Screening for 926 Pesticides and Endocrine Disruptors by GC/MS with Deconvolution Reporting Software and a New Pesticide Library

Application Note

Food and Environmental

Authors

Philip L. Wylie
Agilent Technologies, Inc.
2850 Centerville Rd.
Wilmington, DE 19808-1610
USA

Abstract

An updated and greatly expanded collection of mass spectral libraries has been introduced, replacing Agilent’s RTL Pesticide Library and DRS pesticide solution. The new library contains 926 pesticides, endocrine disruptors, and related compounds – 359 more than the original library. Included are all compounds specified for GC/MS analysis in the new Japanese “Positive List” regulations. All compounds have locked retention times that can be accurately reproduced using an Agilent GC/MS system with the ChemStation’s Retention Time Locking software. The new Database can be used as a standard GC/MS library for compound identification or with Agilent’s Screener software for identifications based upon retention time and mass spectral matching. The greatest benefit accrues when these libraries are used with Agilent’s new version of Deconvolution Reporting Software (part number G1716AA version A.03.00). This solution allows one to screen GC/MS files for all 926 pesticides and endocrine disrupters in about two minutes per sample. Deconvolution helps identify pesticides that are buried in the chromatogram by co-extracted materials. The new database was compared to the smaller one for the DRS analysis of 17 surface water samples. With the new database, DRS found 99 pesticides, metabolites, fire retardants, and related contaminants that were not contained in the original RTL Pesticide and Endocrine Disruptor Library.

Introduction

Several years ago Agilent Technologies introduced Retention Time Locking (RTL) for gas chromatography (GC) and GC with mass spectral detection (GC/MS). RTL software makes it possible to reproduce retention times from run-to-run on any Agilent GC or GC/MS, in any laboratory in the world, so long as the same nominal method and GC column are used (1). Since any laboratory can reproduce retention times generated in another, it is possible to create mass spectral libraries that contain locked retention times. By locking their method to the published database, users can screen GC/MS files for all of the library’s compounds. “Hits” are required to have the correct retention time as well as the correct spectrum, which eliminates many false positives and gives more confidence in compound identifications (2).
More recently, Agilent introduced Deconvolution Reporting Software (DRS) that incorporates mass spectral deconvolution with conventional library searching and quantification. DRS results from a marriage of three different GC/MS software packages:

1) The Agilent GC/MS ChemStation,
2) The National Institute of Standards and Technology (NIST) Mass Spectral Search Program with the NIST ‘05 MS Library, and
3) The Automated Mass Spectral Deconvolution and Identification System (AMDIS) software, also from NIST.

The original DRS software was intended to be a comprehensive solution for pesticide analysis and, therefore, included the mass spectra (in AMDIS format) and locked retention times for 567 pesticides and suspected endocrine disrupters (3).

Recently, Agilent introduced an updated and greatly expanded Pesticide and Endocrine Disruptor Database (part number G1672AA) that now contains 926 entries. This represents the addition of 359 new compounds to the original library. At the same time, Agilent introduced a new version of the DRS software (part number G1716AA version A.03.00) that can be used with any Agilent-provided or user-developed DRS library.

Pesticide and Endocrine Disruptor Database Contents

The G1672AA Pesticide and Endocrine Disruptor Database contains virtually all GC-able pesticides, including those introduced very recently. In addition, the database includes numerous metabolites, more endocrine disruptors, important PCBs and PAHs, certain dyes (for example, Sudan Red), synthetic musk compounds, and several organophosphorus fire retardants.

This new database includes:
- A conventional mass spectral library for use with Agilent GC/MS ChemStations
- A screener database for use with Agilent’s powerful screener software that is integrated into the GC/MS ChemStation
- Locked Retention Times for all 926 compounds that any Agilent 5975 or 5973 GC/MS user can reproduce in their laboratory
- Files for use with Agilent’s G1716AA (A.03.00) Deconvolution Reporting Software
- An e-method that can be loaded into Agilent’s G1701DA (version D.02.00 SP1 or higher) with instrument parameters for acquiring GC/MS files and analyzing the data with DRS. These parameters are listed in Table 1.
- Example files
- Application notes

On November 29, 2005, the Japanese Government published a “Positive List” system for the regulation of pesticides, feed additives, and veterinary drugs. Maximum Residue Limits (MRL) have been set for 758 chemicals while 65 others have been exempted from regulation. Fifteen substances must have no detectable residues. Other agricultural chemicals not mentioned have a uniform MRL of 0.01 ppm (4). This new regulation is scheduled to take effect on May 29, 2006.

Of the pesticides in the Japanese Positive List, 265 are to be analyzed by GC/MS. The new G1672AA Pesticide library contains mass spectra and locked retention times for all of these compounds. Thus, a laboratory could screen for all 265 “positive list” compounds and several hundred more pesticides in just 1–3 minutes after the GC/MS run.

Experimental

Table 1 lists the instrumentation, software, and analytical parameters used by Agilent for pesticide analysis. Depending upon the desired injection volume, a PTV inlet or split/splitless inlet can be used.
Results and Discussion

DRS, which has been described in preceding papers (3,5,6), can be summarized as follows:

Three separate, but complimentary, data analysis steps are combined into the DRS. First, the GC/MS ChemStation software performs a normal quantitative analysis for target pesticides using a target ion and up to three qualifiers. An amount is reported for all calibrated compounds that are detected. For other compounds in the database, an estimate of their concentration can be reported based upon an average pesticide response factor that is supplied with the DRS software. The DRS then sends the data file to AMDIS, which deconvolutes the spectra and searches the Agilent RTL Pesticide Library using the deconvoluted full spectra. A filter can be set in AMDIS, which requires the analyte’s retention time to fall within a user-specified time window. Because RTL is used to reproduce the RTL database retention times with high precision, this window can be quite small – typically 10–20 seconds. Finally, the deconvoluted spectra for all of the targets found by AMDIS are searched against the 147,000-compound NIST mass spectral library for confirmation; for this step, there is no retention time requirement.
This approach was rapidly adopted by many laboratories because of its ability to identify pesticides in complex chromatograms containing high levels of co-extracted interferences. Indeed, the solution proved to be so useful that users began to create their own DRS libraries (7). Therefore, the DRS was unbundled from the pesticide database so that it could be used with any agilent-provided or user-created database.

The original 567-compound RTL Pesticide Library (G1049A) included pesticides, a few metabolites, and most of the GC-amenable endocrine disruptors that were known at the time. The new version of the library includes many more pesticides, endocrine disruptors, and metabolites. This update also contains important compounds from other classes of contaminants that have been found in food and water supplies. Included are eighteen polychlorinated biphenyls (PCBs), four polybrominated biphenyls (PBBs), several polynuclear aromatic hydrocarbons (PAHs), several organophosphorus fire retardants, three important toxaphene congeners, and three Sudan dyes.

Advantages of Deconvolution

Figure 1 shows a screen from AMDIS that illustrates the power of this deconvolution software. The white trace in Figure 1A is the total ion chromatogram while the other three are extracted ions of a deconvoluted peak (a “component” in AMDIS terminology). Note that the TIC and extracted ions are not scaled to each other and this component is actually obscured by co-eluting compounds. Figure 1B juxtaposes the deconvoluted component spectrum (white) with the complete “undeconvoluted” spectrum (black). Clearly, this component is buried under co-eluting peaks that would ordinarily obscure the analyte. Figure 1C shows that the deconvoluted peak (white spectrum) is a good library match for norflurazon (black spectrum). The locked retention time for norflurazon in the RTL Pesticide Database is 26.933 min, which is just 2.3 seconds away from its observed RT in this chromatogram. Confidence in peak identifications is greatly enhanced by the combination of spectral deconvolution and locked retention time filtering.

![Figure 1](image.png)

Figure 1. AMDIS screen showing the identification of norflurazon.
A) The total ion and extracted ion chromatograms where norflurazon elutes.
B) The deconvoluted component spectrum (white) juxtaposed with the spectrum at 26.972 min (black).
C) The deconvoluted component matched to the library spectrum of norflurazon.
Surface Water Analysis - Revisiting an Earlier Study

In an earlier study, a comparison was made between Agilent’s DRS and conventional pesticide analysis (3). The California Department of Food and Agriculture (CDFA) provided data files for 17 surface water extracts that had been analyzed in their laboratory. Since the GC/MS chromatograms were locked to the Agilent pesticide method, it was possible to analyze these data files using DRS without having to re-run the samples. The original DRS analysis was made using the 567-compound RTL Pesticide Database. For comparison, these same data files were re-analyzed using the new 926-compound RTL Pesticide Database. The chromatogram (Figure 2) and the DRS report (Figure 3) from one of these samples are shown below.

Excluding phthalates, seven new compounds (shown with bold type in Figure 3) were identified using the 926-compound database: 4-chlorophenyl isocyanate (a phenylurea herbicide metabolite); 3,4-dichlorophenyl isocyanate (diuron metabolite); tris(2-chloroethyl) phosphate (a fire retardant); caffeine (a stimulant); Cyprodinil (a fungicide); desmethyl-norflurazon (a metabolite of norflurazon, an herbicide); and tris(2-butoxyethyl) phosphate (a fire retardant). Although caffeine is not generally considered to be dangerous, it is included in the database because it has been found frequently in sewage effluent and in numerous waterways together with a various pharmaceuticals and pesticides (8).

