Abstract
Since the late nineteen eighties, phthalates have been under suspicion as a health risk for humans. From that time, official authorities in Europe, the US, China, and other countries have passed regulations for phthalates, especially in plastic toys. Many official methods are based on GC or GC/MS methods, but during the last decade LC and LC/MS methods were developed. This Application Note shows the development of an HPLC/UV method for nine phthalates using a phenyl-hexyl column and a ternary gradient. An Agilent 1290 Infinity Method Development Solution, in combination with an Agilent Method Scouting Wizard, was used for method development. For the final method precision of retention times and areas, limits of detection (LOD) and limits of quantitation (LOQ), as well as the linearity, was evaluated. Plastic material from a toy was analyzed, and the content of phthalates was determined. In addition, a fast UHPLC method was developed and compared to the high resolution method.
Introduction

Worldwide regulations have been set for allowable levels of phthalates in plastic toys\(^1\), municipal and waste water\(^2-4\), textiles\(^5\), and foods\(^6\). The 2005/84/EC1 directive lists six phthalates (Table 1) that need to be monitored when used as plasticizers in toys and childcare articles and must be \(\leq 0.1\%\) of the mass of the product. Even more strict regulations are under consideration\(^7\). DEHP, DBP, and BBP were classified as toxic to reproduction and the EU banned them especially from baby products. A replacement could be DIDP and DINP for example, which are until now not regarded as toxic, however, these softeners are also forbidden in baby products. DINP and DIDP seem to quickly spread in the environment and to enrich in organisms. For this reason, their entry into the environment should be prohibited. The German “Umwelt Bundesamt” proposed to replace all phthalate-containing materials, such as flexible PVC, little by little with phthalate-free materials, such as polyethylene and polypropylene, where it is possible\(^8\).

In the following, a HPLC/UV method was developed for nine phthalates, see Table 1. A phenyl-hexyl column and a C18 column were used for optimum separation. In addition, binary and ternary gradients using acetonitrile and methanol as organic phases were applied. The performance of the method was evaluated and a real-life sample was measured. In addition, the developed method was transferred to a fast UHPLC method.

Experimental

Instrumentation

<table>
<thead>
<tr>
<th>Instrumentation Description</th>
<th>Agilent 1290 Infinity Method Development Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Pump</td>
<td>G4204A</td>
</tr>
<tr>
<td>Autosampler</td>
<td>G4226A</td>
</tr>
<tr>
<td>ALS cooler</td>
<td>G1330B</td>
</tr>
<tr>
<td>Column 1 equipped with high pressure column switching valve</td>
<td>G1316C</td>
</tr>
<tr>
<td>Column 2 equipped with low pressure column switching valve</td>
<td>G1316C</td>
</tr>
<tr>
<td>Diode array detector</td>
<td>G4212A</td>
</tr>
<tr>
<td>Valve drives</td>
<td>G1353B</td>
</tr>
<tr>
<td>Method development kit</td>
<td>G4230B</td>
</tr>
<tr>
<td>Low dispersion capillary kit</td>
<td>G4212A</td>
</tr>
</tbody>
</table>
Sample preparation
A 0.05 g amount of the crushed polymer sample was dissolved in 5 mL of THF. Polymers were precipitated with 10 mL of methanol and cooled for 1 hour. When the polymers had settled, the solution was filtered through 0.45-μm Agilent Captiva Premium Syringe Filters (regenerated cellulose, p/n 5190-5111), evaporated, and then diluted with 500 μL acetonitrile.

