

Guidelines for Trouble Shooting and Maintenance of ICP-OES Systems

Today's Agilent: Atomic Spectroscopy

World's best, most complete atomic spectroscopy portfolio!

Flame AAS

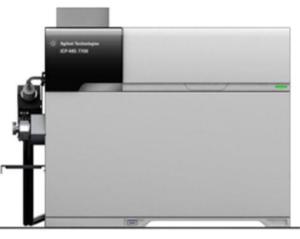
Graphite Furnace AAS

4200 MP-AES

New Agilent 7900 ICP-MS Performance Highlights Rewriting the rules on ICP-MS

Better Analytical performance experience

- Ultra high matrix tolerance
- Superior sensitivity and lower background noise
- Wider dynamic range
- New Productivity Option (ISIS 3)
- Ultra fast scan speed for Single Nanoparticle analysis


Better Software experience

- ICP-MS MassHunter 4.1
- Method Wizard
- Mobile device support

Better Support experience

- Familiarization Tutorials/Videos
- Remote Advisor support

Next Generation 4200 MP-AES Performance Highlights Change is in the Air!

Better Analytical performance experience

- 2nd generation of proven MP-AES technology
- Robust torch design for superior analytical performance with complex matrices
- Mass flow control of nebulizer gas and robust sample introduction
- Enhanced accuracy and long term stability with tough samples
- Expands the application range of MP-AES

Better Software experience

- MP Expert V1.2
- Intuitive software interface
- Advanced features in the 'PRO' pack

Better after sales experience

- No flammable gases or ongoing gas costs
- Runs from Nitrogen extracted from air using Agilent's nitrogen generator

Agilent's Atomic Spectroscopy Portfolio - Features

Flame AA

MP-AES

Graphite Furnace AA

ICP-OES

ICP-MS

Lowest price

- Single element
- DLs typically ~100's ppb
- Fast (for 1 element)
- Good elemental coverage
- Low running cost

Lowest running cost

- Multi element
- DLs typically single to 10's ppb
- Faster
- Broader elemental coverage
- Lowest running cost

Trace levels at lowest price

- Single element
- DLs typically 10's to 100's ppt
- Very slow
- Limited elemental coverage
- Moderate running cost

Fastest measurement

- Multi element
- DLs typically single ppb
- Very fast
- Can measure most elements
- High running cost

Broadest coverage

- Multi element
- DLs typically single or sub-ppt
- Fast
- Can measure almost all elements
- Highest running cost

Lowest

Selling Price

Highest

Common ICP Problems Reported by Customers

Sensitivity:

- Sensitivity is worse than it used to be
- I have a new application and I can't get the sensitivity I need
- How come I can't get the instrument to meet published detection limits?

Precision

Sensitivity is acceptable but precision is terrible

High noise

Can get the "right answers", but very noisy signal – this is also giving bad precision.

Accuracy

Instrument does not give the "right" results.

Poor Sample Throughput

- The instrument throughput needs to improve
- Nebulizer and/or injector of the torch blocks too quickly

Causes of Poor ICP-OES Sensitivity

Worn pump tubing Sample introduction Blocked nebulizer system Blocked injector in torch Poor optimization – especially the neb. flow Method setting – using right wavelength? **Optimization** Wrong tubing type Interferences High blank level **Standard** Standards prepared correctly? (& sample) preparation Samples prepared correctly? – ionization suppressant Optics purge – UV wavelengths only Spray chamber type

Causes of Poor ICP-OES Precision

Worn pump tubing Sample Beading in spray chamber introduction system Nebulizer condition and performance Air leaks in transfer tubing Torch alignment **Optimization** Poor optimization – especially the neb. flow Nebulizer choice for your samples **Standard** Wash-out (memory effects) (& sample) preparation

Causes of Poor Accuracy in ICP-OES

Sample Worn pump tubing introduction system Blockage in nebulizer and/or torch Wrong wavelength choice - interferences Poor optimization – especially the neb. flow **Optimization** Choice of internal standard Insufficient stabilization time Standard preparation Incomplete digestion – particles in solution **Standard** (& sample) No matrix matching preparation Wash-out (memory effects)

ICP-OES Sample Introduction System Tips

Do:

Check optimization each analysis

Check/monitor the nebulizer uptake

Check/adjust the peri pump tubing

Check the blank reading

Rinse between samples & at the end of the run

Rinse should match sample matrix

Clean the torch/nebulizer regularly

- Inspect condition of the nebulizer tip

Follow analytical recommendations in "cookbook"