Figure 2. Chromatogram of a surface water extract that was analyzed by DRS using the new RTL Pesticide and Endocrine Disrupter Database. The results of this analysis are shown in Figure 3.
Figure 3. DRS report from the analysis of a surface water sample. The compounds shown in bold type were found by the new RTL Pesticide Database but not the original one because these compounds were not included.
For this sample, the ChemStation identified only tolyltriazole at 8.941 min, but AMDIS did not confirm this assignment, nor could it be confirmed manually. Butylated hydroxyanisole was tentatively identified by AMDIS with a low match value, but the retention time is off by ~7.7 seconds which is considerably more than most other hits. This compound is not in the NIST library so it could not be confirmed. The ChemStation method used for this analysis required that all three qualifier ions fall within ±20% (relative) which is a rigorous requirement for such a complex sample. This explains why so few compounds were found by the ChemStation.

Cyprodinil (20.563 min) was identified by AMDIS but the NIST library search failed to confirm its presence. The next line shows that the best NIST library match is an anthracene derivative that is nothing like cyprodinil. This result was obtained when AMDIS was configured to “use uncertain peaks” as shown in Figure 4. When this feature is turned off in DRS Compound Identification Configuration, the best NIST library hit for this spectrum is, indeed, cyprodinil. When a compound's identity is ambiguous, as with cyprodinil, it may be useful to perform the DRS search both ways and compare the results.

In the comparison described earlier (3), DRS was able to identify all 37 pesticides found by the CDFA chemist. However, DRS completed the task for all 17 samples in about 20 minutes compared to ~8 hours for the manual procedure (Table 2). Moreover, DRS identified one false positive in the CDFA report and found 34 additional pesticides and related compounds.

Using the new 926-compound Database, it took 32 minutes to analyze all of the samples and DRS was able to find an additional 99 pesticides, metabolites, fire retardants, and related compounds (Table 2).

Figure 4. DRS configuration screen for the method called Tri_Pest. When the box labeled “Use Uncertain Peaks” is checked, AMDIS will use uncertain peaks for library searches. When unchecked, AMDIS ignores uncertain mass spectral peaks. Sometimes, this can affect the quality of a library match.
Handling Stereoisomers

Many pesticides have multiple stereoisomers with virtually identical mass spectra. For example, cyfluthrin has four diastereomers arising from its three chiral centers. It is very difficult and sometimes impossible to determine the elution order of these isomers and most analysts report them as a sum of the isomer amounts. Agilent’s G1049A RTL Pesticide database arbitrarily assigned each isomer a Roman numeral with I for the earliest eluting isomer, II for the next, and so on. The same Chemical Abstracts Service number (CAS #) was assigned to all of the isomers. Generally, it was a CAS # for the compound with “unstated stereochemistry.” This caused some incompatibility with AMDIS as explained below.

AMDIS software differentiates among compounds using a “chemical identification number.” The easiest and most consistent approach is to use each compound’s CAS #. The default setting for AMDIS is to allow each CAS # to be used only once when analyzing a GC/MS data file. While this seems logical, it requires that each database entry have a different CAS #. It is possible to allow multiple hits per compound by checking the box in AMDIS found in the drop down menu under Analyze/ Settings/Identif. However, this allows multiple peaks to be assigned the same compound name.

In the new RTL Pesticide Database (G1672AA), the Roman numeral designations remain and the first isomer in the series is given its genuine CAS #. Subsequent isomers in the series are given unique, but fictitious “CAS #s” generated by Agilent. The compound’s real CAS # appears in braces after the compound name. For example, the cyfluthrin isomers are entered into the database as shown in Table 3.

| Table 2. Comparison of the Results Obtained by Screening 17 Surface Water Extracts Using Traditional Methods (CDFA) and Using DRS With Two Different Databases – the G1049A With 567 Compounds and the G1672AA With 926 Entries |
|---------------------------------|---------------------------------|---------------------------------|
| CDFA | Agilent DRS (Original G1049A database) | Agilent DRS (G1672 AA database) |
| Targets found (not counting ISTD) | 37 | Same 37 | Same 37 |
| False positives | 1 | 0 | 0 |
| Processing time ~8 hrs (ChemStation only) | 20 minutes | 32 min |

Handling Stereoisomers

Many pesticides have multiple stereoisomers with virtually identical mass spectra. For example, cyfluthrin has four diastereomers arising from its three chiral centers. It is very difficult and sometimes impossible to determine the elution order of these isomers and most analysts report them as a sum of the isomer amounts. Agilent’s G1049A RTL Pesticide database arbitrarily assigned each isomer a Roman numeral with I for the earliest eluting isomer, II for the next, and so on. The same Chemical Abstracts Service number (CAS #) was assigned to all of the isomers. Generally, it was a CAS # for the compound with “unstated stereochemistry.” This caused some incompatibility with AMDIS as explained below.

