Today, Agilent's comprehensive and time-tested Spectroscopy portfolios (Molecular and Atomic) offer some of the broadest breadth of solutions for diverse application areas. As a result, Agilent is now a leader in many spectroscopy technologies, ranging from the simplest to the most complex. Over the last 70 years, Agilent has been at the forefront of innovation within Molecular Spectroscopy, with new platforms and technologies that will expand the role of the spectroscopy laboratory of the future.

Molecular Spectroscopy

Agilent's comprehensive and trusted portfolio offers powerful and innovative capabilities for a broad range of applications, including:

- UV-Vis (Ultraviolet visible) & UV-Vis-NIR (near infrared) spectrometry
- Four-Transform infrared (FTIR) spectroscopy
- Over the last 70 years, Agilent has been at the forefront of innovation within Molecular Spectroscopy, with new platforms and technologies that will expand the role of the spectroscopy laboratory of the future.

- Raman spectroscopy
- Laser direct infrared (LDIR) chemical imaging
- Atomic absorption spectrometry
- Four-Transform infrared (FTIR) spectroscopy
- Gas chromatography/mass spectrometry (GC/MS)
- Mass spectrometry (MS)
- Laser diode (LD) detectors
- Diode array spectrophotometers
- Atom Fluorescence Spectrometry (AFS)
- Inductively coupled plasma optical/atomic emission spectrometry (ICP-OES/ICP-AES)
- Inductively coupled plasma mass spectrometry (ICP-MS) and triple quadrupole ICP-MS - ICP-QQQ
- Microwave plasma atomic emission spectrometry (MP-AES)
- Geochemistry and semiconductor analysis
- Clinical research
- Nuclear energy
- Food safety and agriculture
- Academic and life science research
- Energy and chemical
- Pharmaceutical
- Bio (Environmental)
- Industrial
- Forensic
- And other application areas including:

Atomic Spectroscopy

Agilent's comprehensive and trusted portfolio offers powerful and innovative capabilities for a broad range of applications, including:

- UV-Vis (Ultraviolet visible) & UV-Vis-NIR (near infrared) spectrometry
- Fourier-Transform infrared (FTIR) spectroscopy
- Raman spectroscopy
- Laser direct infrared (LDIR) chemical imaging
- Atomic absorption spectrometry
- Over the last 70 years, Agilent has been at the forefront of innovation within Molecular Spectroscopy, with new platforms and technologies that will expand the role of the spectroscopy laboratory of the future.

- Four-Transform infrared (FTIR) spectroscopy
- Over the last 70 years, Agilent has been at the forefront of innovation within Molecular Spectroscopy, with new platforms and technologies that will expand the role of the spectroscopy laboratory of the future.

- Gas chromatography/mass spectrometry (GC/MS)
- Mass spectrometry (MS)
- Laser diode (LD) detectors
- Diode array spectrophotometers
- Atom Fluorescence Spectrometry (AFS)
- Inductively coupled plasma optical/atomic emission spectrometry (ICP-OES/ICP-AES)
- Inductively coupled plasma mass spectrometry (ICP-MS) and triple quadrupole ICP-MS - ICP-QQQ
- Microwave plasma atomic emission spectrometry (MP-AES)
- Geochemistry and semiconductor analysis
- Clinical research
- Nuclear energy
- Food safety and agriculture
- Academic and life science research
- Energy and chemical
- Pharmaceutical
- Bio (Environmental)
- Industrial
- Forensic
- And other application areas including: