

利用 Q-TOF LC/MS 和精确质量谱库筛 查并验证食品中的真菌毒素

应用简报

食品与农业

作者

Elisabeth Varga、Franz Berthiller、 Rudolf Krska 和 Michael Sulyok Christian Doppler 毒枝菌素代谢实验室 与分析化学中心,农业生物技术系 (IFA-Tulln),自然资源与生命科学大学 (BOKU),奥地利维也纳

Emma Rennie 安捷伦科技有限公司 Santa Clara, CA, USA

Thomas Glauner 安捷伦科技有限公司 Waldbronn, Germany

摘要

本应用简报介绍了真菌毒素及相关代谢物精确质量谱库的创建及其在食品中真菌毒素筛查 领域的应用。与 Agilent 1290 Infinity 液相色谱联用的 Agilent 6550 iFunnel Q-TOF LC/MS 在正离子和负离子电喷雾模式下运行,系统采用双电喷雾安捷伦喷射流技术。在一种或 两种离子化模式下采集大量真菌毒素及相关代谢物的精确质量数谱图,并采集所有相关 离子形态的精确质量数谱图。

对有 44 种指示物加标的三种不同基质进行萃取。在靶向 MS/MS 和全离子 MS/MS 采 集模式下对样品进行分析。本研究证明了两种采集模式与高效数据分析工作流程和真菌 毒素及相关代谢物个人化合物数据库与谱库 (PCDL) 联用,对复杂基质中真菌毒素筛查和 验证的价值。

前言

真菌毒素是真菌的次生有毒代谢物,可能存在于谷物、坚果、水 果、香料和咖啡等各种食品和饲料中 [1]。它们可能对人和动物产 生肝毒性、致突变、致癌、雌激素或免疫抑制作用。数百种真菌 毒素及次生真菌代谢物分别属于不同的化学类别,理化特性差异 极大。目前,仅有大约十二种真菌毒素被认为具有严重的健康危 害,并在食品和饲料中受到监管。在欧洲,欧盟委员会法规 (EC) 1881/2006 及其修正案规定了食品中黄曲霉毒素、呕吐毒素、伏 马菌素、赭曲霉毒素 A、展青霉素和玉米赤霉烯酮的最高限量 [2]。 此外,欧盟委员会建议 2013/165/EU 中还规定了 T-2 和 HT-2 毒 素的指示性含量 [3]。

能够证明受监管化合物以外的真菌毒素存在的综合数据非常有限, 对于原谷物以外的食品基质更是如此 [4]。这是近年来真菌毒素单 一分析方法逐渐被基于 LC/MS 的多目标分析方法取代的原因之 一 [4.5]。不同产品分析方法的融合、不同复杂基质中真菌毒素的 鉴定以及增进对曲霉属、青霉属、鐮刀菌属或链格孢属真菌中新 兴真菌毒素的了解只是引导这一趋势的几个原因。近年来现代液 质联用仪的性能改进以及有助于提升分析效率的软件工具的开发 促进了这一趋势的发展。现代高分辨率精确质量 LC/Q-TOF 仪器 能够分析几乎无限数量的污染物 [6]。它们还支持通过回顾性数据 分析来查找在测定时未予考虑的污染物 [7]。

尽管开发出的多数多目标方法主要用于筛查污染物,但它们也可 采集受监管真菌毒素的定量信息。挑战在于需要从众多食品中高 效萃取出理化特性差异极大的分析物,并且天然存在的毒素浓度 差异极大。 本应用简报介绍了精确质量 LC/MS/MS 数据库和谱库的创建与 应用。该谱库包含 300 多种适合采用 LC/MS 进行分析的真菌毒 素及真菌或细菌代谢物,可用于对食品样品中的这些化合物进行 筛查和鉴定。样品前处理方法包括采用酸化的乙腈-水混合液进行 单次萃取。方法中采用两种不同的筛查策略。在传统方法中, Q-TOF 液质联用系统首先在 TOF 模式下运行,并进行数据库搜索。 借助第二次进样,采用靶向 MS/MS 方法分析疑似分析物列表并 将获得的谱图与 MS/MS 谱库进行比较。在第二种方法中,Q-TOF 在具有两种碰撞能量的全离子 MS/MS 模式下运行。全离子技术 能够轻松设置采集方法并使用 MS/MS 谱库对真菌毒素进行验证。 该方法可使母离子和子离子在色谱中实现共流出。我们展示了用 于分析玉米、榛子和葡萄酒中 44 种代表性指示物的方法性能参数。

实验部分

试剂和标准品

所有试剂和溶剂均为 HPLC 或 LC/MS 级。乙腈、甲醇和甲酸购 自 VWR International (奥地利维也纳)。甲酸铵溶液(部件号 G1946-85021)来自安捷伦。超纯水产自 Purelab Ultra 系统(ELGA LabWater,德国策勒)。真菌与细菌代谢物的分析标准品购自 Enzo Life Sciences(瑞士洛桑)、Bioviotica Naturstoffe GmbH (德国德兰斯费尔德)、Bioaustralis(由德国 Tebu-Bio 经销)、 Iris Biotech GmbH(德国马克特雷德维茨)、Romer Labs(奥地 利图尔恩)或 Sigma-Aldrich(奥地利维也纳)。其他标准品以分 离菌形式由世界各地的研究团队提供。

标准储备溶液的配制方法为根据物质的理化特性不同,将参比化 合物溶解于乙腈、甲醇、水或其混合物中。将单独的标准溶液混 合制成多组分工作溶液,用于校准和空白样品加标。标准储备溶 液与多组分工作溶液在使用前于 -20 °C 下储存。用乙腈:水:甲酸 (79:20.9:0.1, v:v:v)的混合液稀释工作溶液以制得校准样品。萃取 溶剂具有相同的成分。

样品前处理

购得用于加标实验的空白玉米和榛子样品后,利用 LC/MS/MS 方法检验其中是否不存在任何目标化合物。采用电动搅拌机将样 品磨碎并混匀。称取 5 g (± 0.01 g) 样品至 50 mL 聚丙烯管中,并 加入 20 mL 萃取溶剂。将样品置于旋转摇床上,于室温下萃取 90 分钟。当固体残余物沉淀完全后,将萃取液转移至 HPLC 样品 瓶中。向该萃取液中加入三种不同浓度的多组分工作溶液。

LC/MS/MS 分析

采用 Agilent 1290 Infinity UHPLC 进行分离,该系统包括:

- Agilent 1290 Infinity 二元泵 (G4220A)、
- Agilent 1290 Infinity 高性能自动进样器 (G4226A) 以及
- Agilent 1290 Infinity 柱温箱 (G1316C)

该 UHPLC 系统与配备双电喷雾安捷伦喷射流电喷雾离子源的 Agilent 6550 iFunnel 四极杆飞行时间质谱联用。用在 1.0 mL/min 下运行的 Agilent 1260 Infinity 等度泵 (G1310B) 以及 1/100 分流 器(部件号 G1607-60000) 输送参比质量离子。参比雾化器的最 终流速为 10 μL/min。采用 B.05.01 版 Agilent MassHunter 数据 采集软件操作 Q-TOF 液质联用仪,在两种不同方法中分别采用正 离子化或负离子化模式在 2 GHz 的扩展动态范围模式下运行。在 靶向 MS/MS 采集中,在 MS 和 MS/MS 模式下采用三次扫描/ 秒的数据采集速率。全离子 MS/MS 采集使用三次扫描/秒的采 集速率和两个不同的碰撞能量。使用两种碰撞能量得到包含母离 子的低能量通道以及包含母离子和子离子的两个高能量通道的交 替谱图。

色谱条件

巴塔宋什		
色谱柱:	Agilent Pord 2.1 × 100 m	oshell 120 EC-C18, m, 2.7 µm(部件号 695775-902)
流动相:	A) 5 mM 甲 B) 5 mM 甲	酸铵 + 0.1% 甲酸 酸铵 + 0.1% 甲酸的甲醇溶液
梯度:	时间 (min) 0.0 0.5 10.0 15.0 15.1 17.0	% B 10 10 98 98 10 10
停止时间:	17.0 min	
柱温:	30 °C	
流速:	0.40 mL/mi	n
进样量:	2 µL	
双 AJS 条件		
干燥气温度:	130 °C	
干燥气流速:	16 L/min	
雾化器压力:	30 psig	
鞘气温度:	300 °C	
鞘气流量:	11 L/min	
毛细管电压:	+ve 4000 V;	; -ve 4000 V
喷嘴电压:	+ve 500 V;	-ve 500 V
参比质量校正:	+ve 121.050 -ve 112.985)87 和 922.00980; 59 和 966.00073
全离子 MS/MS		
质量范围:	40 - 1300 an	nu
扫描速率:	3 幅谱图/秒	•
碰撞能量:	0-10-40	V
靶向 MS/MS		
MS 质量数范围:	80 - 1300 ar	nu
MS/MS 质量数范围:	40 - 1300 an	nu
扫描速率:	MS和MS/	MS 均为 3 幅谱图/秒
碰撞能量:	20 V	
目标质量数:	45(正离子和	和负离子),△RT 0.5 min

使用 MassHunter 定性分析软件 B.07.00 评估数据。如果通过分 子式查找数据挖掘算法检出的化合物的质量误差低于 5 ppm 并且 具有足够高的得分(包括同位素丰度和同位素质量间距),则真 菌毒素的鉴定结果将报告为阳性。为峰检测指定 ±1 分钟的保留 时间窗口以补偿由系统之间变异性引起的保留时间漂移。

真菌毒素及相关代谢物 PCDL 的创建

在碰撞能量分别为 10 eV、20 eV 和 40 eV 的靶向 MS/MS 模式 下,通过流动注射或使单一分析物溶液通过短柱来采集精确质量 数谱图。利用所有相关化合物形态(包括 [M+H]⁺、[M-H]⁻、 [M+NH₄]⁺ 和 [M+HCOO]⁻) 作为目标质量。如果母离子稳定性 较高,需要采用较高的碰撞能量,则在第二次运行中采集额外谱 图。在正离子化或负离子化模式下,可采集到 300 多种真菌毒素 及其他真菌或细菌代谢物的有意义的 MS/MS 谱图。对于若干种 化合物,在两种离子化模式下采集得到了一种以上母离子形态的 MS/MS 谱库谱图。研究人员在过去十多年中收集到了各种固体 标准品或储备溶液。多数化合物购自不同供应商,除此之外的化 合物是从 BOKU 的 IFA-Tulln 中分离得到或由其他研究团队提供。

C20H1805

C8H10O3

C29H34O9

C8H8N20252

Tenuazonie Tephanylin

Terein

Teritrem B

Thisktin

TOOT

338.11542

154.05299

525 22028

228.00272

为消除质量分配误差,将所采集谱图中的碎片离子质量与理论碎 片分子式进行比较,并根据其理论质量数对其进行校正。所有 MS/MS 谱图均经过谱图噪音修正。采用最低基峰阈值以确保得 到所有碎片离子均获得良好的离子统计数据。经校正的谱图包含 在安捷伦真菌毒素及相关代谢物个人化合物数据库与谱库(部件 号 G5883CA)中,这些谱图可用于筛查与验证食品样品中的真菌 毒素。对于 44 种指示物,通过给定的 HPLC 方法分析全套真菌毒 素标准品,以将其保留时间信息添加至谱库中。

