。应用 SPME-GC/MS 在全扫描模式下非靶向采集蜂蜜的全谱挥 发性化合物数据。使用各种过滤参数进行 多变量优化。然后,建立基于偏最小二乘 判别分析 (PLS-DA)、朴素贝叶斯 (NB) 和 误差反向传播人工神经网络 (BP-ANN) 的 预测模型。最后,对于具有显著性差异的 化合物进行了初步确认。

材料与方法

蜂蜜样品

87 个真实蜂蜜样品,包括 19 个洋槐 (Robiniapseudoacacia L.)蜜样品、22 个 椴树 (Tilia amurensis Rupr.)蜜样品、
22 个荆条 (Vitexnegundo var. heterophyllaRehd.)蜜样品和 24 个油菜 (Brassica campestris L.)蜜样品,分别采 集自中国北京、吉林、河北和陕西。从养 蜂人处直接采集 500 g 以上的各种蜂蜜样 品,并保存在 4 ℃ 的冰箱中待分析。

图 1. 本研究所用的部分蜂蜜样品

化学品

己烷(MS级)购自 Fisher Scientific(中国上海)。正己烷购自 Sigma-Aldrich,并采用一系列烷烃(C₈H₁₈-C₂₅H₅₂)计算保留指数。利用癸酸甲酯(Sigma-Aldrich)作为内标。实验用水产自 Milli-Q 水纯化系统(Millipore, Bedford, MA, USA)。

固相微萃取

使用 CTC 自动进样系统和 2 cm 涂有 50/30 µm 二乙烯苯/Carboxen/聚二甲 基硅氧烷 (DVB/CAR/PDMS) 的纤维头 (部件号 SU57348U) 运行 SPME 程序。 分析前,将纤维置于气相色谱进样口中, 在 270 °C 下老化 1 小时。SPME 条件如 下:将3g蜂蜜放入包含1.5mL去离子 水和 0.5 g 氯化钠的 20 mL 顶空螺纹口样 品瓶(部件号 5183-4474)中,并用聚四 氟乙烯 (PTFE)/硅橡胶隔垫(部件号 5183-4477) 将样品瓶密封。然后在 80 ℃ 下, 将涂有 DVB/CAR/PDMS 的纤维头置于样 品溶液的顶部空气中暴露 30 分钟。完成 萃取步骤后,将纤维头从样品瓶中取出并 插入气相色谱进样口中,在 250 °C 下进 行2分钟热脱附。

数据处理和统计分析

利用 Agilent MassHunter GC/MS 转换软件 B.07.00 版将 Agilent ChemStation 数据转换为 MassHunter 数据。将转换后的GC/MS 数据导入 MassHunter 未知物分析软件(B.07.01 版)中,并根据未知物分析的优化参数进行解卷积和鉴定。将处理后的蜂蜜样品轮廓图导出为 cef 文件,然后导入 Agilent Mass Profiler Professional (13.0 版)中。

采用化学计量学方法,例如主成分分析 (PCA)、单因素方差分析 (ANOVA) 和预测 模型(包括 PLS-DA、NB 和 BP-ANN)。

结果与讨论

数据挖掘

使用 Agilent MPP 软件进行数据过滤和化 学计量学分析。对所有 cef 文件进行数据 过滤。对于四组样品,通过数据匹配总共 获得了 2734 个化合物。根据 MPP 工作 流程,第一个过滤器是按标记进行过滤, 该步骤用于消除不可靠的化合物。根据 各个样品是否高于阈值或达到饱和设置

"存在"和"临界"标志,以从整个数据 集中过滤化合物。保留了87个样品中至 少2个样品中可接受的化合物。第二个 过滤器是按频率过滤,根据化合物在样 品中的出现频率对其进行过滤。在该步 骤中,必须是存在的化合物才可进行该 步过滤。这些过滤条件保留了每个样品 中在至少一种条件中出现的化合物。第 三个过滤器是*显著性分析*,根据单因素 方差分析计算出的 p 值。为确保仅保留 存在显著差异的化合物,在大多数情况 下,选择的 p 值截止值为 0.05。经过三 个过滤步骤,将化合物数量从 2734 减少 至 114。为鉴定处理样品和对照样品之间 的丰度比或差异超出给定倍数变化截止值 或阈值的化合物,采用倍数变化分析作 为最终过滤步骤。当倍数变化截止值为2 时,保留了110个化合物,表明一系列 过滤步骤显著减少了变量数量和数据集的 维数。

