RESIDUES AND TRACE ELEMENTS

Simultaneous Screening and Target Analytical Approach by Gas Chromatography-Quadrupole-Mass Spectrometry for Pesticide Residues in Fruits and Vegetables

MILAGROS MEZCUA and MARIA A. MARTÍNEZ-UROZ

University of Almería, Community Reference Laboratory (DG SANCO) for Residues of Pesticides in Fruits and Vegetables, Pesticide Residue Research Group, 04120 La Cañada de San Urbano, Almería, Spain **PHILIP L. WYLIE**

Agilent Technologies, Inc., 285 Centerville Rd, Wilmington, DE 19808-1610 AMADEO R. FERNÁNDEZ-ALBA¹

University of Almería, Community Reference Laboratory (DG SANCO) for Residues of Pesticides in Fruits and Vegetables, Pesticide Residue Research Group, 04120 La Cañada de San Urbano, Almería, Spain

A full-scan GC/guadrupole/MS method has been developed to perform large-scale screenings of pesticides and simultaneous quantification of 95 target compounds in a single run of 21 min. The screening method was performed by using a deconvolution of the spectrum of the full-scan data files acquired under a retention time locked method. The identification performance of the screening method was evaluated in eight different food matrixes at three different concentrations. The system was equipped with a programmable temperature vaporizing inlet, allowing 10 L injections. The LOQ in the full-scan mode and linearity were studied for four different matrixes. Correlation coefficients >0.99 were achieved in all cases, and the LOD was <20 g/kg for 80% of the studied pesticides. Maintenance of the system was reduced by the use of a QuickSwap device that provided backflush capabilities by reversing column flow immediately after elution of the last compound of interest. The combined screening and target method was used in the analysis of more than 100 food samples, including a carrot sample from the European Proficiency Test FV 10, with good results.

arget analysis methods applied in many laboratories for routine pesticide residue control basically consist of a list of around 100–150 GC- and LC-amenable compounds. The analyte list is selected by using the established priority lists combined with any other relevant information related to agricultural uses in local regions (1, 2). This means that the majority of the low-frequency or misused (nonpriority) compounds typically fall outside of any extensive control. Thus, they are detected purely by chance, based on extra information or analytical work. An example of this is the case of the European Union safety alert generated in 2006 because of the presence of the nonauthorized insecticide isofenphos-methyl found in pepper samples (3, 4). This is becoming more important, given that the pesticides currently authorized in Europe (Annex I, Directive 91/414/EEC; 5) and other developed countries have been reduced to around 50% of the total amount of compounds manufactured. Consequently, in the field of food safety, there is an obvious need for methods offering the rapid and reliable screening of a large number of compounds.

From an analytical point of view, this task is difficult to accomplish since it involves extending the scope of the multiresidue methods to cover several hundred chemicals. It is difficult to carry out these approaches cost-effectively due to the time and money required for upgrading methods to incorporate new compounds, and management of the standards and solutions. Extra analytical effort and an overall decrease in laboratory throughput result.

Thus, other alternatives should be explored and evaluated. A good alternative is the application of combined analyses based on the target/screening approach. This is done by targeting a group of priority compounds based on their toxicity and/or frequency of detection and, at the same time, carrying out a rapid screening of a much larger number of compounds for identification purposes only (6–9).

GC/MS has been used for many years to identify pesticides in food samples. Generally, to efficiently remove interference from coeluting peaks and to ensure sensitivity, selective ion monitoring (SIM) or MS/MS by selection of a precursor ion, as opposed to full scanning (monitoring the whole spectrum), has been used to detect trace levels of pesticides in complex samples (10, 11). However, these methods rely on only a few ions and are not designed to find compounds unless they are on the target list.

Received September 12, 2008. Accepted by AK March 12, 2009. ¹Corresponding author's e-mail: amadeo@ual.es