图 1 显示了 MassHunter PCDL Manager 软件的屏幕截图,以及 在 10 eV 的碰撞能量下采集得到的 T-2 毒素 [M+NH₄]⁺ 形态的精 确质量数谱图。

oingle cearch	Betch Search	Batch Summary	Edit Com	ounds	Sp	ectral Search	Вгожее	Spectre	Edit Spectra
100					_				Graphic Mass List
ecursorion:		Ion polarty:	(Any)		•				Library spectrum
lerance: 20	0 opm () mDa	lonization mode:	(Any)		-				8 205.13834 215.10665 100.00
Seine erenne					_				100-94,89
dision energy									국 90-
alerance: 2(0 e)/								80-
Address. La	u uv								70-
									60-
ctra for compou	ind: T2 / T-2 Taxin							_	50-
Compound Na	ma	Ion Species	Precureor lo	n CE(V)	P	larity Ioniza	ation Instrum	nent	40-
T2 / T-2 Tooth		(M+H)+	467.227	56	10 Po	ithre ESI	QTOF	_	
T2 / T-2 Taxin		(M+H)+	467.227	56	20 Po	stive ESI	GTOF		30-
T2 / T-2 Toxin		(M+H)+	467.227	56	40 Po	stive ESI	QTOF		20-105.06988 365.15948
T2 / T-2 Toon									10-12.05 10.08 445
T2 / T-2 Taxin		(M+NH4)+	484.254	11	20 Po	the ESI	Q TOF		
T2 / T-2 Taxin		(M+NH4)+	484.254	11	40 Po	itive ESI	QTOF		50 100 150 200 250 300 350 400
									mz
		Single Search Re	sults: 455	hits					
	npound Name	 Fomula 	Maee	Anion	Cation	RT (min)	CAS	ChemSpider	IUPAC Name Spectra
Com						6.210	519-57-3	141044	Marked C. O. C. Marketon, Caracher Marketon, C. E. L. January, C.
Corr Sulochrin		C17H1007	332.08960			0.810			neonyi 2-(2,6-anyanaxy-4-meanyibenzoyi)-o-nyanax
Corr Sulachrin T2 / T-2 Toxin		C17H1607 C24H34O8	332.08960 465.22028			7.852	21209-20-1	21476745	(Zalpha.3beta.4alpha.8alpha)4.15-Diacetoxy-3-h 6
Con Sulochrin T2 / T-2 Toxin T-2 Tetraol		C17H1607 C24H3409 C15H2206	332.08960 466.22028 298.14164			7.852	21259-20-1 34114-99-3	21476745 8079585	rikany z (z,z,s anyczos) – manyteinzyc) – sy draz is (2alpha,3bela,4alpha,8alpha),4.15-Diaostowy -3h 6 (38,4c,8c),12,13-Epusytrichotheo-Sene-3,4,8,15 0
Con Sulochrin T2 / T-2 Toxin T-2 Tetraol T-2 Triol		C17H1607 C24H3409 C15H2206 C20H2007	332.08960 466.22028 258.14164 382.19915			7.852	21259-20-1 34114-59-3 34114-99-2	21476745 8079985 2299199	Interry 4.42, a on yorasiy - 4-many team any to any any - 5-mail and - 1 6 (2a) na. 3.beira 4.3ph a. 3.beira) - 4.15-Da actory - 3 h
Con Subehrin T2 / T-2 Toxin T-2 Tetraol T-2 Troil Tacroimus		C17H1607 C24H3409 C15H2206 C20H3007 C44H69N012	332.08960 466.22028 258.14164 362.19915 803.48198			7.852	21209-20-1 34114-99-3 34114-99-2 104987-11-3	21476745 8079985 2299199 4976056	Interry, 4.4, a onlyces), -4 many loss 20(y), -5 ng/am. # (2)g/m. 30:e4, -4 g/m. 30; -5 million
Con Subchrin T2 / T-2 Toxin T-2 Tetraol T-2 Triol Tacrolimus Taxol (Pachtaxel)		C17H1607 C24H3409 C15H2206 C20H3007 C44H69N012 C47H51N014	232.08960 466.22028 258.14164 382.19915 803.48198 853.33096			7.852	21259-20-1 34114-59-3 24114-99-2 104987-11-3 33069-62-4	21476745 8079985 2299199 4976056 10368587	Interry 4, 24, 24 or optically - Analysis (19) (24) (24) 6 (28) 40, 260 - 12, 13-Epsophic Skiffer) 10 as above 6 (28) 40, 260 - 12, 13-Epsophic Skiffer) 10 as above 6 (28) 40, 260 - 12, 13-Epsophic Skiffer) 10 above 6 (28) 40, 260 - 12, 13-Epsophic Skiffer) 10 above 6 (28) 40, 550 - 12, 13-Epsophic Skiffer) 10 above 10 above (28) 41, 551 45, 1551, 165, 1561, 157, 1562, 157, 1572, 1573 2 2 (28) 41, 551 45, 1551, 1553, 1563, 1563, 1563, 1573, 1573, 1573, 1574, 1574, 1563, 1574, 1574, 1566, 1564, 1564, 1564, 1564, 1564, 1564, 1564, 1564, 1564, 1564, 1
Con Subohrin T2 / T-2 Toxin T-2 Tetraol T-2 Triol Tacrolimus Tacrol (Pachtaxel) TC / Tetracycline		C17H1607 C24H3408 C15H2206 C20H3007 C44H69N012 C47H51N014 C22H24N208	332.08960 466.22028 258.14164 382.19915 803.48198 853.33096 444.15327			7.852	21259-20-1 34114-59-3 24114-99-2 104987-11-3 33069-62-4 60-54-8	21476745 8079585 2299199 4976056 10368587 10465373	Interry 4,42, and yoang Amany Sectory (1-5) yoang 6 (2) (2) (1-2) (1-2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (
Con Sulachrin T2 / T-2 Toxin T-2 Tetraol T-2 Trol Tacrolimus Tacrol (Pachtaxe) TC / Tetracyclime Tentoxin		C17H1607 C24H3409 C15H2206 C20H3007 C44H69N012 C47H51N014 C22H24N208 C22H30N404	332.08960 466.22028 298.14164 382.19915 803.48198 853.33096 444.15327 414.22671			7.852	21259-20-1 34114-59-3 24114-59-2 104987-11-3 33069-62-4 60-54-8 28540-82-1	21476745 8079585 2299199 4976056 10368587 10465373 4444584	Interry, 4.14, adhyseiny deviation of the stand y loss of the s