AMDIS software differentiates among compounds using a “chemical identification number.” The easiest and most consistent approach is to use each compound’s CAS #. The default setting for AMDIS is to allow each CAS # to be used only once when analyzing a GC/MS data file. While this seems logical, it requires that each database entry have a different CAS #. It is possible to allow multiple hits per compound by checking the box in AMDIS found in the drop down menu under Analyze/ Settings/Identif. However, this allows multiple peaks to be assigned the same compound name.

In the new RTL Pesticide Database (G1672AA), the Roman numeral designations remain and the first isomer in the series is given its genuine CAS #. Subsequent isomers in the series are given unique, but fictitious “CAS #s” generated by Agilent. The compound’s real CAS # appears in braces after the compound name. For example, the cyfluthrin isomers are entered into the database as shown in Table 3.

| Table 3. Method for Listing Compounds with Multiple Stereoisomers in the New G1672AA RTL Pesticide Database |
|---|---------------------------------|-----------------|
| RT | Compound name* | CAS #** |
| 32.218 | Cyfluthrin I | 68359-37-5 |
| 32.359 | Cyfluthrin II (CAS # 68359-37-5)| 999028-03-4 |
| 32.477 | Cyfluthrin III (CAS # 68359-37-5)| 999029-03-7 |
| 32.536 | Cyfluthrin IV (CAS # 68359-37-5) | 999030-03-4 |

* In a series, the earliest eluting isomer is identified with “I” and is assigned its legitimate CAS #. Subsequent isomers are assigned unique, but fictitious CAS #s (see footnote **). Their actual CAS # is put in braces behind the compound name.

** Cyfluthrin I has been given it’s genuine CAS #. Cyfluthrin II-IV have been given unique numbers that can be distinguished from actual CAS numbers because they all have six digits before the first hyphen (8 total) and all begin with the series 999.
Figure 5 shows how permethrin was identified in a spinach sample using both databases with AMDIS configured to allow one hit per compound. Using the older 567-compound database (G1049A) only one permethrin isomer was identified because its CAS # could be used only once. With the new format used in the 926-compound RTL Pesticide Database (G1672AA), both isomers of permethrin were identified. Not surprisingly, the NIST library search found no hits with the same fictitious CAS # assigned to permethrin II. So, the software printed the best match on the following line. This compound, a cyclopropanecarboxylic acid derivative, is a permethrin isomer.

So long as the NIST library search is turned on in DRS, it will always print another line after reporting a compound with a fictitious CAS #. Note that these fictitious CAS #s always contain 9 digits and begin with 999.

A)

<table>
<thead>
<tr>
<th>RT</th>
<th>Cas #</th>
<th>Compound name</th>
<th>Agilent</th>
<th>NIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.6158</td>
<td>52645531</td>
<td>Permethrin II</td>
<td>ChemStation amount (ng) 88</td>
<td>RT Diff (sec.) 3.9</td>
</tr>
</tbody>
</table>

B)

<table>
<thead>
<tr>
<th>RT</th>
<th>Cas #</th>
<th>Compound name</th>
<th>Agilent</th>
<th>NIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.4127</td>
<td>52645531</td>
<td>Permethrin I (CAS # 52645-53-1)</td>
<td>ChemStation amount (ng) 78</td>
<td>RT Diff (sec.) 2.6</td>
</tr>
<tr>
<td>31.6088</td>
<td>999046036</td>
<td>Permethrin II (CAS # 52645-53-1)</td>
<td>65</td>
<td>3.5</td>
</tr>
<tr>
<td>31.6088</td>
<td>51877748</td>
<td>Cyclopropanecarboxylic acid. 3-(2,2-dichlorovinyl)-2,2-dimethyl- (3-phenoxyphenyl)methyl ester, (1R-trans)-</td>
<td>65</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Figure 5.
A) A single isomer of permethrin was identified by DRS using the G1049A 567-compound database when AMDIS was not allowed to use multiple hits per compound.
B) Two permethrin isomers are identified by DRS with the G1672AA 926-compound database under the same circumstances.
Conclusions

The new G1672AA RTL Pesticide and Endocrine Disruptor library contains substantially more target analytes than its predecessor. With the addition of 359 new compounds, it is the most comprehensive library of its type available today. Many new pesticides, metabolites, and endocrine disruptors were added along with important PCBs, PBBs, PAHs, synthetic musk compounds, Sudan dyes, and organophosphorus fire retardants. The database contains all of the analytes specified for GC/MS analysis in the new Japanese “Positive List” regulations.

When combined with the complete DRS solution, one can screen GC/MS data files for all 926 compounds in about two minutes per sample. This is the fastest, most comprehensive, most accurate, and least tedious method for screening food and environmental samples for these compounds.