												AMDIS match	match											
	Aube	Aubergine,	g/kg	Pot	Potato, 🤅	g/kg	Cuci	cumber,	g/kg	Ban	Banana, ç	g/kg	Tangerine,		g/kg	Orange,		g/kg	Melon,		g/kg	Olive oil,		g/kg
Spiked pesticides	20	50	100	20	50	100	20	50	100	20	50	100	20	50	100	20	50	100	20	50	100	20	50	100
Dichlorvos	45	69	82	<loi<sup>b</loi<sup>	99	67	O >	55	51	71	74	81	NS	NS	NS	SN	NS	NS	49	11	85	51	80	86
Mevinphos	77	92	92	71	93	93	06	93	06	92	94	98	<l01< td=""><td>78</td><td>75</td><td>48</td><td>60</td><td>81</td><td>84</td><td>92</td><td>94</td><td>64</td><td>83</td><td>06</td></l01<>	78	75	48	60	81	84	92	94	64	83	06
Diphenylamine	79	74	75	83	88	87	NS	_	NS	NS	NS	NS	NS	NS	NS	83	88	83	NS	NS	NS	<loi </loi 	93	97
Etoprophos	79	06	96	76	88	92	75		93	75	84	93	<l01< td=""><td>56</td><td>83</td><td> POl </td><td>53</td><td>81</td><td>75</td><td>87</td><td>93</td><td>74</td><td>91</td><td>94</td></l01<>	56	83	 POl 	53	81	75	87	93	74	91	94
Chlorpropham	88	91	92	88	93	94	06	93	94	49	79	94	<l01< td=""><td>49</td><td>67</td><td>56</td><td>80</td><td>83</td><td>91</td><td>92</td><td>92</td><td>80</td><td>06</td><td>94</td></l01<>	49	67	56	80	83	91	92	92	80	06	94
Monocrotophos	<l0 < td=""><td>99</td><td>80</td><td>56</td><td>62</td><td>83</td><td><pre>P</pre></td><td></td><td>69</td><td><pre>Plant</pre></td><td>82</td><td>84</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>50</td><td>54</td><td>79</td><td>NS</td><td>NS</td><td>NS</td></l0 <>	99	80	56	62	83	<pre>P</pre>		69	<pre>Plant</pre>	82	84	NS	NS	NS	NS	NS	NS	50	54	79	NS	NS	NS
Dicloran	52	81	89	<loi></loi>	72	77	76		87	76	88	93	56	74	80	NS	NS	NS	69	81	86	47	84	91
Dimethoate	64	67	66	54	69	77	65	68	69	68	20	77	<l01< td=""><td>48</td><td>63</td><td>NS</td><td>NS</td><td>NS</td><td>61</td><td>67</td><td>75</td><td>68</td><td>70</td><td>72</td></l01<>	48	63	NS	NS	NS	61	67	75	68	70	72
Ethoxyquin	97	66	100	97	66	100	96	98	66	93	98	66		95	96	66	81	89	96	66	66	76	93	97
Lindane	70	85	94	70	80	93	80	85	92	85	06	94	20	74	75	60	65	65	NS	NS	NS	NS	NS	NS
Fonophos	88	93	95	88	94	94	06	06	91	83	91	93		84	06	79	85	06	06	95	94	88	92	95
Propyzamide	88	92	93	06	92	93	06	91	92	86	91	93		88	91	75	85	92	88	92	93	83	06	06
Pyrimethanil	93	96	97	92	96	97	89	92	95	95	98	98		93	93	80	86	06	06	95	96	96	98	66
Diazinon	93	98	66	93	96	66	93	96	98	92	96	98		86	89	73	82	87	93	98	66	94	97	66
Pirimicarb	94	97	98	93	97	66	91	97	98	87	96	98		92	95	72	78	93	93	97	98	91	98	66
Chlorpyriphos-methyl	06	95	94	92	93	95	73	80	85	91	94	95		92	94	86	93	93	88	93	94	92	95	95
Vinclozolin	87	92	93	89	91	93	83	87	89	84	06	92		83	87	81	83	91	87	06	92	89	93	93
Tolclophos-methyl	93	96	98	94	94	98	95	97	98	95	95	98		91	93	88	94	96	89	96	97	96	98	66
Alachlor	83	93	95	85	93	96	86	94	95	83	92	95	99	89	93	72	84	94	83	94	96	82	92	95
Metalaxyl	75	06	89	80	84	91	NS	NS	NS	NS	NS	NS	NS	NS	NS	45	59	85	NS	SN	NS	61	70	79
Prometryn	99	77	84	60	68	80	89	91	94	78	06	92	<l01< td=""><td>64</td><td>72</td><td>v</td><td>63</td><td>20</td><td>86</td><td>06</td><td>92</td><td>75</td><td>81</td><td>82</td></l01<>	64	72	v	63	20	86	06	92	75	81	82
Fenitrothion	70	71	87	58	76	81	69	79	85	51	99	86	<l0 < td=""><td>65</td><td>73</td><td>52</td><td>76</td><td>89</td><td>60</td><td>20</td><td>88</td><td>48</td><td>80</td><td>89</td></l0 <>	65	73	52	76	89	60	20	88	48	80	89
Pirimiphos-methyl	80	94	96	89	93	95	91	94	96	88	93	95	84	92	93	85	88	94	87	94	95	91	94	96
Dichlorfluanid	NS	NS	NS	NS	NS	NS	NS	NS	NS	55	68	80	<l01< td=""><td>62</td><td>75</td><td>NS</td><td>SN</td><td>NS</td><td></td><td>69</td><td>78</td><td></td><td>52</td><td>68</td></l01<>	62	75	NS	SN	NS		69	78		52	68
Malathion	70	84	88	79	80	88	47	99	67	57	80	93	53	74	73	NS	NS	NS	77	86	06	67	89	91
Fenthion	59	83	92	76	80	86	NS	NS	NS	NS	NS	NS	NS	NS	NS	69	80	87	NS	SN	NS	71	88	91
Dimethylvinphos		74	74	59	53	76	83	88	86		88	88	69	86	77	NS	SN	NS	56	76	77	NS	SN	NS
Chlorpyriphos	76	84	85	79	83	88	82	91	92	97	97	97		94	92	65	73	20	83	06	06	78	85	88
Parathion	<po < td=""><td>51</td><td>49</td><td>NS</td><td>SN</td><td>NS</td><td><pre> FO </pre></td><td></td><td>60</td><td>51</td><td>73</td><td>81</td><td><l0i< td=""><td>57</td><td>74</td><td>NS</td><td>SN</td><td>NS</td><td></td><td>54</td><td>68</td><td>56</td><td>72</td><td>83</td></l0i<></td></po <>	51	49	NS	SN	NS	<pre> FO </pre>		60	51	73	81	<l0i< td=""><td>57</td><td>74</td><td>NS</td><td>SN</td><td>NS</td><td></td><td>54</td><td>68</td><td>56</td><td>72</td><td>83</td></l0i<>	57	74	NS	SN	NS		54	68	56	72	83
Triadimefon	84	91	96	87	94	97	87	92	94	81	94	94		89	89	57	75	93	76	89	94	86	96	96