<table>
<thead>
<tr>
<th>Chromatographic Conditions for Method Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounds</td>
</tr>
<tr>
<td>Column 1</td>
</tr>
<tr>
<td>Column 2</td>
</tr>
<tr>
<td>Mobile phases</td>
</tr>
<tr>
<td>Gradient 1</td>
</tr>
<tr>
<td>Gradient 2</td>
</tr>
<tr>
<td>Gradient 3</td>
</tr>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>Injection volume</td>
</tr>
<tr>
<td>Column temperature</td>
</tr>
<tr>
<td>Detection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromatographic Conditions for High-Resolution UHPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1</td>
</tr>
<tr>
<td>Mobile phases</td>
</tr>
<tr>
<td>Gradient</td>
</tr>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>Run time</td>
</tr>
<tr>
<td>Post time</td>
</tr>
<tr>
<td>Injection volume</td>
</tr>
<tr>
<td>Column temperature</td>
</tr>
<tr>
<td>Detection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromatographic Conditions for Fast UHPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1</td>
</tr>
<tr>
<td>Mobile phases</td>
</tr>
<tr>
<td>Gradient</td>
</tr>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>Run time</td>
</tr>
<tr>
<td>Post time</td>
</tr>
<tr>
<td>Injection volume</td>
</tr>
<tr>
<td>Column temperature</td>
</tr>
<tr>
<td>Detection</td>
</tr>
</tbody>
</table>
Analyzed compounds

Table 1. Analyzed samples.

<table>
<thead>
<tr>
<th>Name classification by EU</th>
<th>Abbreviation</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzylbenzoate suspected allergen</td>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Dimethylphthalate (EPA standard)</td>
<td>DMP</td>
<td></td>
</tr>
<tr>
<td>Butyl benzyl phthalate reprotoxic (EPA standard)</td>
<td>BBP</td>
<td></td>
</tr>
<tr>
<td>Dibutyl phthalate reprotoxic (EPA standard)</td>
<td>DBP</td>
<td></td>
</tr>
<tr>
<td>Di-n-octyl phthalate potential risk (EPA standard)</td>
<td>DNOP</td>
<td></td>
</tr>
<tr>
<td>Di-isodecyl phthalate potential risk</td>
<td>DIDP</td>
<td></td>
</tr>
<tr>
<td>Di-(2-ethylhexyl) phthalate reprotoxic</td>
<td>DEHP</td>
<td></td>
</tr>
<tr>
<td>Mono-methylphthalate (degradation product in urine)</td>
<td>MMP</td>
<td></td>
</tr>
</tbody>
</table>

The EPA Phthalate ester mix (48805-U), diisodecylphthalate (80135-10 mL) and monomethylphthalate (38926-250 mg) and Bezylenzoate (N11182-1g) were purchased from Sigma-Aldrich, Germany.
Spectra of analyzed compounds

Acquisition and evaluation software
Agilent OpenLAB CDS ChemStation
version C.01.05

Agilent Method Scouting Wizard version
A.02.02
Results and Discussion

The following workflow was used:

- Method development using different columns and different mobile phases
- Method validation of the final high resolution UHPLC method
- Analysis of real life sample
- Development of a fast UHPLC method
- Comparison of high resolution UHPLC versus fast UHPLC

Method development

Two columns of different selectivity, three gradients with either acetonitrile, methanol, or a combination of acetonitrile and methanol as organic phase were applied. The EPA standard with six compounds was analyzed in one vial. Two more vials containing the other compounds were tested the same way.

The method scouting was finished after 10.5 hours as each sample run took approximately 18 minutes. For more information about the 1290 Infinity Method Development Solution, see References 9,10. The best separation was obtained using the phenyl-hexyl column in combination with acetonitrile and methanol as organic phase (Figure 1).

Using the same chromatographic conditions, the C18 column provided less resolution for DEHP, DNOP, and DIDP. To further increase resolution and signal-to-noise, the phenyl-hexyl column with 3.5-µm particles was replaced by a phenyl-hexyl column with 1.8-µm particles (Figure 2). All other column dimensions were kept the same.

