应用顶空 GC/MSD 测定环境中的挥发性化合物

应用简报

摘要

采用安捷伦顶空挥发物分析仪 SP1 7890-0567，对环境水体中的挥发性有机化合物进行了测定。所有化合物都符合欧盟 98/83/EC 指令中报告要求的限值规定。本研究对 0.10ppb~20ppb 浓度范围的标准溶液进行了标准曲线的绘制，对曲线最低浓度点进行了再现性测定，RSD<10%。大多数化合物峰形完美，早流出化合物的峰形也在可接受的范围内。

前言

吹扫捕集 (P&T) 或者顶空 (HS) 进样 GC/MS 检测是挥发性有机化合物 (VOC) 分析的主要手段。

P&T 在许多美国 EPA 方法中普遍采用，也有其他国家和机构使用。5ml 或者 25ml 水中的有机物被彻底萃取，从而使吹扫捕集具有非常好的灵敏度。挥发性化合物被富集到预装有吸附剂的捕集阱中，然后被反吹进入气相色谱。P&T 由于水分残留的影响，峰形会变差，灵敏度降低。硬件构造也远比 HS 复杂，需要优化大量的参数，吹扫过程中样品还可能形成泡沫。

顶空萃取是水中挥发物分析更直接的方法。一般通过加热操作，有些样品还要加入盐以加速平衡，迫使密封样品瓶中的被测组分化合物进入到样品上方的空气。然后采集样品上方的气体，一部分经样品环进入气相色谱。HS 萃取带入 GC 的水分要少得多，也不需要调整那么多的参数，实施起来简单方便。

使用选择离子监测 (SIM)，顶空分析可以实现 ppt 级的检测灵敏度。SIM 广泛应用于目标化合物分析。当前仪器快速的电子元件使 SIM/scan 可同时进行，并能为两种模式都采集足够多的数据。目标化合物可以通过 SIM 鉴定，而其他化合物可以通过 scan 检测。

本研究详细阐述了使用 HS-GC/MSD 分析仪测定水中的环境挥发物，考察了方法的校准曲线、定量限、重现性以及峰形。本研究主要以 K. Jacq 等人的前期工作为基础。[1]
分析仪介绍

本研究使用的主要仪器是安捷伦环境挥发物分析仪 SP1 7890-0567，其硬件和软件均事先经过工厂配置和测试。该系统由一台安捷伦 7697A 顶空自动进样器、一台安捷伦 7890A 气相色谱和一台 5975C 质量选择检测器组成。系统配有保留时间锁定功能，在抵达终端用户前，先期进行了校验样品测试。研究所用的 63 种化合物的 SIM 采集表和校准表来源于 369 种化合物的 G1678AA Solvents+ 数据库/谱库 (DBL)。同时采集所有 369 种化合物的 SIM 数据是不现实的，也没有任何方法需要这样做。SIM 数据可用于定量，scan 数据用于目标物和非目标物的解卷积和鉴定。分析仪配有解卷积报告软件 (DRS) 和 Solvents+ DRS DBL，实验室可以从 SIM 表中添加或删除化合物，也可以根据 scan 信号通过 DRS 搜索所有其他的化合物。

实验部分

推荐使用的仪器参数如表 1 所示。这些起始条件可能需要优化。

<table>
<thead>
<tr>
<th>表 1. 顶空、气相色谱和质谱条件</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>6C</strong></td>
</tr>
<tr>
<td>进样口</td>
</tr>
<tr>
<td>模式</td>
</tr>
<tr>
<td>加热</td>
</tr>
<tr>
<td>压力</td>
</tr>
<tr>
<td>总流量</td>
</tr>
<tr>
<td>隔垫吹扫流量</td>
</tr>
<tr>
<td>运行时间</td>
</tr>
<tr>
<td>停气装置</td>
</tr>
<tr>
<td>分流比</td>
</tr>
<tr>
<td>分流流量</td>
</tr>
<tr>
<td>冷却装置</td>
</tr>
<tr>
<td>分流/分流/分流</td>
</tr>
<tr>
<td>柱箱</td>
</tr>
<tr>
<td>柱箱升温</td>
</tr>
<tr>
<td>升温 1</td>
</tr>
<tr>
<td>总运行时间</td>
</tr>
<tr>
<td>平衡时间</td>
</tr>
<tr>
<td>柱箱最高温度</td>
</tr>
<tr>
<td>备选柱箱升温</td>
</tr>
<tr>
<td>升温 1</td>
</tr>
<tr>
<td>升温 2</td>
</tr>
</tbody>
</table>

色谱柱

安捷伦 DB 5 MS UI，部件号：122-5533 UI

长度 | 30.0 m |
直径 | 0.25 mm |
膜厚 | 1.0 µm |
模式 | 恒压 |
压力 | 8.4261 psi |
标称初始化流量 | 1.1506 mL/min |
进样口 | 前样口 |
出口 | MSD |
出口压力 | 真空 |

RTL

顶空进样器

安捷伦 7697A，111 位样品瓶

样品瓶温度 | 85 °C |
平衡时间 | 15 min |
样品瓶加压 | 10 psi |
样品瓶降压 | 4 psi |
样品环容量 | 1.0 mL |
样品环温度 | 85 °C |
萃取时间 | 0.3 min |
模式 | 单次萃取 |
传输管流量 | > 20 mL/min |
传输管温度 | 120 °C |
传输管 | Silcotek 熔融石英毛细管，内径 530 µm |
样品瓶规格 | 20 mL 部件号：5182-0837 |
样品瓶盖 | 铝制，PTFE/硅胶密封垫，部件号：5183-4477 |

MSD

安捷伦 5975C，三轴检测器可进行质量离子检测 (TID)

拉出极 longevity | 3 mm 标准光圈 |
溶剂延迟 | 0.0 min |
SIM 离子组 | 18 |
SIM 离子 | 4 - 18 离子 / 组 |
SIM 驻留 | 15-25 ms / 离子 |
低质量数扫描 | 29 amu |
高质量数扫描 | 275 amu |
阈值 | 5 |
取样 | 1 |
四极杆温度 | 180 °C |
离子源温度 | 300 °C |
传输线温度 | 250 °C |
调谐 | 自动调整 |
EMV 模式 | 增益系数 = 1 |

校正标准品和保留时间锁定标准品

保留时间锁定混合标样 —— 20 种化合物的正丙醇溶液。每个化合物浓度 500ppm。包括保留时间锁定化合物甲苯-d8，定制的混合标样可直接从美国罗德岛州 North Kingstown 的 Ultra Scientific 公司购买，部件号 11237，将此混合 标用甲醇稀释 10 倍，向 10 mL 水中加入 10µL 稀释液，运行 8 次。

校正混合标样 —— 3 种标准品的甲醇溶液，每标准品浓度 为 2000ppm，稀释成浓度为 20，0.2，0.5，0.1 和 0.02 ppm 的系列标准溶液。向 10 mL 水中加入 10µL系列标准溶液，得到浓度为 20，0.2，0.5，0.1 和 0.02 ppm 的系列溶液用于生成校准曲线。54 种挥发性有机物，部件号 DWM-598N；6 种气体，部件号 DWM-544；3 种 IS/SS 化合物，部件号 STM-320N 均来自美国罗德岛州 North Kingstown 的 Ultra Scientific 公司。
分流进样有足够的气流冲洗样品环并能在短时间内将化合物输送到色谱柱。20:1 的分流比在最大程度上减少水分进入色谱柱的同时可保证足够的灵敏度。更小的分流比，如 10:1，虽然可获得更好的灵敏度，但会对来自流出气的信号造成影响。分流比低于 10:1 的时候，因为水分进入到色谱柱和 40°C 下分析物不易凝聚，对峰形有较大影响。

无玻璃棉 1.0mm 的直形衬管在 20:1 的分流比下可获得最佳峰形。填充玻璃棉和不填充玻璃棉的 2mm 和 4mm 衬管都会造成晚期峰的峰形变差。传输线穿过进样口隔垫 35mm 与衬管相连，将衬管翻转放置以便熔融石英毛细管准确插入到衬管中。色谱柱高垫圈 15mm。大于通常的距离，插入衬管底端。

进样口上部的插入焊件用 7890A S/SL MMI 顶空焊件（部件号 G3521A）代替，这样无需再费力将传输线和载气管线连接。隔垫吹扫管线依然保留，载气管线直接从进样口 EPC 模块到顶空进样器中。

使用和 RTL Solvents+ DBL，G1678AA一致的柱箱升温程序。柱箱初始温度设为 40°C。因为很多实验室由于较高的环境温度，无法将柱箱温度降到更低的水平。对那些可以降至更低温度的实验室，还提供另一套柱箱升温程序。柱箱初始温度 32°C 时，早出峰的气体可获得更好的峰形，虽然当柱箱温度 40°C 时，其峰形也可接受。保留时间保持不变，如果只分析这里报告的 63 种化合物，可将柱箱最高温度降至 210°C，缩短运行时间。

使用和 RTL Solvents+ DBL，G1678AA一致的 30 m × 0.25 mm × 1.0 μm DB 5MS UI 超高烯性色谱柱，温度上限为 325°C。过去的实验室曾使用DB624 色谱柱，其上限温度为 260–280°C。DB624 对早出峰化合物能提供更好的峰形。DB 5MS UI 和其他色谱柱一起，用于半挥发性有机物的分析。双色谱柱配置进行挥发性和半挥发性有机物的分析可通过安捷伦 3 合 1 环境分析仪 SPI 7890-0568 实现。

甲苯-D8 的保留时间锁定为 6.900 min。对色谱柱进行切割后，只须运行并分析一次保留时间锁定的化合物即可恢复漂移的出峰时间。SIM 化合物组的采集时间，定量库数据和积分参数甚至不需做任何更改。保留时间锁定功能，尤其在使用解卷积报告软件 (DRS) 和全扫描数据的情况下使化合物的定性更容易。了解更多有关保留时间锁定 (RTL) 的应用及其优势的详细信息，请访问 www.agilent.com/chem/cn。

顶空瓶温度为 85°C，平衡 15min，在此条件下，可获得分析必需的灵敏度和校准范围。样品瓶压力设为 10 psi。比单独加热产生的压力略高，这样可使稀释程度最小化。

使用标准的 3mm 拉出极透镜，可确保最佳的灵敏度和在 0.02–20 ppb 校准范围内足够的线性。

化合物选取参考 US EPA 524。很多 EU 方法也采用这些化合物。63 种化合物的定量数据库来源于 369 化合物的 Solvents DBL。使用 AutoSim Setup 建立初始 SIM 采集表，为优化定性结果和缩短循环时间，每个化合物设定 2-3 个离子进行采集。

将三种市售的 2000ppm 标准品共同稀释制成混标系列甲醇溶液，向 10 mL 水中各加入 10 μL 配校准系列水溶液。其中，20ppm 的最高浓度甲醇溶液能保存几天，所有其他浓度均需当天配置，以便最早的化合物获得良好的重现性。

标准系列甲醇溶液浓度为 20, 2, 0.2, 0.5, 0.1 和 0.02 ppm，最终的校准系列水溶液浓度为 20, 2, 0.2, 0.5, 0.1 和 0.02 ppb。IS/SS 化合物仅用于系统的性能监测。研究使用外标法 ESTD，比内标法 ISTD 更易暴露系统的性能问题。氟苯或者甲苯-D8 均可用于内标法。

保留时间锁定混标不需要校准。该 20 种化合物的混合标样只用于每天的保留时间锁定检查，以确保整个仪器系统的性能。

结果

SIM 离子的总离子图 (TIC) 如图 1 所示。SIM 化合物组别编号可参考表 2。饮用水中所有 63 种分析物均在 18min 内出峰。

多级浓度校准的 %RSD 如表 2 所示。表中的 %RSD 是根据从 0.10 ppb 到 20 ppb 5 个校准浓度的响应因子计算而得的。所有 63 种化合物中，61 个化合物的 %RSD 小于 10%，剩下的 2 个化合物 (**) 二氯己烷和萘的 %RSD 为 14%。这是由实验室污染造成的，尤其在最低校准浓度 0.1ppb 时非常明显。研究同样还运行了第 6 个浓度 0.02ppb (20 ppt)。标识 ** 的化合物 %RSD 仍为个位数。63 种化合物的平均 %RSD 为 3%，结果令人满意。
图 1. 200 ppt. 不同组别 SIM 化合物的 TIC 谱图