图 1	. Agilent MassHunte	er PCDL Manag	er 软件中的真菌毒	素及相关代谢物	PCDL 以及	10 eV 辪	り碰撞能量下	采集得
到的	T-2 毒素的 [M+NH,	,]+ 形态的精确质	這數谱图					

6.758 52452-60-5

582-46-7

87-11-6

70407-20-4 102723

90750

6608

4941440

(45.5R)-4.5-Dihydroxy-3-((1E)-1-propen-1-yl)-2-cyc...

(4aR,6aR,12a5,12b5)-4a,12a-Dihydroxy-4,4,6a,1... 3

N-(4-Methyl-5-oxo-4,5-dihydro[1,2]dthiolo[4,3-b]py... 3

3',6'-Dimethoxy-1,1':4',1" terphenyl-2,4,4" triol

结果与讨论

利用全离子 MS/MS 采集模式进行同步筛查和验证

向玉米和榛子萃取液以及红酒中加入选自真菌毒素及真菌代谢物 组中的44种指示物。选择所有受监管化合物、一些极性和非极性 分析物以及不易电离的化合物。在全离子 MS/MS 工作流程中, 无需低能量通道中的碎裂即可采集到精确质量数据。同时,在未 经过母离子选择的条件下利用两种不同的碰撞能量使化合物碎裂。 在两个高能量通道中记录精确质量碎片数据。采用分子式查找算 法对数据进行分析时,母离子信息来自真菌毒素及相关代谢物 PCDL,并提取所有指定离子形态的化合物色谱图。在推断鉴定中, 使用 PCDL 中存储的谱图,并从高能量通道中自动提取指定数量 的最高丰度碎片离子色谱图。例如,图 2A 显示了真菌毒素及相 关代谢物 PCDL 中的曲霉酰亚胺的精确质量谱库谱图,并与加标

图 2.40 eV 碰撞能量下得到的曲霉酰亚胺的精确质量谱库谱图 (A) 与加标玉米样品采集得到的高能量谱图(干净谱图)(B) 的比 较。谱库谱图中的红色三角形表示自动选择用于全离子 MS/MS 评估的离子

玉米样品获得的高能量干净谱图(图 2B)进行了比较。红色三角 形指示自动从谱库谱图中选择的碎片离子,以便进行评估。尽管谱 库谱图基于 40 eV 的碰撞能量,但高能量干净谱图中结合了 10 eV 和 40 eV 下两个高能量通道采集到的信息。

通过叠加母离子和碎片离子的色谱图并计算共流出得分对真菌代 谢物曲霉酰亚胺的鉴定结果进行确证。共流出得分需考虑到丰度、 峰形(对称性)、峰宽和保留时间等因素。对得分进行绘图,以 便在共流出曲线中进行检查。图 3A 显示了高能量通道下得到的 母离子色谱图与碎片离子色谱图的叠加图。在自动提取的碎片离子 中,六个碎片的离子色谱图显示出了与母离子的共流出,如图 3B 中的共流出曲线所示。图 3C 则显示了化合物表中的详细鉴定结果。

图 3. 加标玉米样品中曲霉酰亚胺母离子和碎片离子的叠加谱图 (A)、共流出曲线 (B) 以及包括共流出得分的化合物鉴定结果(C) 表 1 列出了以 30 ng/mL 浓度加标至玉米提取物中的所有 44 种真 菌毒素及真菌代谢物。在正离子化或负离子化模式下对这些化合 物进行了测定,并给出了每种分析物的主要形态。对几种化合物 在两种极性模式下进行检测和定性分析。对于这种情况,表中列 出了在灵敏度更高的电离模式下得到的结果。在上述浓度下,采 用分子式查找算法通过自动搜索检测到多数化合物。测定的质量 数与理论质量数的质量偏差相比,通常小于 1 ppm。质量偏差在 2 - 5 ppm 之间的仅有 11 种化合物。因此,包括保留时间、质量 准确度、同位素丰度和同位素质量间距在内的目标得分基本都在 90 以上(总分 100)。在正离子或负离子模式下通过一个以上的 额外碎片离子对多数化合物进行验证。将 80 分(总分 100)的最 低共流出得分指定为化合物验证标准。

