Fused Silica Capillary Column

- Provides increased precision and sensitivity, and dramatically improved ability to separate similar compounds
- Increased the number of peaks that can be detected in food

Electronic Pneumatic Control

- Provides precise carrier gas pressure control, increasing the precision and accuracy of compound retention times making it easier to identify and quantify
- Increased stability of retention times allows for comparison between reference samples and unknown harmful impurities
- Consistent retention times allows for quality control of food production

Reliable results for high boiling point compounds

Retention Time Locking

- Delivers the same retention time for the same method day to day, column to column, instrument to instrument, regardless of degradation or drift
- Decreased training time and ensured quality control across the laboratory or multiple laboratory sites

Specific and changing retention times allows mass spectra of different compounds with the same mass pattern to be different

- Creates very narrow isolation windows for triple quads, which provides the best low level sensitivity and precision

Capillary Flow Technology

- Precisely delivers carrier flow and splits with open split with unique re-temperature, low thermal mass, MTC, isocapillary flow splitters, direct flush, internal (IFC), switch. AGC, and spectrometer configurations. These devices provide the ability to separate challenging compounds and improve sample throughput
- Inert Flow Path
 - Less time in sample preparation by separating high boiling point contaminants, keeping its from the most sensitive part of the GC or GC/MS system
 - Perform extensive separations and provide complete detection of contaminant compounds on one system in a single injection, saving time and money

- The backflush device decreases sample preparation time by removing the sample matrix before it reaches the analytical column and mass spec source. IFC devices provide complete separations without need for cryocutter

- IFP eliminates the chance that extraneous compounds on a clean system (i.e. pesticides) will breakdown to other pollutants that could not be found previously

- IFP creates very narrow isolation windows for triple quads, which provides the best low level sensitivity and precision

- IFP increases the number of pesticides that can be detected (i.e. pesticides) and breakthrough to other pollutants that could not be found previously

- IFP provides increased precision and sensitivity, and dramatically improved ability to separate similar compounds

- IFP dramatically improves ability to separate similar compounds

- Provides increased precision and sensitivity, and dramatically improved ability to separate similar compounds

Inert Flow Path

- Completes the flow path (IFP) from the IFC to the detector, eliminating potential compound degradation anywhere in the system
- Lower detection limits of active compounds and increased length of time between cleaning, due to active compounds degradation
- Capillary Flow Technology
 - IFP eliminates the chance that extraneous compounds on a clean system (i.e. pesticides) will breakdown to other pollutants that could not be found previously
 - IFP creates very narrow isolation windows for triple quads, which provides the best low level sensitivity and precision
 - IFP increases the number of pesticides that can be detected (i.e. pesticides) and breakthrough to other pollutants that could not be found previously

- IFP provides increased precision and sensitivity, and dramatically improved ability to separate similar compounds

- Provides increased precision and sensitivity, and dramatically improved ability to separate similar compounds

- IFP dramatically improves ability to separate similar compounds

A World Class GC Portfolio

- With the launch of the Intuvo 9000 system in 2016, and Agilent 8860 and 8890 systems in 2019, Agilent is transforming the way GC laboratory operators. New levels of performance reliability, and cost effectiveness, continue Agilent’s industry-leading legacy

- Intuvo 9000
 - Direct heating: Throughput is improved. Unlike conventional GC systems, Intuvo uses direct conductive heating to temperature program the entire flow path and analytical column. Direct heating uses less power, is smaller, and can be heated and cooled much faster
 - Clip and Run Connection: Eliminates downtimes and associated business disruptions that occur with cryo-cut columns. Fermes are pre-oriented and advanced face seal connections are made with a audible and tactile ‘click’ instead of previous generation Agilent GC designs
 - Guard Chip and Trim-Free Column: Trimming is eliminated and productivity is improved while reducing the skill set necessary to operate a GC system. Intuvo has a simple, disposable Guard Chip, which makes automated trimming unnecessary. The new trim planer column can be installed faster and more reliably than conventional columns.

- Agilent 8860 and 8890
 - Onboard dual core processors and embedded sensors enable rapid troubleshooting. The 8860 touch-screen, a wide range of functionality is available including editing of methods and sequences and performing maintenance routines. The 8890 touch-screen provides enhanced user responsiveness like a phone or tablet. With the 8890, the onboard dual core processors and embedded sensors enable rapid troubleshooting. The 8890 touch-screen, a wide range of functionality is available including editing of methods and sequences and performing maintenance routines.

- Communications touchscreen interface provides responsiveness like a phone or tablet. With the 8860 touchscreen, a wide range of functionality is available including editing of methods and sequences and performing maintenance routines.