References

6. C. Lesueur and M. Gartner, “Routine Identification and Quantification of Pesticide Multi-residues in Fruit and Vegetable Samples with Full Scan, SIM, and Deconvolution Reporting Software,” 2005 Ernährung/Nutrition, 29 (11) 466–471

For More Information

For more information on our products and services, visit our Web site at www.agilent.com/chem.

Acknowledgments

The author wishes to thank Dr. G. Kempe of the Landesuntersuchungsanstalt Sachsen, Institut, Chemnitz, Germany for his help in acquiring much of the data for this library update. The author also thanks Dr. Mark Lee and Mr. Steve Siegel of the California Department of Food and Agriculture for providing the surface water extract data files.
Appendix A

Lists of Compounds in Databases

1,2,4-Trichlorobenzene
1,2-Dibromo-3-chloropropane
1,3,5-Tribromobenzene
1,3-Dichlorobenzene
17a-Ethylenestradiol
1-naphthalenol
2-(1-naphthyl)acetamide
2-(2-Butoxyethoxy)ethyl thiocyanate
2-(Octylthio)ethanol
2,3,4,5-Tetrachloronitrobenzene
2,3,4,5-Tetrachlorophenol
2,3,4,6-Tetrachlorophenol
2,3,5,6-Tetrachlorophenol
2,3,5,6-Tetrachloro-p-terphenyl
2,3,5-Trichlorophenol
2,3,5-Trichloroaniline
2,3,5-Tribromoanisole
2,3,7,8-Tetrachlorodibenzofuran
2,3,7,8-Tetrachlorodibenzo-p-dioxin
2,4,5,6-Tetrachloro-m-xylene
2,4,5-T methyl ester
2,4,5-Trichloroaniline
2,4,5-Trichlorophenol
2,4,5-Trichloro-p-terphenyl
2,4,5-Trimethylaniine
2,4,6-Trichloroanisole
2,4,6-Trichloroaniline
2,4,6-Trichlorophenol
2,4,6-Trichlorophenol
2,4,6-Trichloroanisole
2,4,6-D methyl ester
2,4,6-D sec-butyl ester
2,4,6-DB methyl ester
2,4,6'-Dichlorobenzophenone (2,4'-Dicofol decomposition product)
2,4-Dichlorophenol
2,4-Dichlorophenyl benzenesulfonate
2,4-Dimethylaniline
2,4-Dimethylbenzamide
2,4-Dimethylphenol
2,4-Dichlorobenzonitrile
2,6-Dimethylaniline
2-[3-Chlorophenoxy]propionamide
2-Chlorobenzene
2-Ethyl-1,3-hexanediol
2-ethyl-6-methylaniline
2-Hydroxyestradiol
2-Methyl-4,6-dinitrophenol
2-Methylphenol
2-Nitrophenol
2-Phenoxycetic acid
3,4,5-Trimethacarb
3,4-Dichloroaniline
3,5-Dichloroaniline
3-Chloroaniline
3-Chloro-4-fluoroaniline
3-Chloro-4-methoxyaniline
3-Chloroaniline
3-Hydroxycarbofuran
3-Indolyacetophenone
3-Trifluormethylaniline
4,4'-Dichlorobenzophenone
4,4'-Oxidianiline
4,6-Dinitro-o- cresol (DNOC)
4-Aminodiphenyl
4-Bromoaniline
4-Chloro-2-methylaniline
4-Chloro-3-methylphenol
4-Chloroaniline
4-Chlorophenyl isocyanate
4-Isopropylaniline
4-Methylphenol
4-Nitrophenol
4-Nonylphenol
5,7-Dihydroxy-4'-methoxyisoflavone
9,10-Anthraquinone
Acenaphthene
Acenaphthylene
Acephate
Acequinocyl
acetamiprid
Acetochlor
Acifluorfen methyl ester
Aclonifen
Acrinathrin
Alachlor
Aldrin
Allidochlor
Ametryn
Amidathion
Aminocarb
Amitraz
Amitraz metabolite [Methanimidamide, N- (2,4-dimethylphenyl)-N'-methyl-]
Ancyclidol
Anilazine
Aniline
Anilofos
Anthracene
Aramid I
Aramid II (CAS # 140-57-8)
Atratone
Atrazone
Atrazine-desethyl
Azaconazole
Azamethiphen
Azibenzolar-S-methyl
Azinphos-ethyl
Azinphos-methyl
Aziprotryne metabolite [2-Amino-4-isopropylamino-6-methylthio-1,3,5-triazine]
Aziprotryne
Azobenzene
Azoxystrobin
Barban
Beflubutamid
Benalaxyl
Benazolin-ethyl
Bendiocarb
Benfluralin
Benfuracarb
Benfuresate
Benodanil
Benoxacor
Bentazone
Bentazone methyl derivative
Benthiocarb
Benzene, 1,3-bis(bromomethyl)-
Benzenesulfonamide
Benzidine
Benzo(a)anthracene
Benzo(a)pyrene
Benzo[b]fluoranthene
Benzo[g,h,i]perylene
Benzo[k]fluoranthene
Benzophenone
Benzoximate metabolite
Benzoylprop ethyl
Benzyl benzoate
b-Estradiol
BHC alpha isomer
BHC beta isomer
BHC delta isomer
BHC epsilon isomer
Bifenazate metabolite
(5-Phenyl-o-anisidine)
Bifenox
Bifenthrin
Binapacryl
Bioallethrin
Bioallethrin S-cyclopentenyl isomer
Bioresmethrin
Biphenyl
Bis(2,3,3,3-tetrachloropropyl) ether
Bis(2-butoxyethyl) phthalate
Bis(2-ethylhexyl)phthalate
Bisphenol A
Bitertanol I
Bitertanol II (CAS # 55179-31-2)
Boscalid (Nicobifen)
Bromacil
Bromfenvinphos-(E)
Bromfenvinphos-(Z)
Bromobutide
Bromochlorpropamid
Bromocyclen
Bromothalonil
Bromophos
Bromoprop ethyl
Buprofezin
Butachlor
Butafenacil
Butamifos
Butoxycarboxim
Butyl benzyl phthalate
Butylate
Butylated hydroxyanisole
Cadusafos
Cafenstrole
Caffeine
Captan
Captfol
Carbaryl
Carbetamide
Carbofuran
Carbophenothion
Carbosulfan
Carboxin
Carfentrazone-ethyl
Carproamid
Carvone
Cashmeran
Cekafix
Celestolide
Chinomethionat
Chloramben methyl ester
Chloranocryl
Chlorbenside
Chlorbenside sulfone
Chlorbicyclen
Chlorbromuron
Chlorbufam
Chlordecone
Chlordene, trans-
Chlordimeform
Chlorethoxyfos
Chlortefen
Chlorfenapyr
Chlorfenameth
Chlorfenprop-methyl
Chlorfenosan
Chlorfenprop
Chlorfenprop-methyl
Chlorfenprop methyl ether
Chlorfenprop-methyl
Chlorfenvinphos
Chlorfenvinphos, cis-
Chlorfenvinphos, trans-
Chlorfurecol-methyl ester
Chlormefos
Chlormitrofen
Chlorobenzilate
Chloroneb
Chloropropylate
Chlorothalonil
Chlorotoluron
Chlorpropham
Chlorpyrifos
Chlorpyrifos Methyl
Chlorthal-dimethyl
Chlorthiamid
Chlorthion
Chlorthiophos
Chlorthiophos sulfone
Chlorthiophos sulfoxide
Chlozoline
Chrysene
Cinerin I
Cinerin II
Cinidin-ethyl
cis-Chlordane
Clodinafop-propargyl
Clofazone
Cloonitetoc-mexyl
Coumaphos
Crimidine
Crotoxyphos
Crufomate
Cyanazine
Cyanofenphos
Cyanophos
Cyclafuramid
Cycloate
Cyclopentadecanone
Cycluron
EPN
Epoxiconazole
EPTC
Erbon
Esfenvalerate
Esprocarb
Etaconazole
Ethalfuralin
Ethidimuron
Ethiofencarb
Ethiolate
Ethion
Ethofenprox
Ethofumesate
Ethofumesate, 2-Keto
Ethoprophos
Ethoxyfen-ethyl
Ethoxyquin
Ethylendiethiourea
Etoxazole
Etridiazole
Etridiazole, deschloro- (5-ethoxy-3-dichloromethyl-1,2,4-thiadiazole)
Etrimfos
Eugenol
Exaltolide [15-Pentadecanolide]
Famoxadon
Famphur
Fenamidonate
Fenamiphos sulfoxide
Fenamiphos-sulfone
Fenarimol
Fenazaflor
Fenazaflor metabolite
Fenazaquin
Fenbuconazole
Fenchlorazole-ethyl
Fenchlorphos
Fenchlorphos-oxon
Fenclorim
Fenfuram
Fenhexamid
Fenitrothion
Fenobucarb
Fenprop
Indeno[1,2,3-cd]pyrene
Indoxacarb and Dioxacarb decomposition product [Phenol, 2-(1,3-dioxolan-2-yl)-]
Iloxynil
Iloxynil octanoate
 Ipconazole
 Iprobenfos
 Iprodione
Iprovalicarb I
Iprovalicarb II {CAS # 140923-25-7}
Irgarol
Isazophos
Isobenzan
Isobornyl thiocyanoacetate
Isocarbamide
Isocarbofphos
Isodrin
Isophos
Isophos-oxon
Isomethiozin
Isopropcarb
Isopropalin
Isoprotiolane
Isoprotruron
Isoxaben
Isoxadifen-ethyl
 Isoxaflutole
Isoxathion
Jasminol I
Jasminol II
Jodfenphos
Kionprene
Kresoxim-methyl
Lactofen
Lenacil
Leptophos
Leptophos oxon
Lindane
Linuron
Malathion
Malathion-o-analog
MCPA methyl ester
MCPA-butoxyethyl ester
MCPB methyl ester
 m-Cresol
Mecarbam
Mecoprop methyl ester
Mefenacet
 Mefenpyr-diethyl
Mefluidide
Mefenpyr-diethyl
Mepanipyrim
Mephasfolan
Mepronil
Metalaxyl
Metamitron
Metasystox thiol
Metazachlor
Metconazole I
Metconazole II {CAS # 125116-23-6}
Methabenzthiazuron [decomposition product]
Methacrifos
 Methamidophos
Methfuroxam
 Methidathion
Methiocarb
 Methiocarb sulfone
 Methiocarb sulfoxide
 Methomyl
 Methoprene I
 Methoprene II (CAS # 40596-69-8)
 Methoprotryne
 Methoxychlor
 Methoxychlor olefin
Methyl (2-naphthoxy)acetate
Methyl paraoxon
Methyl parathion
 Methyl-1-naphthalene acetate
Methyldimron
Metobromuron
Metolachlor
 Metol carb
Metominostrobin (E)
 Metominostrobin (Z) {CAS # 133408-50-1}
 Metrafenone
Metribuzin
Mevinphos
Mirex
 Molinate
Monalide
 Monocrotrophos
Monolinuron
Musk amberette
Musk Ketene
Musk Moskene
Musk Tibetene (Moschustibeten)
Musk xylene
 Myclobutanil
N,N-Diethyl-m-toluamide
N-1-Naphthylacetamide
Naled
 Naphthalene
Naphthalic anhydride
 Naproanilide
 Napropamide
Nicotine
Nitralin
Nitrpyrin
Nitrofen
Nitrothio-isopropyl
N-Methyl-N-1-naphthyl acetamide
Nonachlor, cis-
Nonachlor, trans-
 Norflurazon
Norflurazon, desmethyl-
Nuarimol
 o,p’-DDD
 o,p’-DDE
 o,p’-DDT
Octachlorostyrene
 o-Dianisidine
 o-Dichlorobenzene
Ofurace
 Omethoate
 o-Phenylphenol
Orbencarb
 ortho-Aminoazotoluene
Oryzalin
 Oxabetrinil
 Oxadiazon
 Oxadixyl
 Oxamyl
 Oxcarbinoxin
 Oxychlordane
 Oxymethon-methyl
Oxyfluorfen
p,p'-DDD
p,p'-DDE
p,p'-DDM [bis(4-chlorophenyl)methane]
p,p'-DDT
p,p'-Dibromobenzophenone
p,p'-Dicofol
Paclobutrazol
Paraaoxon
Parathion
PBB 52 Tetrabromobiphenyl
PBB 101
PBB 15
PBB 26 Hexabromobiphenyl
PCB 101
PCB 105
PCB 110
PCB 118
PCB 126
PCB 127
PCB 131
PCB 136
PCB 138
PCB 153
PCB 169
PCB 180
PCB 181
PCB 20
PCB 30
PCB 31
PCB 49
PCB 77
PCB 81
p-Dichlorobenzene
Pebulate
Penconazole
Pendimethalin
Pentachloroaniline
Pentachloranisole
Pentachlorobenzene
Pentachloronitrobenzene
Pentachlorophenol
Pentanochlor
Permethrin I
Permethrin II (CAS # 52645-53-1)
Perthane
Phantolide
Phenamiphos
Phenanthrene
Phenanthrene-d10
Phenkapton
Phenol
Phenothiazine
Phenothrin I
Phenothrin II
Phenoxyacetic acid
Phenthoate
Phorate
Phorate sulfone
Phorate sulfoxide
Phorate-oxon
Phosalone
Phosmet
Phosamidon I
Phosamidon II (CAS # 13171-21-6)
Phthalide
Phthalimide
Picloram methyl ester
Picolinifen
Picoxystrobin
Pindone
Piperalin
Piperonyl butoxide
Piperophos
Pirimicarb
Pirimiphos-ethyl
Pirimiphos-methyl
Plifenat
p-Nitrotoluene
Potasan
Prallethrin, cis-
Prallethrin, trans- (CAS # 23031-36-9)
Pretiaclor
Probenazole