Assume system is still optimized

Assume nebulizer flow rate is the same

Overtighten the pressure adj. screw

Use a simple water blank

Wait until you have blockage before cleaning

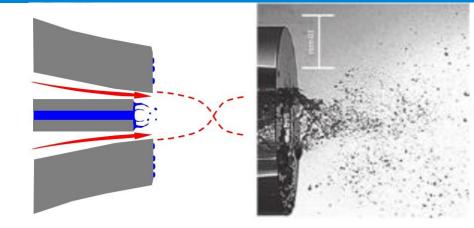
Peri Pump Tubing Tips

- Tubing diameters
 - Want tubing used for waste to be larger ID than sample ID
- Chemical compatibility
 - Ensure tubing is resistant to the solvent being used
- Replace frequently
 - Using "old" tubing can lead to problems with precision and stability
 - Typical lifetime is 1-2 weeks based on normal 8 hour working day
 - Detach from tube holder after use allows tube to "relax"
- Maintaining tubes What to check?
 - Check 2 key things on pump tubing
 - Roundness of tube should not be any "flat" spots
 - Tubing should still be elastic replace if obviously stretched
 - Don't over tighten just need smooth and even sample flow
- Remember to check other tubing for wear, leaks and crimps

Cleaning the Nebulizer

Never sonicate or attempt to clean with wire!

For normal cleaning:


- Reverse pump the nebulizer with the tip in solvent; OR
- Apply suction from the wide end of the capillary using a vacuum aspirator; OR
- Apply high pressure clean air via a tubing snugly fitted over the nebulizer tip (use with caution); OR
- Use a dedicated nebulizer cleaning tool to force methanol solution through the tip

For salt deposits:

 Soak the nebulizer overnight in a beaker of 25% Fluka RBS-25 detergent. Rinse with pure water

For "stubborn" deposits:

 Soak the nebulizer overnight in conc. nitric acid. Use a pipette to ensure there are no air bubbles in capillary. Rinse with pure water

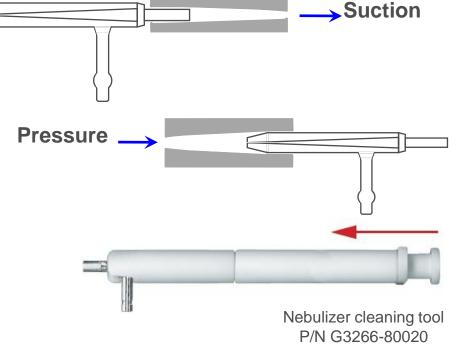


Image modified from "Pneumatic Nebulisers and Spray Chambers for Inductively Coupled Plasma Spectrometry. A Review, Part 1. Nebulisers" by Barry Sharp, JAAS, vol.2, p. 613-652, 1988

[.] Image provided by Meinhard Glassblowing Products

Performance Characteristics of Common Nebulizers

Nebulizer Type	Aerosol Efficiency	Achieved Precision	Dissolved Solids Tolerance	HF Resistance	Organics Compatibility	Self Aspirates	Ideal Sample Type
OneNeb	Excellent	Excellent	Good (max. 150 um particles)	Excellent	Excellent	No	Handles most samples
SeaSpray concentric	Good	Good	Medium (max. 75 um particles)	Poor	Good	Yes	Environmental, soil & food digests
Conikal concentric	Good	Excellent	Poor to Medium (max. 75 um particles)	Poor	Excellent	Yes	Clean oil samples and organic solvents
V-groove	Medium	Medium	Excellent	Excellent	Medium	No	HF digests, fusions, high TDS or used oil samples

Refer Access Agilent article titled "Tips on choosing – and using – the best nebulizer for your ICP-OES" http://www.chem.agilent.com/en-US/Newsletters/accessagilent/2013/jul/pages/nebulizer.aspx?cid=7652

Universal inert OneNeb

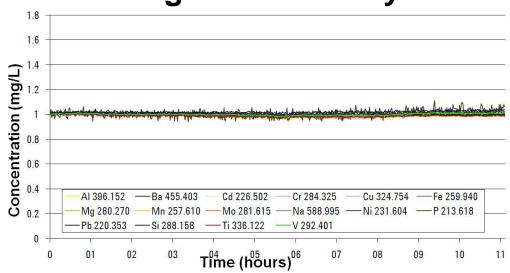
Routine usage concentric type

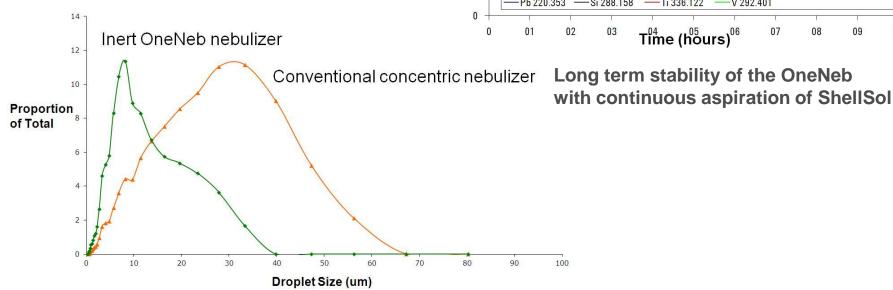
High Solids capable (V-Groove)

Universal OneNeb: A Quick Review

Innovative design extends longevity, reduces blockage, improves LODs and throughput

- PEEK and PFA construction
 - Virtually unbreakable
 - HF & organics resistance
- Less blockage from high TDS samples
 - Constant bore tubing, improves throughput
- Improved sensitivity
 - Flow Blurring for narrow droplet distribution and smaller droplet size
 - Improves precision and sensitivity.

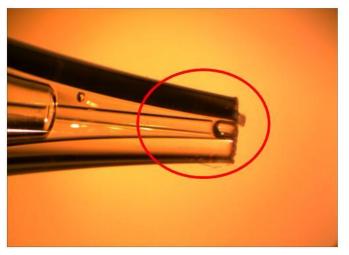

OneNeb Performance Overview

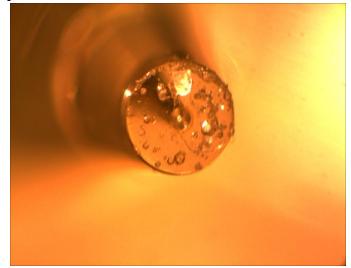

Droplet Size Comparison

Unique Flow Blurring design increases nebulization efficiency

- Produces tighter and smaller droplet size
- Improved sensitivity and precision c.f. conventional concentric nebulizer

Long Term Stability




Performance Proof:

Why the OneNeb Outperforms Conventional Nebulizers?

- Geochemical application
 - Measuring trace Au in cyanide leach (0.3% CN, 0.8% NaOH)
- Run with Standard Sample intro system
 - Blockage of the sample introduction occurs within 4 hours
 - Nebulizer tip and injector of the torch

Tip of the concentric nebulizer – blocked!

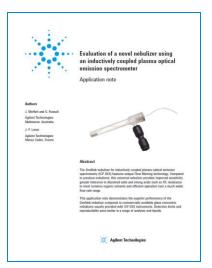
Performance Proof:

Why the OneNeb Outperforms Conventional Nebulizers?

- Geochemical application
 - Measuring trace Au in cyanide leach (0.3% CN, 0.8% NaOH)
- Run with Standard Sample intro system
 - Blockage of the sample introduction occurs within 4 hours
 - Nebulizer tip and injector of the torch

Tip of the concentric nebulizer – blocked!

Tip of the OneNeb nebulizer after 37 hours of operation!



OneNeb Support Resources

Description	Part number
OneNeb inert concentric nebulizer for HF digests, high TDS samples, and organic solvents. Includes snap-on connector for nebulizer gas inlet	2010126900
Application Kits for Agilent Axial ICP-OES Systems	
Double-pass glass cyclonic spray chamber, mounting bracket, OneNeb inert concentric nebulizer, and transfer tube	9810046590
Single-pass glass cyclonic spray chamber, mount- ing bracket, OneNeb inert concentric nebulizer, and transfer tube	9810046690
Application Kits for Agilent Radial ICP-0ES Systems	
Inert Sturman-Masters double-pass cyclonic spray chamber, mounting bracket, OneNeb inert concentric nebulizer, and transfer tube	9810046390
Double-pass glass cyclonic spray chamber, mounting bracket, OneNeb inert concentric nebulizer, and transfer tube	9810046490

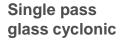
OneNeb Flyer, <u>5991-0131EN</u>

Ordering Information listed above

Dedicated web-page available. See this link:

OneNeb video also available

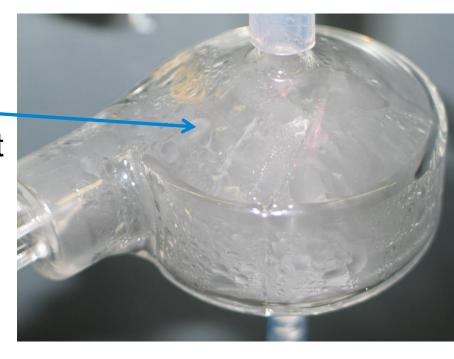
www.agilent.com/chem/OneNeb


Application Note, <u>5990-8340EN</u>

Performance Characteristics of ICP Spray Chambers

Spray Chamber Type	Aerosol Efficiency	Achieved Precision	Dissolved Solids Tolerance	HF Resistance	Organics Compatibility	Ideal Sample Type
Single pass glass cyclonic	Excellent	Good	Poor to Medium	Poor	Good	Environmental, food digests
Double pass glass cyclonic	Good	Excellent	Good	Poor	Good	Soil digests, clean oil samples and organic solvents
Inert Sturman- Masters (double pass)	Good	Excellent	Excellent	Excellent	Excellent	HF digests, fusions, high TDS or used oil samples
Cooled spray chamber	Good	Good	Poor to Medium	Poor	Excellent	Highly volatile organic solvents e.g. gasolene

Double pass glass cyclonic


High Solids & HF capable (Sturman-Masters)

Cleaning the Spray Chamber

Can sonicate in a detergent solution (with care), rinse and dry

Must clean the spray chamber — when you see "beading" or droplet formation on the walls (or if precision degrades):

- Soak overnight in a 25% detergent solution
 - Best to leave it soaking for 24 hours
 - Use any laboratory detergent e.g. Fluka RBS25, Triton X-100, Decon 90 etc
- Rinse, allow to dry and refit

Tips on Torch Selection

One piece quartz torch

- Simple to use
 - Narrow bore injectors organics
- Recommended for most applications

Semi-demountable torch

- Injector is removable and changeable
- Gives greater flexibility.
 - Alumina injector -fusions and HF digests
 - Quartz injectors for other solutions

Fully demountable torch

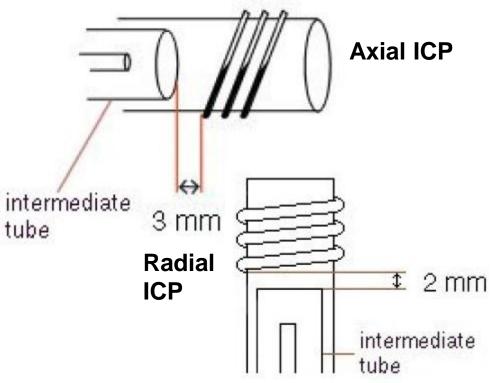
- Can replace all parts of torch individually
 - e.g. torch body, intermediate tube & injector
 - · Gives greater flexibility
- Can reduce operating cost

Agilent Technologies

Cleaning the Torch

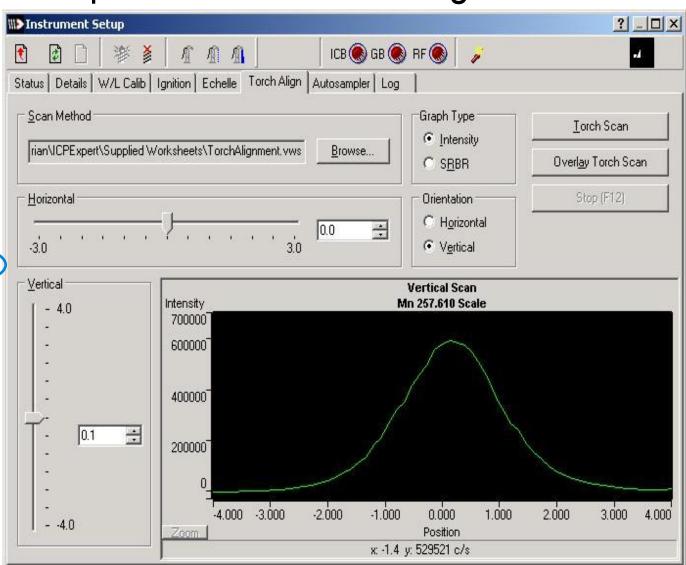
Do not sonicate!

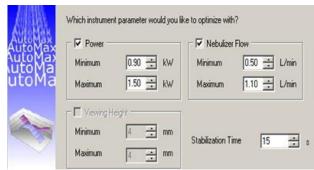
Soak in conc. aqua regia (3:1 HCl: HNO₃) overnight


- Use a pipe cleaner dipped in aqua regia to remove persistent compounds from the injector tube
- For salt deposits:
 - Rinse with water to remove deposits
 - Soak the torch overnight in a beaker of 25% Fluka RBS-25 detergent

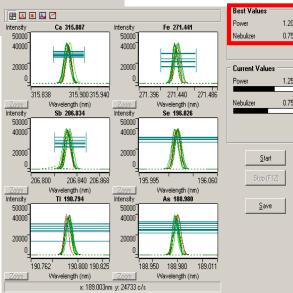
Rinse and allow to dry

Caution! Reinstall only when dry


Re-install with the intermediate tube 2-3mm from the RF (induction) coil


ICP-OES System Optimization – Torch Alignment

- Torch alignment required after removing/replacing the torch
- Ensures optics viewing highest emission signal from the plasma
- Also useful as a quick performance check
- Monitor the max. intensity
- Positions for optimum Vertical & Horizontal position should not shift dramatically


ICP-OES System Tips – Method Optimization

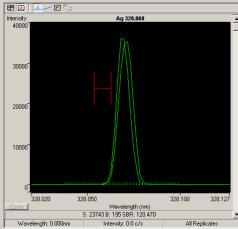
- "Automax" optimization routine automates optimization of key method settings
- Optimizes RF power, neb. Flow & viewing height (radial ICP only)
- For best results:
 - Select SBR as the optimization criteria
 - Plasma should be warmed up
 - Optics purge should be stable
 - Solution used for optimization should give good signal levels
- Automatically creates a method using recommended conditions
- Reduces training requirements for new users

Which Optimization Type would you like?

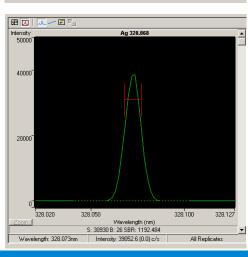
Signal to Background Ratio
Signal to Root Background Ratio
Net Signal

ICP-OES System Tips – Wavelength Calibration

- "Wavelength Calibration" co-relates actual emission peak to the pixels on the detector chip
- Periodic calibration required typically once/month
 - Monitor peak position w.r.t. peak marker to determine if calibration required
- For best results:
 - Use Agilent's prepared wavelength calibration solution (P/N 6610030100)
 - Improves productivity -no "missing " components to troubleshoot
 - Improve reproducibility
 - Convenience the pre-mixed solution has long shelf life, so you can use it as required
 - Also suitable for use when completing torch alignment
 - Plasma should be warmed up and stable
 - Optics boost purge should be enabled and stable (also requires the snout purge on the radial ICP)
- If the percentage value for "Calibration lines used" is < 100%, then:
 - Check that tuning solution had reached plasma
 - Check that purge enabled and stable then repeat


Aglest Technologies

Aglest Technologies


Aglest Technologies

Ag 328.068

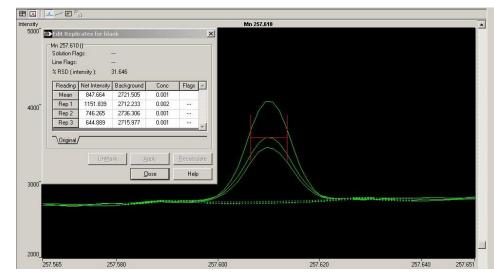
Needs wavelength calibration

Peak display after successful wavelength calibration

ICP-OES System Tips – Plasma Ignition Problems

In most cases, the plasma will ignite first time.

If not, check the following (failure usually indicates presence of air):


- First, try repeating the ignition step again
- Have you changed argon cylinders recently?
 - Check the grade of argon
 - Try another cylinder
- Check all connections in the sample introduction system for cracks, loose fittings, missing or damaged items
 - · Check that the plasma and auxiliary gas connections to torch were not reversed
- Check that the torch is sitting correctly w.r.t. RF coils (top of intermediate tube should be 2-3mm from edge of coil)
- Are you running a different sample type?
 e.g. higher RF power required for organic solvents
- Check the emergency off button on the front of the instrument
- Check the RF supply circuit breaker-(on the rear panel of the instrument)

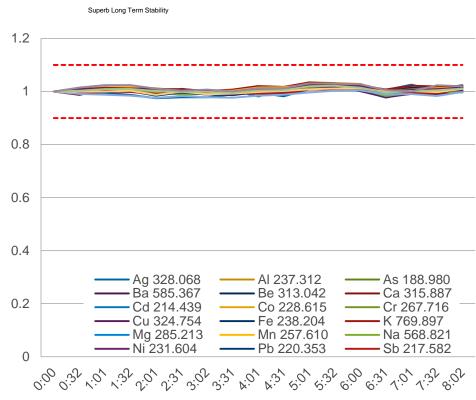
ICP-OES System Tips - Memory Effects

- Typically observed when measuring high concentrations of selected analytes
 - Usually see high intensity for first replicate – subsequent replicates are more consistent
 - Common culprits:
 - Ag, Au, B, Hg, Mo, Si, Sn, W, Zn, Zr
- The fix?
 - Check the rinse time used is adequate (30-40s is typical)
 - Use an acidified (matrix matched) rinse solution
 - Switch to a spray chamber that has smaller internal volume
 - Use a "switching valve" to improve washout characteristics
 - Use "Smart Rinse" to optimize rinse time
 - Varies the rinse time based on the measured intensity
 - · Extends rinse time when required
 - Doesn't increase rinse for low concentration analytes

