

作者

Junichi Takahashi

安捷伦科技公司

日本东京

利用 7700s/7900 ICP-MS 直接分析 高纯度盐酸中的痕量金属杂质

应用简报 ^{半导体分析}

摘要

本应用简报展示了 Agilent 7700s/7900 ICP-MS 在直接测定高纯度盐 酸 (HCl) 中金属杂质方面的卓越分析性能与稳定性。7700s/7900 采 用可有效去除多原子干扰的八极杆反应池系统 (ORS),使受到严重氯 类干扰的元素达到最终的检测限要求。例如,ORS 可去除多原子离 子 ⁴⁰Ar³⁵Cl⁺,使 As 可在质量数 75 处得到直接测量,从而准确分析未 稀释浓 HCl 中的痕量 As。直接分析浓酸省略了样品前处理流程中的 稀释步骤,从而大大降低样品污染的可能性。

前言

盐酸常用于去除硅片表面的金属杂质,搭配使用的 还有过氧化氢,这种清洗方法被称为 RCA 标准清 洗 2 (SC-2)。制造半导体器件时,需要对 HCI 中 的污染物进行常规监测,ICP-MS 就是普遍采用 的一种监测工具。尽管在用于 SC-2 方法前会对 HCI 进行稀释,但工业级 HCI 的浓度通常为 20% 或 35%,具体取决于生产方法。HCI 具有极高的腐 蚀性,因此通常要避免将浓 HCl 直接引入 ICP-MS 中。此外,引入高浓度 HCI 还将在 ICP 中形成大 量多原子离子,对一些关键目标元素产生显著的 光谱干扰,如 H₂³⁷Cl⁺ 对 ³⁹K⁺、³⁵Cl¹⁶O⁺ 对 ⁵¹V⁺、 ³⁵Cl¹⁶OH⁺ 对 ⁵²Cr⁺、³⁵Cl³⁷Cl⁺ 对 ⁷²Ge⁺、³⁷Cl₂⁺ 对 ⁷⁴Ge⁺ 以及 ⁴⁰Ar³⁵Cl⁺ 对 ⁷⁵As⁺ 的干扰。因此,一些使 用 ICP-MS 分析高纯 HCI 的方法推荐在样品前处理 步骤中去除氯基质,但这样又会导致分析物的损失 和样品污染。而 Agilent 7700s/7900 ICP-MS 采用 稳定的耐腐蚀材料制成,意味着可直接测量未经稀 释的 HCI, 同时 ORS 可显著改善多原子离子的去 除效率,使多种元素可在低于以往的检测限下得到 测定。

实验部分

仪器

整个实验中使用配备标准碰撞气体(氦气)、反应 气体(氢气)管线以及可选的第三个池气体质量流 量控制器的 Agilent 7700s ICP-MS。某些特殊应用 需要使用可选池气体管线,其中包括为达到最佳干 扰去除效果而需采用高反应活性池气体(如氨气) 的分析。使用标准 7700s ICP-MS 样品引入系统, 该系统配备铂采样锥、铂截取锥、PFA 雾化器和石 英炬管。

材料和试剂

高纯度盐酸 TAMAPURE-AA100 (20%) 购自日本 TAMA Chemicals。将未经稀释的 HCI 直接引入 ICP-MS 可省略样品前处理步骤,从而大大降低样 品污染的可能性。

向酸空白中加入 10、20、50、100 ppt 的混合多 元素标样 (SPEX Certiprep),制得校准标样溶液。

结果与讨论

检测限和背景等效浓度

使用在多种调谐模式下运行的 Agilent 7700s ICP-MS 对 42 种元素进行测量。在样品瓶的单次进样过程 中,按照冷等离子体、无气体和气体模式的自动化 序列采集数据。样品间的分析时间约为 6 分钟。 每种模式的数据将自动合并到每个样品的单个报 告中。检测限 (DL) 和背景等效浓度 (BEC) 如表 1 所示。DL 根据酸空白 10 次测量结果的 3σ 值计算 得出。

