The Agilent Cary 3500 UV-Vis Spectrophotometer

Overview

The Agilent Cary 3500 represents a paradigm shift in the UV-Vis Molecular Spectroscopy space, and is one of Agilent’s new solutions that will predominantly be used in the pharmaceutical, biopharmaceutical and life sciences segments.

The Cary 3500 is a multiple temperature zoned UV-Vis solution powered to run up to four different experiments at any given time. The functionality of Cary 3500 is made possible by innovative technologies that increase operational efficiency and accuracy, within the modern day laboratory.

Key uses of the Cary 3500

- Monitoring enzymatic reactions at temperature
- Calibrating and determining sample concentration
- Quantifying nucleotides and proteins
- Performing temperature ramping experiments

Key features of the Cary 3500

- Water-less temperature control up to 110 °C
- 250 Hz Xenon Flash lamp
- Multiple cells, multiple temperatures, measured simultaneously
- Intuitive Cary UV Workstation software

For more information visit Agilent’s newsroom or contact Victoria Wadsworth-Hansen, Global Director and Head of Public Relations (victoria.wadsworth-hansen@agilent.com)
Cells, and simultaneous collection, ensures that data gaps seen when using moving, sequential collect cell holders, are eliminated. This allows customers to gain a deeper level of detail and confidence in their sample analysis.

Intuitive Cary UV Workstation software

The Cary UV Workstation software is application-focused, which streamlines method setup. It's based on a database storage architecture that is easy to support and invest in for future enhancements e.g. analyzers and automated features. This software is aligned with Agilent's 'One Agilent' approach to compliance. It is also easy to use, with video guidance for new users, which reduces training costs.

What is UV-Vis Molecular Spectroscopy?

UV-Vis Molecular Spectroscopy is a well-established instrumental technique for the analysis of a sample in the laboratory. It works by identifying a sample type using light. The reduction in light intensity is measured after it passes through a sample or after reflection from a sample surface, and this helps to determine the sample composition.