通过靶向 MS/MS 采集模式筛查并验证食品中的真菌 毒素

研究中还采用同一个色谱方法(但采用靶向 MS/MS 采集)对相 同样品进行了分析。利用真菌毒素及相关代谢物 PCDL 与分子式 查找数据挖掘算法相结合来查找化合物。系统将自动提取已鉴定 化合物的预期离子形态色谱图、MS 和 MS/MS 谱图。根据单一 同位素精确质量数、同位素比、同位素质量间距和保留时间的一 致性对结果进行评分。 图 4 显示了加标至玉米提取物的 T-2 毒素的化合物色谱图和峰谱 图。T-2 毒素的主要离子形态为 [M+NH₄]⁺ 和 [M+Na]⁺离子。这些 离子形态测定的 *m/z* 信号(蓝色)与预期同位素比(红色方框) 呈现出良好的一致性。软件总共将 10 个离子归属为 T-2 毒素的 [M+H]⁺、[M+NH₄]⁺ 和 [M+Na]⁺ 形态,其中包括其同位素信号。 高达 98.5 的目标得分(总分 100)反映出了良好的质量准确度和 同位素模式匹配结果。其他化合物的目标得分(未列出)与表 1 中全离子 MS/MS 工作流程得到的值相当。

红色菱形表明 MS/MS 谱图在该 m/z 下采集。自动提取整个峰范 围内的 MS/MS 谱图,并与 PCDL 中包含的谱库谱图进行了匹配。

图 4. 通过分子式查找算法获得的加标浓度为 30 ng/mL 的玉米样 品的 T-2 毒素的化合物色谱图 (A) 和质谱峰谱图 (B)

表 1. 玉米萃取液中加标浓度为 30 ng/mL 的 44 种真菌毒素及真菌代谢物的分析结果,采用正离子化或负离子化全离子 MS/MS 采集模式进行测定

化合物	保留时间 (min)	分子式	离子形态	质量数	质量数偏差 (ppm)	目标得分	共流出得分
15-单乙酰氧基镰草镰刀菌醇	5.61	C ₁₇ H ₂₄ O ₆	[M+NH ₄] ⁺	324.1573	-2.52	96.8	96.3
16-酮曲霉酰亚胺	5.85	C ₂₀ H ₂₇ N ₃ O ₄	[M+H] ⁺	373.2002	-1.61	94.9	94.9
3-乙酰基脱氧雪腐镰刀菌烯醇	4.88	C ₁₇ H ₂₂ O ₇	[M+HC00] ⁻	338.1366	-2.73	98.0	
黄曲霉毒素 B ₁	6.36	C ₁₇ H ₁₂ O ₆	[M+H] ⁺	312.0634	-0.59	98.2	90.2
黄曲霉毒素 B ₂	6.12	C ₁₇ H ₁₂ O ₆	[M+H] ⁺	314.0790	0.86	98.5	96.9
黄曲霉毒素 G ₁	5.83	C ₁₇ H ₁₂ O ₇	[M+H] ⁺	328.0583	-0.65	99.6	97.0
黄曲霉毒素 G ₂	5.56	C ₁₇ H ₁₄ O ₇	[M+H] ⁺	330.0740	1.06	98.3	96.5
黄曲霉毒素 M ₁	5.62	C ₁₇ H ₁₂ O ₇	[M+H] ⁺	328.0583	-0.14	97.7	95.3
田麦角碱	4.77	$C_{16}H_{18}N_2$	[M+H] ⁺	238.1470	-0.41	99.2	96.5
交链孢酚	7.48	$C_{14}H_{10}O_5$	[M-H] ⁻	258.0528	0.27	97.5	96.6
交链孢霉甲基醚	8.72	$C_{15}H_{12}O_5$	[M-H] ⁻	272.0685	0.10	98.6	97.0
曲霉酰亚胺	4.48	$C_{20}H_{29}N_3O_3$	[M+H] ⁺	359.2209	-0.57	99.1	97.2
白僵菌素	10.09	$C_{45}H_{57}N_{3}O_{9}$	$[M+NH_4]^+$	783.4095	0.24	99.2	95.5
Brevianamid F	4.99	$C_{16}H_{17}N_3O_2$	[M+H] ⁺	283.1321	-0.63	96.8	98.7
弯孢霉菌素	7.10	$C_{16}H_{20}O_{5}$	[M+H]+	292.1311	-0.86	99.1	97.8
环匹阿尼酸	8.86	$C_{20}H_{20}N_2O_3$	[M+H] ⁺	336.1474	-3.01	97.3	96.7
环孢素 A	10.45	$C_{62}H_{111}N_{11}O_{12}$	[M+HC00] ⁻	1201.8414	-4.30	85.5	96.4
二乙酰氧基镰草镰刀菌醇	6.34	$C_{19}H_{26}O_7$	$[M+NH_4]^+$	366.1679	-1.48	96.9	92.3
脱氧雪腐镰刀菌烯醇	2.99	$C_{15}H_{20}O_{6}$	[M+Na] ⁺	296.1260	-1.80	97.6	
大黄素	7.39	$C_{15}H_{10}O_5$	[M-H] ⁻	270.0528	-2.46	91.1	
恩镰孢菌素 B	9.90	$C_{33}H_{57}N_{3}O_{9}$	$[M+NH_4]^+$	639.4095	-2.96	95.2	92.5
麦角生碱	6.29	$C_{30}H_{37}N_5O_5$	[M+H] ⁺	547.2795	-3.30	94.2	82.2
异麦角生碱	6.19	$C_{30}H_{37}N_5O_5$	[M+H] ⁺	547.2795	-1.18	95.9	93.5
麦角异胺/麦角胺	6.46	$C_{33}H_{35}N_5O_5$	[M+H] ⁺	581.2638	-1.29	97.5	86.3
伏马菌素 B ₁	7.78	C ₃₄ H ₅₉ NO ₁₅	[M+H] ⁺	721.3885	-3.12	87.2	
伏马菌素 B ₂	8.69	C ₃₄ H ₅₉ NO ₁₄	[M+H] ⁺	705.3936	-2.42	97.3	96.6
镰刀菌烯酮-X	3.91	$C_{17}H_{22}O_8$	[M+Na] ⁺	354.1315	-4.80	89.0	
HT-2 毒素	7.30	$C_{22}H_{32}O_8$	$[M+NH_4]^+$	424.2097	-2.05	97.8	97.8
巨孢子素	9.36	$C_{16}H_{12}O_5$	[M-H]	284.0685	0.33	97.6	96.6
串珠镰刀菌素	0.72	$C_4H_2O_3$	[M-H]	98.0004	-3.01	91.2	
霉酚酸	7.75	$C_{17}H_{20}O_{6}$	[M+H] ⁺	320.1260	-0.09	97.7	97.3
雪腐镰刀菌烯醇	2.15	C ₁₅ H ₂₀ O ₇	[M+HC00] ⁻	312.1209	-3.22	87.4	
赭曲霉毒素 A	8.38	$C_{20}H_{18}CINO_6$	[M+H] ⁺	403.0823	-1.81	91.7	97.7
对郝青霉酰胺 A	6.26	$C_{28}H_{35}N_3O_5$	[M+H] ⁺	493.2577	-0.85	96.7	96.8
棒曲霉素	2.38	$C_7H_6O_4$	[M-H] [_]	154.0266	-1.07	99.7	92.0
异烟棒曲霉素 C	7.35	$C_{22}H_{23}N_5O_2$	[M+H] ⁺	389.1852	-0.36	98.9	97.3
醌茜素	10.23	C ₃₀ H ₁₈ O ₁₀	[M-H]	538.0900	-1.19	98.0	99.1
Stachybotrylactam	9.22	C ₂₃ H ₃₁ NO ₄	[M+H] ⁺	385.2253	-1.10	99.5	97.0
硫赭曲菌素	6.21	C ₁₇ H ₁₆ O ₇	[M-H]	332.0896	-0.71	98.1	97.8
T-2 毒素	7.83	$C_{24}H_{34}O_{9}$	$[M+NH_4]^+$	466.2203	-0.18	97.4	97.7
细交链孢菌酮酸	6.19	$C_{10}H_{15}NO_{3}$	[M+H]+	197.1052	0.96	99.1	
三联苯曲菌素	6.75	$C_{20}H_{18}O_5$	[M+H] ⁺	338.1154	-1.79	98.3	95.4
纯绿青霉素	7.97	$C_{15}H_{11}NO_2$	[M+H] ⁺	237.0790	1.26	99.0	96.2
玉米赤霉烯酮	8.36	$C_{18}H_{22}O_5$	[M-H]	318.1467	0.10	99.3	96.0