表 2. 不同化合物 5 个校准系列 SIM 分析的 %RSD 列表

<table>
<thead>
<tr>
<th>化合物</th>
<th>保留时间</th>
<th>CAS 编号</th>
<th>%RSD</th>
<th>目标离子</th>
<th>特征离子 Q1</th>
<th>特征离子 Q2</th>
<th>组别</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td>1.687</td>
<td>75718</td>
<td>5</td>
<td>85</td>
<td>87</td>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>氯甲烷</td>
<td>1.784</td>
<td>74873</td>
<td>6</td>
<td>50</td>
<td>52</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>氯乙烯</td>
<td>1.874</td>
<td>75014</td>
<td>8</td>
<td>62</td>
<td>64</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>溴代甲烷</td>
<td>2.074</td>
<td>74839</td>
<td>6</td>
<td>94</td>
<td>96</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>氟代乙烯</td>
<td>2.145</td>
<td>75003</td>
<td>7</td>
<td>64</td>
<td>66</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td>2.404</td>
<td>75694</td>
<td>4</td>
<td>101</td>
<td>103</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td>1,1二氟乙烯</td>
<td>2.715</td>
<td>75354</td>
<td>6</td>
<td>*</td>
<td>61</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>2.884</td>
<td>75092</td>
<td>14</td>
<td>49</td>
<td>84</td>
<td>86</td>
<td>2</td>
</tr>
<tr>
<td>1,2二氯乙烯（反式）</td>
<td>3.279</td>
<td>156605</td>
<td>4</td>
<td>*</td>
<td>96</td>
<td>98</td>
<td>63</td>
</tr>
<tr>
<td>1,1二氯乙烯</td>
<td>3.456</td>
<td>75343</td>
<td>5</td>
<td>63</td>
<td>65</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>1,2二氯乙烯（顺式）</td>
<td>3.856</td>
<td>156592</td>
<td>6</td>
<td>*</td>
<td>61</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>2,2二氯丙烷</td>
<td>3.985</td>
<td>75093</td>
<td>2</td>
<td>77</td>
<td>41</td>
<td>79</td>
<td>4</td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>4.064</td>
<td>74975</td>
<td>7</td>
<td>*</td>
<td>130</td>
<td>49</td>
<td>128</td>
</tr>
<tr>
<td>氯仿</td>
<td>4.124</td>
<td>67663</td>
<td>2</td>
<td>*</td>
<td>83</td>
<td>85</td>
<td>47</td>
</tr>
<tr>
<td>1,1,1三氯乙烯</td>
<td>4.528</td>
<td>71556</td>
<td>1</td>
<td>*</td>
<td>97</td>
<td>99</td>
<td>61</td>
</tr>
<tr>
<td>1,2二氯乙烯</td>
<td>4.636</td>
<td>10706</td>
<td>1</td>
<td>62</td>
<td>64</td>
<td>63</td>
<td>5</td>
</tr>
<tr>
<td>1,1二氯丙烯</td>
<td>4.679</td>
<td>56358</td>
<td>1</td>
<td>*</td>
<td>75</td>
<td>39</td>
<td>110</td>
</tr>
<tr>
<td>苯</td>
<td>4.828</td>
<td>71432</td>
<td>3</td>
<td>*</td>
<td>78</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>4.851</td>
<td>56235</td>
<td>2</td>
<td>*</td>
<td>117</td>
<td>119</td>
<td>121</td>
</tr>
<tr>
<td>氟苯 [surr]</td>
<td>5.061</td>
<td>462066</td>
<td>2</td>
<td>*</td>
<td>96</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>三氯丙烯</td>
<td>5.545</td>
<td>79016</td>
<td>4</td>
<td>*</td>
<td>95</td>
<td>130</td>
<td>132</td>
</tr>
<tr>
<td>1,2二氯丙烷</td>
<td>5.602</td>
<td>78875</td>
<td>2</td>
<td>63</td>
<td>64</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>溴甲烷</td>
<td>5.650</td>
<td>74953</td>
<td>2</td>
<td>*</td>
<td>174</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>5.803</td>
<td>75274</td>
<td>4</td>
<td>*</td>
<td>83</td>
<td>85</td>
<td>47</td>
</tr>
<tr>
<td>香环式,1,3二氯丙烯</td>
<td>6.338</td>
<td>10061015</td>
<td>3</td>
<td>*</td>
<td>75</td>
<td>39</td>
<td>77</td>
</tr>
</tbody>
</table>