ICP-OES – Potential Autosampler Issues

- More customers use autosamplers with ICP for automation
- Issues to consider:
 - Long transfer tube between sampler and ICP-OES
 - May need to program a longer sample uptake delay
 - May exacerbate problems with memory effects
 - Use "Fast Pump" during sample uptake delay
 - Caution! not always possible
 Not recommended with high %TDS samples and organics
 - Ensure probe diameter is appropriate for sample matrix
 - Use wider bore for high % TDS or viscous samples
 - Sample stability potential for sample changes while uncovered in racks impacts accuracy
 - Dust ingress can introduce contamination
 - Sample evaporation may occur during long unattended runs
 - Sediment in the sample may settle out, esp. with wear metals or suspensions
 - Ensure transfer line to ICP-OES is in good condition
 - Kinks in the line may cause poor uptake, or pulsing in the sample
 - Impacts on precision and accuracy

Recommended Procedures at End of the Day


- Aspirate acid rinse solution for a few minutes before shutting off the plasma
 - Helps to prevent sample deposition inside the nebulizer after the run
- 2. Extinguish the plasma and switch off the chiller
- Remove the sample capillary from the rinse, start the pump again and pump any remaining rinse solution from the spray chamber
- Release the pressure bars on the pump tubing and remove the bridges from the securing slot
 - Ensure the tubes are no longer stretched over the pump rollers
- 5. Empty waste vessel
- 6. a) Close the current worksheet leave ICP Expert S/W running
 - b) Leave mains power and argon on
 - Keeps instrument in stand-by mode (ensures fastest start-up)

Agilent ICP-OES Performance - Benefits

Robust, stable analysis

- Copes easily with difficult sample matrices such as organic solvents
- Continuous wavelength coverage ensures flexibility and gives you confidence in your results:
 - Extend the linear range by using λ of different sensitivities (in the same run) – no time penalty
 - Eliminate interferences
- One view, one step measurement of major, minor and trace elements for highest productivity
 - Fastest warm-up time
 - Fastest measurement speed

Agilent 720 ICP-OES Long-term precision over 8 hours: < 1 % RSD Max.

Tips to Improve Standard Preparation

- How are they prepared?
 - Ensure purchased standards are still within "Use By" date
 - Use calibrated pipettes and class 'A' volumetric flasks for dilutions
 - Periodically, check accuracy & reproducibility of your pipettes
 - Use de-ionized water (Type I conductivity ≥ 18 M^{\text{\Omega}}/cm³)
 - Lower grades may have contamination
 - Use serial dilutions for preparing low concentrations from 10,000 ppm stock
 - Please don't do large dilutions (> 1:10,000) in 1 step
- What concentration are they?
 - Low concentration standards have a finite life
 - Prepare ppb (ug/L) concentration standards daily from high conc. stock
 - Prepare low ppm (mg/L) concentration standards weekly
- How are they stored?
 - Plastic vessels ensure better stability
 - Stabilize with acid low pH ensures better stability

Tips to Reduce Contamination

Contamination can come from anything that comes into contact with your sample during storage, digestion (dilution) and analysis

Check reagent purity

- Always buy the best reagents
- Always check the certificate of analysis for elevated levels

0.074.04.1070.10	< 0.5 < 1 evaporated to dryness. The resulting residue is reconstituted in a small volume of SEASTAR "BASELINE® 2% Nitric Acid /2% Hydrogen Peroxide. Operations are conducted under Class 100 or better dean-room conditions.
 Caution if buying in large quantities 	11 No 12 Mg For voicine feet with the product a rate voicine feet which the product with the product of the voicine feet v
 Worst case – can use contaminated acid for cleaning 	19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mm 26 Fe 27 Co 28 Ni 29 Cu 30 Zi 31 Ga 32 Ge 33 As 34 Se < 1 < 5 < 1 < 5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.
 Ensure still within "use by" date 	37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pu 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te <1 <0.1 <0.5 <1 <1 <1 <1 <5 <0.5 <0.5 <0.5 <0.5 <0.5
- Reseal immediately after use	55 Cs 56 Bb 57 Ls 72 Hf 73 Ts 74 W 75 Rs 78 Pt 79 Au 80 Hg 81 TI 82 Pb 83 B 4 < 0.05 < 1 < 0.05 < 1 < 1.0 < 0.05
	ALL VALUES ARE REPORTED IN PARTS PER TRILLION (PPT)