元素	m/z	模式	DL (ppt)	BEC (ppt)
Li	7	冷等离子体	0.016	0.004
Ве	9	无气体	0.13	0.11
В	11	无气体	4.5	9.7
Na	23	冷等离子体	0.44	1.3
Mg	24	冷等离子体	0.11	0.22
Al	27	冷等离子体	0.79	1.1
К	39	冷等离子体/NH₃	0.40	0.50
Са	40	冷等离子体/NH₃	1.1	2
ті	48	He	0.71	0.68
V	51	NH ₃	2.1	2.0
Cr	52	冷等离子体/He	4.5	12
Mn	55	He	1.57	2.84
Fe	56	冷等离子体	2.4	4.2
Со	59	He	0.20	0.13
Ni	60	He	3.03	4.43
Cu	63	冷等离子体	0.49	0.59
Zn	64	Не	2.1	2.9
Ga	71	Не	0.47	0.31
Ge	74	Не	2.1	13
As	75	Не	4.0	16
Se	78	Не	5	5.5
Sr	88	Не	0.21	0.061
Zr	90	Не	0.11	0.03
Nb	93	Не	0.34	0.43
Мо	98	Не	0.52	0.67
Ru	101	Не	0.05	0.01
Pd	105	He	0.57	0.51
Ag	107	He	0.056	0.033
Cd	114	He	0.41	0.52
Sb	121	He	2	2.8
Те	125	Не	5.4	1.1
Ва	138	Не	0.076	0.067
Hf	178	He	0.06	0.015
W	182	Не	0.094	0.13
Re	185	He	0.49	0.54
Ir	193	He	0.1	0.07
Au	197	Не	0.15	0.4
ТΙ	205	He	0.054	0.024
Pb	208	Не	0.37	0.56
Bi	209	Не	0.44	0.33
Th	232	He	0.01	0.003
U	238	He	0.032	0.013

表 1. 由 20% 高纯度 HCl 获得的 Agilent 7700s ICP-MS 的 DL 和 BEC

Cr 和 K 测定

冷等离子体是一种成熟的技术,用于消除基于等离 子体的干扰。虽然冷等离子体技术已经在很大程度 上被碰撞反应池 (CRC) 方法取代,但其仍然是对 某些基质中的某些元素最有效的分析模式。此外, Agilent 7700s/7900 ICP-MS 提供增强的冷等离子 体运行模式,使用新型频率匹配 RF 发生器提高可 靠性和稳定性。近期将冷等离子体与 ORS 结合形 成的新模式展现出强大的干扰去除能力^[1]。

由于铬的主要同位素 (⁵²Cr⁺) 会受到 ³⁵Cl¹⁶O¹H⁺ 的 干扰,因此采用冷等离子体和 He 模式测定铬。 ClOH⁺ 离子具有 11 eV 的高电离势 (I.P.),因此采用 冷等离子体 (低等离子体 RF 功率) 时,该离子的 产生会受到抑制^[2]。为进一步提高分析效率,将 He 模式与冷等离子体条件相结合,以完全消除剩余的 所有 ³⁵Cl¹⁶OH⁺ 离子。由此得到的 ⁵²Cr 校准曲线如 图 1 所示。

图 1. 使用 He 模式和冷等离子体得到的 52Cr 校准曲线

结合采用 ORS 和冷等离子体的方法对钾等其他元 素同样有效。为抑制 $H_2^{37}Cl^+$ 对 ³⁹K⁺ 的干扰,选择 氨作为池气体,与冷等离子体结合使用。尽管只有 极个别情况需要用到这类高反应活性的池气体, 但还是有一些情况下使用这种气体能获得最低的 DL。在质量数 39 处对 K 产生强烈干扰的 $H_2^{37}Cl^+$ 与 H_2 的反应活性并不高,因此 H_2 池模式无法充分 去除干扰,故无法使最高纯度 HCI 达到最低 DL。 在 K 校准曲线(如图 2 所示)中,K 在未稀释 (20%) HCI 中的 BEC 为 0.5 ppt,DL 为 0.4 ppt,表 明使用这种新采集模式可有效去除 $H_2^{37}Cl^+$ 的干扰。

图 2. 使用 NH₃ 模式和冷等离子体得到的 ³⁹K 校准曲线

Ge 和 As 的测定

Agilent 7700s/7900 ICP-MS 的 ORS 利用具有动 能歧视 (KED) 的 He 模式增强了对多原子干扰的去 除能力,同时促进了对结合能力相对较弱的多原子 离子的碰撞诱导解离 (CID)。