（续）
### 表 2. 不同化合物 5 个校准系列 SIM 分析的 %RSD 列表

<table>
<thead>
<tr>
<th>化合物</th>
<th>保留时间</th>
<th>CAS 编号</th>
<th>%RSD</th>
<th>目标离子</th>
<th>特征离子 Q1</th>
<th>特征离子 Q2</th>
<th>SIM 组别</th>
</tr>
</thead>
<tbody>
<tr>
<td>反式-1,3二氯丙烯</td>
<td>6.881</td>
<td>10061026</td>
<td>4</td>
<td>*</td>
<td>75</td>
<td>39</td>
<td>77</td>
</tr>
<tr>
<td>甲苯</td>
<td>6.971</td>
<td>108883</td>
<td>5</td>
<td></td>
<td>91</td>
<td>92</td>
<td>65</td>
</tr>
<tr>
<td>1,1,2三氯乙烯</td>
<td>7.140</td>
<td>79005</td>
<td>2</td>
<td>*</td>
<td>97</td>
<td>83</td>
<td>99</td>
</tr>
<tr>
<td>1,3二氯丙烷</td>
<td>7.330</td>
<td>142289</td>
<td>3</td>
<td>*</td>
<td>76</td>
<td>41</td>
<td>78</td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>7.735</td>
<td>124841</td>
<td>3</td>
<td>*</td>
<td>127</td>
<td>129</td>
<td>131</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>7.833</td>
<td>127184</td>
<td>1</td>
<td>*</td>
<td>166</td>
<td>164</td>
<td>129</td>
</tr>
<tr>
<td>1,2二氯乙烷</td>
<td>7.962</td>
<td>106934</td>
<td>5</td>
<td>*</td>
<td>107</td>
<td>109</td>
<td>79</td>
</tr>
<tr>
<td>氯苯</td>
<td>8.731</td>
<td>108807</td>
<td>3</td>
<td></td>
<td>112</td>
<td>77</td>
<td>114</td>
</tr>
<tr>
<td>1,1,1,2四氯乙烯</td>
<td>8.927</td>
<td>630206</td>
<td>3</td>
<td></td>
<td>131</td>
<td>133</td>
<td>117</td>
</tr>
<tr>
<td>乙苯</td>
<td>8.992</td>
<td>100414</td>
<td>2</td>
<td></td>
<td>91</td>
<td>106</td>
<td>51</td>
</tr>
<tr>
<td>2-二甲苯</td>
<td>9.186</td>
<td>108363</td>
<td>1</td>
<td></td>
<td>91</td>
<td>106</td>
<td>105</td>
</tr>
<tr>
<td>对二甲苯</td>
<td>9.186</td>
<td>102443</td>
<td>1</td>
<td></td>
<td>91</td>
<td>106</td>
<td>105</td>
</tr>
<tr>
<td>苯乙酸</td>
<td>9.650</td>
<td>100425</td>
<td>3</td>
<td></td>
<td>104</td>
<td>103</td>
<td>78</td>
</tr>
<tr>
<td>邻二甲苯</td>
<td>9.685</td>
<td>95476</td>
<td>2</td>
<td>*</td>
<td>91</td>
<td>106</td>
<td>105</td>
</tr>
<tr>
<td>溴仿</td>
<td>9.749</td>
<td>75252</td>
<td>2</td>
<td>*</td>
<td>173</td>
<td>171</td>
<td>175</td>
</tr>
<tr>
<td>1,1,2,2四氯乙烯</td>
<td>10.158</td>
<td>79335</td>
<td>9</td>
<td>*</td>
<td>83</td>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>异丙苯</td>
<td>10.308</td>
<td>98828</td>
<td>2</td>
<td>*</td>
<td>105</td>
<td>120</td>
<td>77</td>
</tr>
<tr>
<td>1,2,3三氯丙烷</td>
<td>10.316</td>
<td>96184</td>
<td>2</td>
<td>*</td>
<td>75</td>
<td>77</td>
<td>110</td>
</tr>
<tr>
<td>4-溴氟苯(surr)</td>
<td>10.414</td>
<td>460004</td>
<td>2</td>
<td></td>
<td>95</td>
<td>174</td>
<td>176</td>
</tr>
<tr>
<td>泛</td>
<td>10.601</td>
<td>108861</td>
<td>4</td>
<td></td>
<td>77</td>
<td>156</td>
<td>158</td>
</tr>
<tr>
<td>n-丙苯</td>
<td>10.938</td>
<td>103651</td>
<td>2</td>
<td>*</td>
<td>120</td>
<td>92</td>
<td>65</td>
</tr>
<tr>
<td>2-氟甲苯</td>
<td>10.966</td>
<td>95498</td>
<td>1</td>
<td>*</td>
<td>126</td>
<td>89</td>
<td>63</td>
</tr>
<tr>
<td>4-氟甲苯</td>
<td>11.096</td>
<td>106434</td>
<td>3</td>
<td>*</td>
<td>91</td>
<td>126</td>
<td>125</td>
</tr>
<tr>
<td>1,3,5三甲基苯</td>
<td>11.224</td>
<td>108678</td>
<td>3</td>
<td>*</td>
<td>105</td>
<td>120</td>
<td>77</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>11.717</td>
<td>980066</td>
<td>2</td>
<td>*</td>
<td>119</td>
<td>91</td>
<td>134</td>
</tr>
<tr>
<td>1,2,4三甲基苯</td>
<td>11.767</td>
<td>95636</td>
<td>3</td>
<td>*</td>
<td>105</td>
<td>120</td>
<td>77</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>12.082</td>
<td>135888</td>
<td>1</td>
<td>*</td>
<td>105</td>
<td>134</td>
<td>91</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>12.107</td>
<td>541731</td>
<td>1</td>
<td>*</td>
<td>146</td>
<td>148</td>
<td>111</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td>12.280</td>
<td>106467</td>
<td>2</td>
<td>*</td>
<td>146</td>
<td>148</td>
<td>111</td>
</tr>
<tr>
<td>对异丙基苯</td>
<td>12.350</td>
<td>998786</td>
<td>3</td>
<td>*</td>
<td>119</td>
<td>134</td>
<td>91</td>
</tr>
<tr>
<td>1,2-二氯苯-d4</td>
<td>12.648</td>
<td>2196961</td>
<td>1</td>
<td>*</td>
<td>150</td>
<td>152</td>
<td>115</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>12.887</td>
<td>955010</td>
<td>2</td>
<td>*</td>
<td>146</td>
<td>148</td>
<td>111</td>
</tr>
<tr>
<td>n-丁基苯</td>
<td>12.967</td>
<td>105158</td>
<td>3</td>
<td>*</td>
<td>91</td>
<td>92</td>
<td>134</td>
</tr>
<tr>
<td>1,2-二溴-3-氯丙烷</td>
<td>13.734</td>
<td>961283</td>
<td>4</td>
<td></td>
<td>157</td>
<td>75</td>
<td>155</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>15.431</td>
<td>120821</td>
<td>4</td>
<td></td>
<td>180</td>
<td>182</td>
<td>145</td>
</tr>
<tr>
<td>丙</td>
<td>15.694</td>
<td>91203</td>
<td>10</td>
<td></td>
<td>128</td>
<td>127</td>
<td>129</td>
</tr>
<tr>
<td>间二甲苯</td>
<td>15.956</td>
<td>87683</td>
<td>2</td>
<td>*</td>
<td>226</td>
<td>227</td>
<td>223</td>
</tr>
<tr>
<td>1,2,3三氯苯</td>
<td>16.070</td>
<td>87616</td>
<td>4</td>
<td>*</td>
<td>180</td>
<td>182</td>
<td>145</td>
</tr>
</tbody>
</table>

