

Extraction of Acidic Compounds From Human Plasma Using Plexa PAX

Application Note

Drug Discovery

Author

William Hudson Agilent Technologies, Inc. 25200 Commercentre Drive Lake Forest, CA 92630 USA

Introduction

A significant number of bioanalytical compounds in the pharmaceutical industry are basic and can easily be extracted using hydrophobic or cation exchange sorbents. However, lipid lowering statins and anti-inflammatory drugs tend to be acidic in nature. These compounds can be problematic using traditional hydrophobic exchange sorbents. A new suitable polymeric strong anion exchange material is now available.

A simple generic method was developed for acidic compounds using Plexa PAX. Method performance was evaluated by measuring analyte recoveries from the sorbent bed, linearity of extracted sample responses, and accuracy and precision of spiked plasma samples.

Because the method validation process is time consuming and requires high quality data, Solid Phase Extraction (SPE) methods that are fast, while producing good recoveries with high reproducibility are desirable. Method validation can be simplified and shortened to the extent that the SPE process is streamlined without compromising data integrity. The Bond Elut Plexa family minimizes method development with general-purpose methods and improves analytical sensitivity and reproducibility.

Materials and Methods

SPE Reagents and Solutions

 $2\% \ NH_4OH$ Add 20 μL of concentrated (28-30%)

NH₄OH to 1 mL of DI water

5% Formic Acid MeOH Add 0.050 mL of formic acid to

1 mL of methanol

Plexa PAX 30 mg 96 well plate (p/n A4967030)

SPE Method

Plexa PAX (30 mg)

Sample $100 \, \mu L$ human plasma Pretreatment Dilute 1:3 with 2% NH_4OH

Conditioning 1. 500 µL MeOH

2. 500 μL H₂O

Washes 1. 500 μ L H₂0

2. 500 µL MeOH

Elution 500 µL 5% Formic Acid MeOH

All samples evaporated to dryness and reconstituted in 100 μ L of 80:20 5 mM aqueous ammonium formate: CH₂OH.

LC/MS performed on an Agilent 325 LC-MS/MS - vESI,

LC conditions

Mobile Phase A: 5 mM Ammonium Formate

B: Methanol

Gradient t = 0 - 50% A : 50% B

t = 2:0 - 2:59 min 20% A : 90% Bt = 3:0 - 4:00 min 50% A : 50% B

Column Pursuit XRs Diphenyl 2.0×50 mm, $3 \mu m$

MS conditions

Compound	LogP	PKa	
Atorvastatin	5.7	4.5	
Diclofenac	4.2	4.2	
Furosemide	1.5	4.7	
Ketoprofen	3.2	5.2	
Pravastatin	2.6	4.6	
Compound	Q1	03	CE
Acetylsalicylic acid	136.0	136.0	5.0 V
Atorvastatin	557.4	397.0	30.0 V
Diclofenac	293.7	249.6	10.5 V
Furosemide	328.8	284.7	13.0 V
Ketoprofen	252.7	208.7	7.0 V
Pravastatin	423.3	320.1	13.0 V
Capillary Dry gas Temp Vortex Gas Nebulizing Gas CID Pol	41 V 285 °C, 30 psi 300 °C, 20 psi 50 psi Argon Negative		

Results and Discussion

Analyte recoveries

Analyte recoveries were determined by measuring analyte response compared to a spiked mobile phase standard. Any loss of analyte due to extraction inefficiency, ion suppression, or non-elution is measured in the recovery. Despite some of the recoveries being in the 50 to 60% range the responses are linear as demonstrated by the good curve linearity and accuracy of the method. Reproducible recoveries were achieved at better than 50% with RSDs less than 7% (Table 1).

Good linearity is achieved from 0.5 ng/mL to 200 ng/mL (Figure 2). A midpoint concentration of 50 ng/mL was chosen to measure the extract accuracy of the calibration curve (Table 2).

Figure 1. Sample chromatograms of 50 ng/mL extracts from human plasma.

Table 1. Analyte Recoveries

	PAX		
	% Rec	RSD (n=6)	
Atrovastatin	62%	4.4%	
Diclofenac	52%	3.7%	
Furosemide	96%	6.1%	
Ketoprofen	67%	2.3%	
Pravastatin	95%	3.4%	

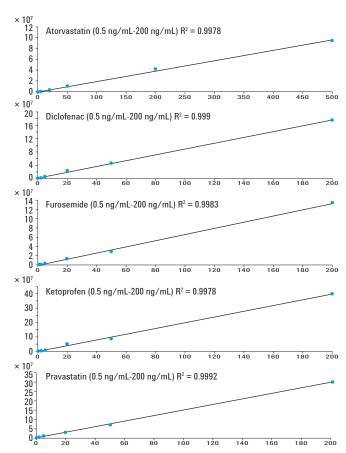


Figure 2. Calibration curves.

Table 2. Accuracies

	0.5 ng/mL		50 ng/mL		
	Accuracy	RSD (n=8)	Accuracy	RSD (n=8)	
Atorvastatin	90%	11%	106%	11%	
Diclofenac	116%	14%	109%	6%	
Furosemide	99%	14%	95%	9%	
Ketoprofen	104%	13%	108%	4%	
Pravastatin	108%	9%	96%	8%	

Conclusion

A simple, easy, method for extracting acidic compounds using Plexa PAX was developed. Good recoveries for all compounds was achieved and these recoveries were linear over a range of 0.5 – 200 ng/mL in human plasma. The calibration was linear achieving correlation coefficients better than 0.995 for a single order regression. The method demonstrated accuracy and reproducibility with most results within 10% of the true value and RSDs below 15% for all compounds.

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2011 Printed in the USA September 23, 2011 5990-9027EN