Resolution, peak width, and peak height were improved.
Method Performance

Based on experiments obtained on the phenyl-hexyl column with 1.8-µm particles, the following method performance parameters were evaluated (Tables 2 and 3):

- Precision of retention times
- Precision of areas
- Linearity
- LOD and LOQ

Table 2 shows the combined precision data for retention times and areas. The precision for retention times was typically < 0.01 % RSD. The precision for the areas was typically < 0.73 % RSD.

The LOD and LOQ was determined by injecting low-level amounts of phthalates (Figure 3).

Table 3 shows the combined results for LOD, LOQ, and resolution.
The linearity was evaluated by injecting 2,000, 500, 125, 31.25, 7.812, and 1.953 ng/µL of the EPA standard. Linearity was given from 7.8 up to 2,000 ng injected amount related to response factors, see the example in Figure 4. For all standards, the coefficient of correlation was > 0.99998.

Analysis of a real-life sample

The recovery rate was measured by spiking the plastic material of a toy with the EPA standard. The resulting theoretical concentration after sample preparation was 100 ng each for all six compounds (Figure 5). The recovery rate was between 66 and 76 %.

The analysis of plastic material from a baby toy showed that the phthalate concentration was far below the allowed limit of 0.1 % = 100 ng total, related to the extracted material of 0.05 g. (Figure 6). The standard contained the six EPA phthalates and the three additional compounds MMP, BB, and DIDP.

The presence of DIDP was affirmed. The DIDP spectrum of the UV library did not comply with the peak spectrum of the sample at the same time.
Transfer to a fast UHPLC method

The developed high resolution UHPLC method took approximately 18 minutes cycle time, which enabled the analysis of samples with high resolution and high precision. In some cases, it was advantageous to get results faster, for example, for fast screening of a bulk of samples. To reduce cycle time, the length of the column was halved and the flow rate was doubled. The internal diameter was reduced to 2.1 mm by using a ZORBAX RRHD Phenyl Hexyl column, which allows backpressures up to 1,200 bars. At 2 mL/min flow rate, the maximum pressure for the fast UHPLC analysis, was approximately 1,100 bar. The cycle time was reduced to 4.5 minutes (Figure 7).

Injecting the spiked matrix showed that identification and quantitation was possible also applying the fast UHPLC condition (Figure 8).
Comparison of High-Resolution UHPLC and Fast UHPLC

The shortened cycle time of 4.5 minutes is advantageous if fast screening is the most important analysis requirement. As expected, the performance of the fast UHPLC method was not as good as the high resolution UHPLC method (Figures 9 and 10).

The resolution for the high resolution UHPLC method was, on average, 60% better than the fast UHPLC method.

Precision of retention times was a factor 10 better, on average, for the high resolution method, but for the fast analysis, the maximum SD value was 0.00868 minutes. This means the retention time standard deviation was as small as 0.52 seconds, for example, for peak BB eluting at 1.938 minutes. The precision of areas was comparable for the well-resolved peaks except for DEHP and DNOP.

Figure 9. Comparison of resolution.

Figure 10. Comparison of precision.
Conclusion

Six restricted EPA phthalates, DMP, DEP, BBP, DBP, DEHP, and DNOP, plus MMP, BB, and DIDP were analyzed using an UHPLC/UV method, which provided a separation within an 18-minute cycle time. A phenyl-hexyl column and a ternary gradient using acetonitrile and methanol as organic phases had to be used for optimum separation. Method development was done using the 1290 Infinity Quaternary Method Development Solution in combination with the Method Scouting Wizard. The performance of the final high resolution UHPLC method of 18 minutes was evaluated, and a real-life sample was measured. The determination of 0.1 % of any restricted EPA phthalate of the mass of the product was feasible with high precision. For identification, UV spectra stored in a spectral library were used in addition to retention times. In addition, a fast screening method was developed with cycle times as low as 4.5 minutes.
References

www.agilent.com/chem/1200mds

This information is subject to change without notice.

© Agilent Technologies, Inc., 2013
Published in the USA, September 1, 2013
5991-2784EN