* 加入第 6 个浓度点 0.02 ppb，%RSD 仍小于 10% 的化合物
** 这两个化合物低浓度下受背景干扰较大，%RSD 较高
EC 化合物和气体的报告浓度列于图 2。一些实验室希望定量限 (LOQ) 要低于规定限值的 3 倍，校准浓度最低点为 0.10 ppb，因此完全能满足这些要求。表中未列出三卤甲烷，因为其总量限值为 100 ppb，很容易检出。

1. 该 LOQ 并非 EC 规定，而是一些实验室的期望值。文中采用的校准浓度可轻易满足此要求。

<table>
<thead>
<tr>
<th>% RSD</th>
<th>校准范围 (ppb)</th>
<th>EC 限值 (ppb)</th>
<th>期望 LOQ (1) (ppb)</th>
<th>校准浓度系列</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.629</td>
<td>二氯二氟甲烷</td>
<td>5 0.10–20</td>
<td>– 5</td>
<td>–</td>
</tr>
<tr>
<td>1.723</td>
<td>三氯甲烷</td>
<td>6 0.10–20</td>
<td>– – 5</td>
<td>–</td>
</tr>
<tr>
<td>1.815</td>
<td>氯乙烯</td>
<td>8 0.10–20</td>
<td>0.5 0.15</td>
<td>5</td>
</tr>
<tr>
<td>2.022</td>
<td>溴代甲烷</td>
<td>6 0.10–20</td>
<td>– – 5</td>
<td>–</td>
</tr>
<tr>
<td>2.091</td>
<td>氯代乙烷</td>
<td>7 0.10–20</td>
<td>– – 5</td>
<td>–</td>
</tr>
<tr>
<td>2.356</td>
<td>三氯氟甲烷</td>
<td>4 0.10–20</td>
<td>– – 5</td>
<td>–</td>
</tr>
<tr>
<td>4.643</td>
<td>1,2二氯乙烷</td>
<td>1 0.10–20</td>
<td>3.0 0.9</td>
<td>5</td>
</tr>
<tr>
<td>4.828</td>
<td>苯</td>
<td>3 0.02–20</td>
<td>1.0 0.3</td>
<td>6</td>
</tr>
<tr>
<td>5.552</td>
<td>三氯乙烯</td>
<td>4 0.02–20</td>
<td>10.0 3.0</td>
<td>6</td>
</tr>
<tr>
<td>7.851</td>
<td>四氯乙烯</td>
<td>3 0.02–20</td>
<td>10.0 3.0</td>
<td>6</td>
</tr>
</tbody>
</table>

图 2. EC 化合物和气体的线性和校准结果

图 3 为 EC 指定化合物的再现性结果。对 0.1 ppb 的标准品进行了 7 次重复测定，%RSD 值均小于 10%。表中最后一列为目标离子的平均信噪比 (S/N)。这些数据说明，系统在非常低的浓度下，仍然具有非常好的重现性。

图 4. 四种选定化合物的 SIM 定量离子谱图

图 5 为自来水的 SIM TIC 图。对四种三卤甲烷进行了定量，其浓度具有代表性。通过 SIM 未检测出其他 60 种化合物。此数据文件通过 SIM/scan 采集，全扫描数据通过 DRS 处理。DRS 报告显示未检出 369 Solvents+ DBL 中的其他化合物。
结论

安捷伦顶空挥发物分析仪 SP1 78900567 可以满足欧盟指令 98/83/EC 的要求，对水中的挥发物进行分析。所有化合物在校准浓度 0.10 ppb 到 20 ppb 范围内均具有优异的重现性。最低校准浓度下的 %RSD< 10%。大多数化合物峰形完美。实验室可获得低于报告限值 3 倍的定量限。

参考文献


更多信息

有关我们产品和服务的更多信息，请访问
www.agilent.com/chem/cn.