Prochlordaz
Procymidone
Prodiamine
Profenofos
Profenofos metabolite (4-Bromo-2-chlorophenol)
Profluralin
Prohydrojasmon I
Prohydrojasmon II (CAS # 158474-72-7)
Promecarb
Promecarb artifact [5-isopropyl-3-methylphenol]
Prometan
Prometryn
Propachlor
Propamocarb
Propanil
Propaphos
Propargite
Propargite metabolite [Cyclohexanone, 2-(4-tert-butylphenoxy)]
Propazine
Propetamphos
Propham
Propiconazole I
Propiconazole II (CAS # 60207-90-1)
Propisochlor
Propoxur
Propyzamide
Prosulfolcarb
Prothioconazole-dethio
Prothifos
Prothoate
Pyracarbidol
Pyraclofos
Pyraflufen-ethyl
Pyrazon
Pyrazophos
Pyrazoxyfen
Pyrene
Pyrethrin I
Pyrethrin II
Pyributicarb
Pyridaben
Pyridaphenthion
Pyridate
Pyridinotril
Pyrifonox I
Pyrifonox II (CAS # 88283-41-4)
Pyrifitalid
Pyrimethanil
Pyrimidifen
Pyriminobac-methyl (E)
Pyriminobac-methyl (Z) (CAS # 136191-64-5)
Pyriproxyfen
Pyroquilon
Quinalphos
Quinoclamine
Quinoxyfen
Quintozene metabolite (pentachlorophenyl methyl sulfide)
Quizalofop-ethyl
Rabenazole
Resmethrin
Resmethrine I
Resmethrine II (CAS # 10453-86-8)
Rotenone
S,S,S-Tributylphosphorotrithioate
Schradan
Sebuthylazine
Sebuthylazine-desethyl
Sebumeton
Silafluofen
Silthiopham
Simazine
Simeconazole
Simetryn
Spirodiclofen
Spiromesifen
Spiroxamine I
Spiroxamine II (CAS # 118134-30-8)
Spiroxamine metabolite (4-tert-butylcyclohexane)
Sudan I
Sudan II
Sudan Red
Sulfate
Sulfanilamide
Sulfentrazone
Sulfotep
Sulfur (S8)
Sulprofos
Swep
Tamoxifen
TCMTB
Tebuconazole
Tebufenpyrad
Tebupirimifos
Tebutam
Tebuthiuron
Tecnazene
Tefluthrin, cis-
Temephos
Terbacil
Terbutal
Terbufos
Terbufos-ofoxon-sulfone
Terbufos-sulfone
Terbumeton
Terbutylazine
Terbutylazine-desethyl
Terbutylazine-desethyl
Tebuconazole
Tetrachlorvinphos
Tetraconazole
Tetradifen
Tetraethylpyrophosphate (TEPP)
Tetrahydrophthalimide, cis-1,2,3,6-
Tetramethrin I
Tetramethrin II (CAS # 7696-12-0)
Tetrapropyl thiodiphosphate
Tetrasul
Thenylchlor
Thebromine
Thiabendazole
Thiazopyr
Thifluzamide
Thiofanox
Thiometon
Thionazin
Thymol
Tiocarbazil I
Tiocarbazil II (CAS # 36756-79-3)
Tolclofos-methyl
Tolfenpyrad
Tolyfluanid
Tolyfluanid metabolite (DMST)
Tolytriezole [1H-Benzotriazole, 4-methyl-]
Tolytriezole [1H-Benzotriazole, 5-methyl-]
Tonalide
Toxaphene Parlar 26
Toxaphene Parlar 50
Toxaphene Parlar 62
trans-Chlordane
Trasfluthrin
TrasineI
Triadimenol
Tri-allate
Triamiphos
Triapenthenol
Triazamethane
Triazophos
Tributyl phosphate
Tributyl phosphorotrithioate
Trichlamide
Trichlorfon
Trichloronate
Triclopyr methyl ester
Triclosan
Triclosan-methyl
Tricresylphosphate, meta-
Tricresylphosphate, ortho-
Tricresylphosphate, para-
Tricyclazole
Tridemorph, 4-tridecyl-
Tridiphane
Trietazine
Triethylphosphate
Triflumizole
Trifluralin
Triphenyl phosphate
Tris[2-butoxyethyl] phosphate
Tris[2-chloroethyl] phosphate
Tris[2-ethylhexyl] phosphate
Tricuronazol
Tryclopyrbutyoxethyl
Tycor (SMY 1500)
Uniconizole-P
Vamidothion
Vernolate
Vinclozolin
XMC (3,4-Dimethylphenyl N-methylcarbama
XMC (3,5-Dimethylphenyl N-methylcarbama
Zoxamide
Zoxamide decomposition product