图 5 显示了在加标浓度为 30 ng/mL 的玉米提取物中采集到的 T-2 毒素的 MS/MS 谱图(上图)与 PCDL 中谱库谱图(下图)的比 较。中图为差异谱图的镜像显示。在 20 eV 的碰撞能量下, T-2 毒 素谱库谱图中的所有主要碎片离子均在测定的谱图中检出,碎片 离子处于较窄的质量提取窗口内,并与参比谱图具有相似的比值。 因此,在精确质量谱库中的反向搜索得到了 91.7 的分数(总分 100),验证了 T-2 毒素在样品中的存在。详细的化合物鉴定结果 显示于图 6 的化合物表中。所有单个化合物的 MS/MS 得分均未 示出,但实现验证的化合物得分均高于 60 分(参见图 7)。

两种工作流程的比较

对加标食品萃取液进行真菌毒素及真菌代谢物的精确质量筛查, 并通过 MS/MS 谱库搜索或全离子 MS/MS 采集对已鉴定的污染 物进行验证。图 7 显示了加标浓度为 30 ng/mL 的三种不同基质在 两种采集模式下得到的结果对比。一般来说,红酒表现出较强的 抑制效应,导致其检出率和验证率低于其他基质。靶向 MS/MS 采集与单一碰撞能量和谱库匹配相结合,得到了与具有碎片共流 出的全离子 MS/MS 采集相近的验证率。特别需要指出的是,与 全离子 MS/MS 碎裂模式相比,母离子分离对更复杂的基质和较 低质量数污染物的鉴定能力得到了提高。相反,全离子 MS/MS 采集速度极快,并能够区分麦角生碱和异麦角生碱等邻近流出的 异构体。

图 5. 加标玉米提取物中 T-2 毒素的测定谱图与安捷伦真菌毒素及 相关代谢物 PCDL 中的参比谱图的比较

d v	r Ø Name	/ 74	Lab	1 1	2 4 At [• <u>•</u> • •	Mass ⊽+9 Mas	a (Tat) V de Diffi	Tat. com) 🔽 🕸	Score (Tot)	⊽-te Flar	ia (Tat) 😎 🕂 R	174	Score V7-te Mar	aa (DB) 😎 🕁	Maco (MEG) 3		. eDa) 🔽 4	
	36	T2 / T-2 Taxin	Cpd	36: T2 / T-2	Taxin C2	4H34D9 484.25401	466.22009	466.22028	-0.41		98.42		7.847	98.42	466.22028	······		-0.19	9
Beet	V-P Name V	🕫 Formula 🔽 -	Score∀∀+	Maes V 4	Mase (Tgt) VH	P Diff (ppm) ⊽ + Di	ff (abe. ppm) V+	Diff (mDa) 🗸 🗠		ati 🔽 🕫 RT	08741	D Source V+	Score (rat) ⊽+¤ Score	a (Lib) ⊽+¤ S	pecies ∀+P n	va ⊽+¤ Libe	ary 🛛 🕂 Fi	lage
	T2/T-	2. C24H34O	9 98.42	466.220	466.2202	8 0.41	0.41	0.19	7.847	7.852	-0.006	LibSearch-F.,		98.42	91.74	(M+H)+ (M_	467.22. C:	NassH.	-
	E VID	Name V	Num Peake 1	7 +P m/z (pre	c.) V P Forwa	rd Score V + Reve	ree Score V-P Sc	ore (Lib) 🗸 🕫		Not			7+	Species V-P					
	20	T2 / T-2 Taxi		79 48	4.25411	90.07	91.74	91.74 F	orensic and To	xicology dru	g: Fungal N	fetzbolite; Nyo	otextin;	(N+NH4)+					
	Conciliant Witches	an Easter da West	calls Wide Albert	of Web Con	A 17 (17 18)	Frank (ME) The Es	and detter set me	The Farm (sum	al With Cases	(inc. abund)	-	a dina manalan							
	(M+H)+	on Pormula V P	467.22	254.9	8 (IIPO) ¥ H	30019 (M3) ¥ 14 30	ore (mma, marina)	V - Score (mas	R1 24	(180, 80010)	0 - 300	re (rao, apecing	0						
	(N+NH4)+		484.25	54825.9		97.75			59.82	1	33.18		99.15						
	particular																		
	miz V + m	ADA 75811	Here (mag) mi	Um (mua) V	Height V +	Height (Calo) V 4	Height A V H He	sign:	Height Sum	TT R		+ V (06.							
	495.25	495 25744	0.0		5 15510.0	100712	23.9	27.1		19.6		20.2							
	486.25	488 25984	2.54	1	2 2515.5	33617	3.5	54		3		4							
	487.26	487.26257	0.6	0	3 418.1	496.7	0.6	0.8		0.5		0.6							
	488.28.	488.26507	-9.31	-4	.5 58.3	61.2	0.1	0.1		0.1		0.1							
		on Exemple Viet	min TZ in Alter	nd Web Soci	A MEGI TZ-M	Server (MS) TZ-41 Se	OF THES MEMS	The Second land	a) Web Source	(inc. shund)	77 th 500	in line anonin	0.77.0						
	(M+Na)+		489.20	5006.4	- (94.2	are (m at marine)		99.95	(12.34	a fact apartic	97.16						
	m2 V-P m	/2 (Cale) V-P E	9-12 (mqq) ffic	Ditt (mDa) V	Height V-P	Height (Cale) V 4	Height % V-P He	aget % (Cale) V 4	 Height Sum 1 	t V IP Heig		Laic) V-P							
	489.20.	489.2096	0.01		0 55006.4	61436.8	100	100		19.1		76.3							
		400.21231	1.78		3 13670.4	10330.2	21.4	20.7		27		20.1							
	400.21.	401 01640	2 T M	1															

图 6. 加标玉米样品中 T-2 毒素的化合物鉴定结果,包括质谱图的质量准确度和同位素信息以及 MS/MS 谱图比较

	甿回 №S/ №S			全离子 MS/MS					
红酒	玉米	榛子	化合物名称	红酒	玉米	榛子			
			15-单乙酰氧基镰草镰刀菌醇						
			16-酮曲霉酰亚胺						
			3-乙酰基脱氧雪腐镰刀菌烯醇						
			黄曲霉毒素 B ₁						
			黄曲霉毒素 B ₂						
			黄曲霉毒素 G ₁						
			黄曲霉毒素 G ₂						
			黄曲霉毒素 M ₁						
			田麦角碱						
			交链孢酚						
			交链孢霉甲基醚						
			曲霉酰亚胺						
			白儒菌素						
			Brevianamid F						
			空狗霉菌素						
			环 匹阿尼酸						
			-7 融気其鐮首镰刀茵薩						
			1						
			加乳 国家 体力 困 体 野						
			友用 注 碱						
			开发用生碱						
			次与困紊 B ₂						
			镰刀菌烯酮-X						
			HT-2 毒素						
			巨孢子素						
			串珠镰刀菌素						
			霉酚酸						
			雪腐镰刀菌烯醇						
			赭曲霉毒素 A						
			对郝青霉酰胺 A						
			棒曲霉素						
			异烟棒曲霉素 C						
			配茜素						
			Stachybotrylactam						
			硫赭曲菌素						
			T-2 毒素						
			细交链孢菌酮酸						
			三联苯曲菌素						
			<u>纳</u> 绿青霉素						
			玉米赤雲烯酮						

图 7. 采用靶向 MS/MS 采集结合谱库搜索或全离子 MS/MS 采集得到的三种不同基质中浓度为 30 ng/mL 的真菌毒素及真菌代谢物的 筛查和验证结果。绿色:通过 MS/MS 谱库匹配或碎片离子共流出自动检出并且存在得到验证的化合物;黄色:自动检出但未采集到定 性 MS/MS 谱图的化合物