主成分分析

PCA 是最常用的无监督的统计方法,可 以对数据进行降维处理,消除众多复杂 信息中重叠的部分,尽可能地用少数变 量来解释数据中的大部分信息。根据先 前的过滤结果,将 PCA 应用于四个植物 来源的 87 个蜂蜜样品,以分析其自然分 组。一般而言,如果前四个 PC 能够解释

仪器条件

表1. 气相色谱和质谱条件

	1 4
参数	
气相色谱系统	Agilent 7890A*
色谱柱	Agilent HP-5MS, 30 m × 0.25 mm, 0.25 μm(部件号 19091S-433)
柱温箱升温程序	50 °C 保持 2 分钟, 以 5 °C/min 的速率升至 180 °C 并保持 2 分钟, 以 10 °C/min 的速率升至 250 °C 并保持 5 分钟
载气	氦气
流速	1.0 mL/min
进样模式	CTC 自动进样
进样口温度	250 °C
质谱系统	Agilent 5975C*
离子源	EI,70 eV
离子源温度	230 °C
四极杆温度	150 °C
谱图采集	全扫描,40-600 <i>m/z</i>

* 安捷伦可提供新型号的 Agilent 7890B 气相色谱系统与 Agilent 5977B 质谱系统,获得更出色的性能。

总变量的 75%,则认为模型是准确可靠的。^[3] 有必要进一步选择并减少前文提及的变量,从而提高模型的可靠性。倍数变化截止值可根据上述过滤步骤进行优化。将 PC1-PC4 解释的总变化视为评估标准,选择的倍数变化截止值为 200。图2 显示了倍数变化截止值为 200 的蜂蜜样品的得分图。椴树蜜样品位于第一主成分(PC1)的右侧,而其他三种类型的蜂蜜位

于 PC1 的左侧。因此,PC1 将蜂蜜样品 清楚地分为椴树蜜和非椴树蜜。椴树蜜和 油菜蜜样品均具有正 PC2,而荆条蜜和 洋槐蜜样品均具有负 PC2。PC1 和 PC2 分别占方差的 35.35% 和 25.38%,且前 四个 PC 占总变量的 79.12%。因此,选 择 200 作为倍数变化截至值,同时将这 70 个保留下来的化合物作为变量用于模 型建立。

图 2. 不同植物来源蜂蜜样品的 PCA 得分,倍数变化截止值为 200

模型建立与预测

PCA 结果表明,过滤后的数据可用于区分 蜂蜜样品的植物来源。以上述 70 个化合物 为变量,应用化学计量学方法建立溯源模 型,用于对各种来源的蜂蜜进行分类和预 测。本研究基于 87 个真实蜂蜜样品(包括 19 个洋槐蜜样品、22 个椴树蜜样品、 24 个油菜蜜样品和 22 个荆条蜜样品)建 立了三种分类模型,即 PLS-DA、NB 和 BP-ANN。模型训练和验证过程中正确分 类蜂蜜样品的百分比证明了这些模型的识 别和预测能力。表 2 列出了这三种模型的 准确度,100%的蜂蜜样品得到准确分类。

尽管模型训练中的识别能力和模型交叉 验证中的预测能力为 100%,但采用原始 87 个真实蜂蜜样品中不包括的样品对建立 的模型进行验证仍然不可或缺。因此,将 另外 20 个未包括在统计模型开发过程中的 真实蜂蜜样品(包括每种植物来源各 5 个 蜂蜜样品)作为测试集进行分析。表 3 列 出了预测结果和置信度。所有 20 个真实 蜂蜜样品均得到正确预测。尽管预测组 与实际组一致,但对于 PLS-DA、NB 和 BP-ANN 模型,置信度的值有所不同。