锗主要具有质量数分别为 70、72、74 u 的 3 种同 位素,这些同位素分别会受到 ³⁵Cl³⁵Cl⁺、³⁵Cl³⁷Cl⁺、 ³⁷Cl³⁷Cl⁺ 这三种 Cl 类多原子的干扰。由于 Cl₂⁺ 的 离解能约为 4 eV(³⁵Cl³⁵Cl⁺ 为 3.95 eV)^[3],而上 一代 ORS 在 He 模式下仅能产生 0.9 eV 的碰撞能 量,因此 Cl₂⁺ 不太可能发生碰撞诱导解离。相比之 下,新一代 ORS 的碰撞能量提升到 5 eV,可促进 包括 Cl₂⁺ 在内的若干种多原子离子发生碰撞诱导解 离。配备 ORS 的 7700s 在高能量 He 模式下的运 行性能如图 3 所示,图中显示出 20% HCl 基质中 的⁷⁴Ge 的校准曲线、DL 和 BEC。


```
图 3. 使用高能量 He 模式获得的 <sup>74</sup>Ge 的校准曲线
```

砷在 m/z 75 处具有单一同位素,而此处可受到氯 基质中极易形成的多原子离子⁴⁰Ar³⁵Cl⁺的干扰,使 低浓度的⁷⁵As 难以在质量数 75 处得到直接测定。 将 As 作为 91 u 处的 AsO⁺ 离子形式间接测量,以 避免 ArCl 对 As 的干扰,在 CRC 中采用等离子条 件或使用 O₂ 池气体即可生成 AsO⁺。后一种方法 采用的是热等离子体条件,但在质量数 91 处测量 As 时,仍会受到采用 O₂ 池气体时由 CaCl⁺ 形成的 CaClO⁺ 的干扰。此外,AsO⁺ 在质量数 91 处会受到 同质异位素 ⁹¹Zr⁺ 的干扰,而在冷等离子体条件下不 会出现这种情况,因为 Zr 在冷等离子条件下不会发 生电离。但对 Cl⁺ 而言,7700s/7900 ORS 的 He 模 式下碰撞能量更高,意味着 ArCl⁺ 离子也可由 CID 解 离。这一特征使 20% HCI 中的低浓度 As 可直接在 75 u 下得到测定,无需使用冷等离子体和 O₂ 池气 体。图 4 显示了 20% HCI 中 As 的典型校准曲线。

图 4. 使用高能量 He 模式获得的 ⁷⁵As 的校准曲线

V 测定

使用 NH₃ 作为池气体时,也可消除 ³⁵Cl¹⁶O⁺ 对 ⁵¹V⁺ 的干扰,但需在常规热等离子体条件 (1600 W) 下。ORS 更大的碰撞能量提升了反应效率,同时 显著改善了 DL 和 BEC, 如图 5 所示。

结论

安捷伦 ICP-MS 系统用于分析浓 HCI 中的痕量金属杂 质已有多年历史。如今,拥有卓越冷等离子体性能 和 ORS 碰撞/反应池的 Agilent 7700s/7900 ICP-MS 进一步提升了高纯度酸分析的检测限。ORS 最多 可配备 3 根气体管线(其中 2 根为标准管线),为 碰撞模式和反应模式提供了充分的灵活性。ORS 池通过提升碰撞模式和反应模式的效率改善了几种 关键元素的性能,增强了 CID 对某些多原子离子 的离解能力。这些进步使现在可在比以往低得多的 浓度下测定氯基质中的几种元素,如 Cr、K、Ge、 As、V。

参考文献

1. Takahashi J.; Mizobuchi K. Use of Collision Reaction Cell under Cool Plasma Conditions in ICP-MS, Asia Pacific Winter Conference on Plasma Spectroscopy, 2008

2. Colbourne, D., Frost, D.C., McDowell, C.A., Westwood, N.P.C., *J. Chem.Phys.*, **1978**, 68, 3574

3. Huber, K. P. and Herzberg, G., *Constants of Diatomic Molecules*, Van Nostrand Reinhold Co., 1979

查找当地的安捷伦客户中心:

www.agilent.com/chem/contactus-cn

免费专线: 800-820-3278,400-820-3278(手机用户)

> 联系我们: LSCA-China_800@agilent.com

在线询价: www.agilent.com/chem/erfq-cn

www.agilent.com

安捷伦对本资料可能存在的错误或由于提供、 展示或使用本资料所造成的间接损失不承担任何责任。

本资料中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2017 2017年10月2日,中国出版 出版号:5990-7354ZHCN

Agilent Technologies