实际样品的分析

除分析加标基质外,还根据所述方法对受污染的榛子样品进行了 萃取,并将萃取物进样至 Q-TOF 液质联用系统,采用全离子 MS/MS 在正离子和负离子模式下进行分析。将全离子 MS/MS 评估出的校准样品的母离子和碎片离子信息导出至 MassHunter 定量分析软件以快速创建定量数据处理方法。数据处理完成后, 在化合物概览模块中按样品和化合物查看结果。图 8 显示了在榛 子样品中作为污染物检出的六种真菌代谢物的色谱图。在负离子 模式下检测到交链孢酚、交链孢霉甲基醚、玉米赤霉烯酮和巨孢 子素。在正离子模式下检测到了 Brevianamid F 和霉酚酸。对于 所有化合物,母离子 *m/z* 和至少一个碎片离子的质量偏差应小于 5 ppm,才能满足鉴定化合物的要求。

结论

本文所介绍的方法包括快速、简便而经济的溶剂萃取以及后续将 稀释的原萃取液进样至 UHPLC/Q-TOF/MS 系统进行分析的步骤。 该方法充分利用 Agilent 1290 Infinity 液相色谱系统的低延迟体积 及其能够在 UHPLC 分离中承受高反压的优势,从而提高了色谱 分离度。该方法得益于 Agilent 6550 iFunnel Q-TOF 的高灵敏度 以及安捷伦喷射流离子源的通用电离功能。

研究中创建了真菌毒素及相关代谢物的精确质量 PCDL 并将其应 用于食品样品中真菌毒素的筛查和验证。通过分析含有 44 种真菌 代谢物的食品样品对靶向 MS/MS 和全离子 MS/MS 采集模式进 行了评估。两种采集模式分别与 Agilent MassHunter 软件以及 独有的内置鉴定标准相结合,可有效验证样品中存在的真菌毒素。 尽管靶向 MS/MS 信息对于低分子量化合物更加可靠,但全离子 MS/MS 数据可在随后对初次测定时不在分析范围内的化合物进 行重新解析。为实现高效数据审查,研究中采用了定量分析软件。 该软件能够显示定量离子和定性离子,包括质量准确度、定性离 子比、谱库匹配得分和保留时间匹配等质量标准。

该方法是单一分析物或分析物组检测方法的适当补充,有助于对 各种食品中真菌毒素的存在状况加以了解。

图 8. 天然受污染的榛子样品中检出的真菌毒素色谱图。(A) Brevianamid F (< LLOQ)、(B) 交链孢酚 (310 μg/kg)、 (C) 霉酚酸 (6100 μg/kg)、(D) 玉米赤霉烯酮 (21 μg/kg)、(E) 交链孢霉甲基醚 (220 μg/kg) 以及 (F) 巨孢子素 (520 μg/kg)

参考文献

- Zöllner, P.; Mayer-Helm, B. Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography–atmospheric pressure ionisation mass spectrometry. *J. Chromatogr. A.* 2006, *1136*, 123-169
- Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (including amendments as of 01 September 2014)
- Commission Recommendation No. 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products
- Varga, E.、Berthiller, F.、Krska, R.、Schuhmacher, R.、 Sulyok, M.、Glauner, T., Screening and Quantitation of 191 Mycotoxins and Other Fungal Metabolites in Almonds, Hazelnuts, Peanuts, and Pistachios Using UHPLC/MS/MS(使用 UHPLC/MS/MS 对杏仁、榛子、 花生和开心果中的 191 种真菌毒素及其他真菌代谢物进行筛 查和定量分析);应用简报,安捷伦科技有限公司,出版号 5991-4991EN, 2014
- Varga, E.、Mayer, K.、Sulyok, M.、Schuhmacher, R.、 Krska, R.、Berthiller, F.,对采用 UHPLC/MS/MS 准确定 量玉米中毒枝菌素的稳定同位素稀释分析方法进行验证; 应用简报,安捷伦科技有限公司,出版号 5991-2808CHCN, 2013
- Kempe, G.、Spitzbarth, F.、Glauner, T., Development and Application of an Exact Mass LC/MS/MS Library for the Accurate Mass Screening and Quantitation of Pesticides in Fruits and Vegetables (用于对水果和 蔬菜中的农药进行精确质量筛查及定量分析的精确质量 LC/MS/MS 谱库的开发与应用);应用简报,安捷伦科技 有限公司,出版号 5991-2227EN, **2013**

- Wüst, B.、Glauner, T.、Madden, S.、Taylor, L.、Payne, T., 采用高分辨全离子 MS/MS 技术快速筛查并鉴定农药,应用简 报,安捷伦科技有限公司,出版号 5991-2295CHCN, 2013
- Chen, Y.、Cappozzo, J.、Stone, P. J. W., 三重四极杆液质联 用仪对食品基质中黄曲霉素 B1、B2、G1 和 G2 的高灵敏度 飞克级检测;应用简报,安捷伦科技有限公司,出版号 5990-6894CHCN, **2011**

更多信息

这些数据仅代表典型的结果。有关我们的产品与服务的详细信息, 请访问我们的网站 www.agilent.com。

查找当地的安捷伦客户中心: www.agilent.com/chem/contactus-cn 免费专线: 800-820-3278,400-820-3278(手机用户) 联系我们: LSCA-China_800@agilent.com 在线询价: www.agilent.com/chem/erfq-cn

www.agilent.com

安捷伦对本资料可能存在的错误或由于提供、展示或使用本资料所造成的间接损失不承担 任何责任。

本文中的信息、说明和技术指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2015 2015 年 4 月 9 日,中国出版 5991-5667CHCN

Agilent Technologies