Other common contamination sources

- Reagent water
- Clean glassware?
- Airborne dust in the lab.
- Pipette tips
 - Don't insert pipette tips into your acids
 - Use natural tips colored tips may increase contamination (Cu, Fe, Zn, Cd)
- Powdered gloves (esp. for Zn)

BASELINE® Nitric Acid

Tips to Improve Accuracy of Results

- Sample preparation
 - Is the most appropriate digestion being used?
 - Are all of the analytes being quantitatively (and reproducibly) extracted and dissolved?
 - Many digestions are only partial extracts efficiency will vary with the sample matrix
 - Some volatile analytes may be "lost" during digestion
 - Confirm by taking a solid certified reference material through your preparation and analysis procedure
 - Is the digest stable or are you seeing any precipitates or a suspension?
 - Do you see any potential contamination from either reagents or the digestion equipment? e.g. especially with Si, B or Ca
 - Include a "Reagent Blank" with every sample batch to monitor

ICP-OES – Recommended Maintenance Schedule

Daily:

- Check exhaust system operating (smoke test)
- Inspect torch for injector blockage/other damage
- Check nebulizer for blockage/pulsation
- Inspect peristaltic pump tubing for stretching or flatness
- After analysis is complete:
 - Aspirate rinse solution for 5-10 mins. before shutting down (minimizes sample deposits)
 - Release pressure bar and detach peristaltic pump tubes from holder
 - Empty waste vessel
 - Leave ICP-OES in stand-by mode (gas and power on; software shutdown)

Weekly:

- Clean torch (or earlier if required)
- Check the other sample introduction tubing and O-rings
- Inspect cone (axial) or snout (radial); clean if req. by sonicating in dilute detergent
- Inspect torch bonnet for cracks or sample deposition (radial)
- Wipe down exterior surfaces of your ICP-OES (esp. sample compartment)

ICP-OES – Recommended Maintenance Schedule

Monthly:

- Clean spray chamber (or earlier if "beading" in spray chamber)
- · Clean nebulizer
- Check the other sample introduction tubing and O-rings
 - Look for excessive wear, poor sealing or kinks and replace as necessary
 - Especially look at the transfer tube from spray chamber to torch and the spray chamber waste outlet
- Inspect/clean cone (axial ICP)
- Inspect/clean bonnet and/or snout (radial ICP)
- Inspect the state of induction coil
- Clean/check the air filter for the cooling air inlet (behind chimney)
- Clean/check air filter on the water chiller/recirculator
- Check the water level in the water chiller/recirculator & top-up if required

Periodically (every 6-12 months?):

- Clean water particulate filter on back of instrument
- Replace the water in the water chiller and dose with algaecide
- Change argon filters on argon gas supply (if using gas cylinders)

These functions (and more!) are completed as part of a Preventative Maintenance program by an Agilent Field Service Engineer

Overview – Key Consumables for ICP-OES

Sample introduction:

- Peristaltic pump tubing
- Torches
- Transfer and drain tubing
- Nebulizers
- Spray chambers
- Application kits (adapt your instrument to a new application)
- ICP standard solutions
- Ionization suppressant / buffer solutions

Autosampling:

- Sample tubes, racks, probes and transfer tubing

Vapor generation systems:

- Peristaltic pump tubing
- Connecting tubing

Agilent ICP-OES Consumable Kits

Part Number	Description	Content
9910112800	Extended Value Pack – Axial ICP	7 x standard axial torches 1 x SeaSpray nebulizer 1 x Tubing and connectors kit 2 x Spray chamber O-ring kits 1 x Double pass glass cyclonic spray chamber (incl. mounting bracket) 2 x Single pass glass cyclonic spray chamber 1 x packet of GasFit torch fittings 1 x packet of EzyFit nebulizer connectors
9910112600	Matrix Value Pack – Axial ICP	High solids and semi-demountable torches (1 of each) Sturman-Masters & Double pass glass cyclonic spray chamber (incl. mounting bkts) V-groove nebulizer All injector sizes, types and holder for semi-demountable torch Tubing and connectors kit 1 x Spray chamber O-ring kit 1 x Packet of GazFit torch fittings 1 x Packet of EzyFit nebulizer connector
9910112700	Extended Value Pack – Radial ICP	4 x standard radial torches 1 x torch bonnet 2 x V-groove nebulizers 1 x Sturman-Masters inert spray chamber 2 x Tubing and connectors kits 2 x Spray chamber O-ring kits 1 x packet of GasFit torch fittings
9910112900	Matrix Value Pack – Radial ICP	Standard radial and semi-demountable torches (1 of each) Torch bonnet Sturman-Masters and Double pass glass cyclonic spray chamber (+ holders) V-groove and slurry nebulizer (1 of each) All injector sizes, types and holder for semi-demountable torch Tubing and connectors kit 1 x Spray chamber O-ring kit 1 x Packet of GazFit torch fittings

There are also a range of tubing kits available, specific to your application – refer to pages 47-42 of the Spectroscopy Consumables Catalog (Agilent publication # 5991-1060EN)

Where to Find the Right Consumable?

Analytical Consumables: Consumables & Supplies

Agilent Assist: Instrument Sales & Services

1-800-227-9770 (Option 1,1) www.agilent.com/chem/contactus

1-800-227-9770 (Option 1,3) www.agilent.com/chem/contactus

On-Line resources:

ICP-OES Parts & Supplies

Atomic Absorption Supplies

AA FAQs

ICP-MS Supplies

Instrument Parts & Supplies

Atomic Spectroscopy Application Notes

Recorded Agilent e-Seminars

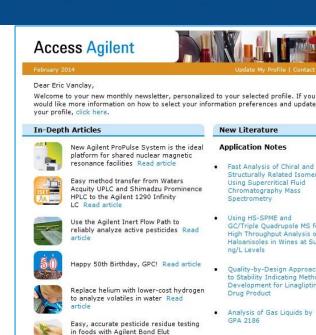
Agilent Quick Reference Guide for Axial ICP (pub. # 5990-9475EN)

Agilent Quick Reference Guide for Radial ICP (pub. # 5990-9474EN)

Agilent Spectroscopy Supplies Catalogue (pub # 5991-1060EN)

Instrument User Manuals

Other Support Resources for Agilent ICP-OES Users


- Are you a member of Agilent's PlasmaNet email forum?
 - This is a direct email link to other Agilent ICP-OES users worldwide
- PlasmaNet allows you to:
 - Ask a question and get responses from other users doing the same application and/or Agilent Specialists worldwide
 - Share your knowledge and experience with other users
- To register, use this link to the registration form on the Agilent website (or ask your Agilent representative):

http://www.chem.agilent.com/en-US/Technical-Support/Pages/PlasmaNetForumRegistration.aspx

- Are you a subscriber to the Access Agilent newsletter?
 - A monthly e-newsletter newsletter tailored to your preferences
 - Includes in-depth articles, new products, literature, offers and events
- · To register, use this link to the registration form on the Agilent website (or ask your Agilent representative):

http://www.chem.agilent.com/en-US/newsletters/accessagilent/Pages/default.aspx

PlasmaNet >

QuEChERS Sample Preparation Read

Redefining elemental analysis: Agilent's

new 7900 extends the range of ICP-MS

Large Valve Oven GC system meets the

petrochemical industry's growing demands Read article

Ask the Expert: Selecting an

to higher analyte and matrix

levels Read article

autosampler for the dissolution test Read article

New Literature

Application Notes

Spectrometry

Using HS-SPME and

· Fast Analysis of Chiral and

Using Supercritical Fluid

Chromatography Mass

Structurally Related Isomers

GC/Triple Quadrupole MS for

High Throughput Analysis of Haloanisoles in Wines at Sub-

- · Production and Analysis of High Molecular Weight Genomic DNA for NGS Pipelines Using Agilent DNA Extraction Kit (p/n 200600)
- Molecular Spectroscopy Application Compendium

Manuals

850-DS Operators Manual 70-9074

Summary – To Achieve Quality Data

- Most "instrument" failures occur in the sample introduction area
 - Includes
- Torch
- Spray chamber
- Nebulizer
- Peristaltic pump tubing
- Drain Assembly
- Improper maintenance of this area can result in poor data quality
- Frequently less experienced analysts can fail to recognize problems resulting in productivity losses
- Establishing maintenance procedures can prevent problems

Questions?

Agilent MP-AES

Agilent AAS

Agilent ICP-OES

Agilent ICP-MS

The Market Leaders in Atomic Spectroscopy