表 2. 由 PLS-DA、NB 和 BP-ANN 模型得到的模型训练和交叉验证结果

	PLS-DA	NB	BP-ANN		
模型训练					
识别能力 (%)	%) 100 100 100		100		
模型交叉验证					
预测能力 (%)	100	100	100		

置信度是预测结果可靠性至关重要的指标。置信度高于 0.7 表示结果具有很高的可靠性。置信度在 0.5-0.7 范围内表示样品分类存在问题,而值小于 0.5 则表示信息不正确^[4]。

表 3 显示,所有 NB 预测结果的置信度为 1.00,而 PLS-DA 和 BP-ANN 模型的置信 度分别在 0.59-0.95 和 0.77-0.99 范围 内。在 PLS-DA 结果中,三个荆条蜜样品 的置信度范围为 0.59-0.69。其他两个荆 条蜜样品的置信度分别为 0.71 和 0.76。 PLS-DA 模型对荆条蜜样品的预测结果稍 差。在 BP-ANN 结果中,除荆条蜜样品 V03 和 V05 的置信度分别为 0.81 和 0.77 外,其他样品的置信度均高于 0.98。相 比之下,NB 和 BP-ANN 模型能够以令人 满意的置信度预测所有蜂蜜样品。

表 3. 由 PLS-DA、NB 和 BP-ANN 模型得到的预测结果

				置信度		
序号	样品编号	实际名称	预测名称	PLS-DA	NB	BP-ANN
1	A01	洋槐蜜	洋槐蜜	0.80	1.00	0.99
2	A02	洋槐蜜	洋槐蜜	0.85	1.00	0.99
3	A03	洋槐蜜	洋槐蜜	0.82	1.00	0.99
4	A04	洋槐蜜	洋槐蜜	0.93	1.00	0.99
5	A05	洋槐蜜	洋槐蜜	0.89	1.00	0.98
6	L01	椴树蜜	椴树蜜	0.81	1.00	0.98
7	L02	椴树蜜	椴树蜜	0.71	1.00	0.99
8	L03	椴树蜜	椴树蜜	0.95	1.00	0.99
9	L04	椴树蜜	椴树蜜	0.87	1.00	0.99
10	L05	椴树蜜	椴树蜜	0.82	1.00	0.99
11	R01	油菜蜜	油菜蜜	0.91	1.00	0.99
12	R02	油菜蜜	油菜蜜	0.89	1.00	0.99
13	R03	油菜蜜	油菜蜜	0.77	1.00	0.99
14	R04	油菜蜜	油菜蜜	0.84	1.00	0.99
15	R05	油菜蜜	油菜蜜	0.93	1.00	0.99
16	V01	荆条蜜	荆条蜜	0.66	1.00	0.99
17	V02	荆条蜜	荆条蜜	0.69	1.00	0.99
18	V03	荆条蜜	荆条蜜	0.59	1.00	0.81
19	V04	荆条蜜	荆条蜜	0.76	1.00	0.99
20	V05	荆条蜜	荆条蜜	0.71	1.00	0.77

挥发性化合物标记物的鉴定

利用维恩图对不同植物来源蜂蜜在预测模 型中的化合物列表进行确认。图3显示了 各种植物来源的化合物列表和交叉情况。 洋槐蜜、荆条蜜、椴树蜜和油菜蜜的化合 物列表分别包含 50、43、52 和 47 个化 合物。由于椴树蜜在质量和价格上均优于 其他蜂蜜,因此标记物鉴定的重点放在 在椴树蜜样品中发现的挥发性化合物。 图 3 显示了初步选择的仅出现在椴树蜜 中的八种挥发性化合物。通过 NIST 对它 们进行初步鉴定。表 4 列出了它们的保 留时间、保留指数、离子和参考文献。 除戊酸、2-甲酸酐外, 椴树蜜中的所有 其他化合物均在参考文献中有报道^[5-8]。 其中,Blank 等人提出将顺式玫瑰醚作为 椴树蜜的指示剂^[6]。Blank 还从椴树 (Tilia cordata) 花中发现了这种化合物,但在其 他类型的蜂蜜中并未发现⁶⁰。尽管缺少有 关椴树花中挥发性化合物的文献报道,但 表 4 列出的化合物也被初步视为椴树蜜 的标记化合物。这些化合物在区分椴树蜜 与其他蜂蜜方面有重要意义。

表 4. 在椴树蜜中初步鉴定出的标记化合物

序号	初步化合物鉴定结果	RT	RI	离子	CAS	参考文献
1	长叶薄荷酮。	9.67	1008	109、81、152	89-82-7	[5]
2	顺式玫瑰醚 ^{ab}	13.17	1126	139、69、83	876-17-5	[5-7]
3	4,5,6,7-四氢-3,6-二甲基-苯并呋喃 ^{=b}	14.27	1164	108、150、79	494-90-6	[5]
4	1-甲基-4-(1-甲基丙基)苯 ^{ab}	15.52	1206	119、91、117	1595-16-0	[5]
5	4,7-二甲基苯并呋喃 ^{ab}	15.78	1215	145、146、148	28715-26-6	[5]
6	麝香草酚 ^{ab}	18.1	1298	135、150、91	89-83-8	[5]
7	葛缕醇 ^{ab}	19.72	1359	119、91、134	99-48-9	[8]
8	2-甲基戊酸酐"	21.17	1414	99、71、41	63169-61-9	-

^ª 通过 NIST14 鉴定

^b 通过参考文献鉴定

结论

本研究成功应用了基于 SPME 和非靶 向 GC/MS 分析与化学计量学方法结合的 分类方法来区分各种植物来源的蜂蜜样 品。基于 87 个真实蜂蜜样品建立了三种 分类模型,即 PLS-DA、NB 和 BP-ANN, 模型准确度为 100%。另外 20 个真实蜂 蜜样品的预测结果表明,所开发的模型实 用而可靠。因此,SPME-GC/MS 测定非 特异性轮廓结合化学计量学方法在不同植 物来源分类和判别方面具有广阔的应用 前景。

参考文献

- Cuevas-Glory, L. F.; et al. A review of volatile analytical methods for determining the botanical origin of honey. *Food Chem.* 2007, 103, 1032–1043
- Chen, H.; et al. Non-targeted volatile profiles for the classification of the botanical origin of Chinese honey by solid-phase microextraction and gas chromatography–mass spectrometry combined with chemometrics. J. Sep. Sci. 2017, 40, 4377–4384
- Chudzinska, M.; Baralkiewicz, D. Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. *Food Chem. Toxicol.* 2010, 48, 284–290
- Wang, M.; et al. An integrated approach utilising chemometrics and GC/MS for classification of chamomile flowers, essential oils and commercial products. Food Chem. 2014, 152, 391–398

- Lušic, D.; et al. Volatile Profile of Croatian Lime Tree (*Tilia sp.*), Fir Honeydew (*Abies alba*) and Sage (*Salvia officinalis*) Honey. Food Technol. Biotech. 2007, 45, 156–165
- Blank, I.; Fischer, K. H.; Grosch, W. Intensive neutral odorants of linden honey Differences from honeys of other botanical origin. *Zeitschrift für Lebensmittel-Untersuchung und Forschung.* 1989, 189, 426–433
- Piasenzotto, L.; Gracco, L.; Conte, L. Solid phase microextraction (SPME) applied to honey quality control. J. Sci.Food Agri. 2003, 83, 1037–1044
- Špánik, I.; *et al.* Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS. *Chem. Papers* 2013, 67, 127–134

查找当地的安捷伦客户中心:

www.agilent.com/chem/contactus-cn

免费专线: 800-820-3278,400-820-3278(手机用户)

联系我们: LSCA-China_800@agilent.com

在线询价: www.agilent.com/chem/erfq-cn

www.agilent.com

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2018 2018 年 5 月 22 日,中国出版 5991-8967ZHCN