Table 1. Match obtained by AMDIS in eight selected matrixes at the three different concentrations^a

												AMDIS match	latch											
	Aube	Aubergine,	g/kg	Pot	Potato, g	g/kg	Cucumber,		g/kg	Banana		g/kg	Tangerine,		g/kg	Orange,	je, g/kg	ĝ	Melon,	n, g/kg	ß	Olive oil		g/kg
Spiked pesticides	20	50	100	20	50	100	20	50	100	20	20	100	20	50	100	20	50	100	20	50	100	20	50	100
Tetraconazole	95	97	98	95	97	66	95 (98	98	93 (96	98		94	96		92	96	94	98	98	93	97	98
Isocarbophos	69	87	06	71	72	88	65	82	78	81	88	94	89	84	87	55	69	86	76	88	92	NS	NS	NS
Cyprodinil	96	97	98	95	98	98	96	98	86	6 3	95	98		96	96		92	97	95	97	98	95	98	66
lsofenphos-methyl	87	93	95	85	94	96	88	92	94	81	91	94		88	93	76	89	92	84	06	96	89	95	97
Penconazole	94	98	98	92	97	98	92	92	93		96	97		86	89		79		94	97	98	89	97	98
Thiabendazole	69	89	94	82	85	92	<pre>FOI</pre>	52	58	73 8	88	87		79	86		82	·	<pre> </pre>	89	06	53	48	45
Tolylfluanide	NS	NS	NS	<loi <loi< li=""></loi<></loi 	71	72	56	72	71	63	78	86 <	- LOI	68	71	_	69	73	53	81	81	73	83	87
lsofenphos	85	91	93	87	06	94	86	91	93	82	06	94		90	92		86		83	91	93	06	95	96
Quinalphos	<pre>Pol</pre>	60	75	45	62	76	20 8		84	87 9	91	94		89	92		76		52	66	78	84	94	94
Mecarban	63	17	79	71	75	71	NSN		NS		72	70	45	72	80		65		65	76	77	59	75	72
Triadimenol	49	76	79	61	75	78	53 (68	75 (60	> 69	_	78	82		65	78	lOl≥	76	80	54	70	76
Procymidone	65	83	83	72	81	85	83		91	81	06	91		83	85		68		82	87	91	89	93	94
Fipronil	78	83	06	81	89	91	68		93	92	96	96		87	89		90	84	84	91	92	87	91	93
Methidathion	50	20	77	<l0< td=""><td>61</td><td>74</td><td>° 0 </td><td></td><td>85</td><td>3 62</td><td>87</td><td>86</td><td></td><td>70</td><td>72</td><td>60</td><td>60</td><td>61</td><td>67</td><td>80</td><td>91</td><td>66</td><td>85</td><td>87</td></l0<>	61	74	° 0		85	3 62	87	86		70	72	60	60	61	67	80	91	66	85	87
Endosulfan ()	83	93	96	84	92	96	84		91		06	95		83	91		76	88	83	94	96		96	98
Mepanipyrim	88	91	98	88	94	97	63		66	73 9	95	97		83	91	69	80		87	95	84		91	06
Hexaconazole	77	85	06	81	88	91	85		94	64	06	94 <	_	69	67	_	54	76	83	89	92		92	92
Phenamiphos	64	73	84	72	83	89	NSN			NS	NS	NS		SN	NS		NS	NS	NS	NS	NS	77	85	06
Imazalil	<pre>Pol</pre>	48	76	<rol></rol>	58	73	-Foi	78	88	69	82	85	86	06	95	95	95	96	 LOI	56	71		NS	NS
Flutolanil	91	93	98	92	95	97	NS			NS	NS	NS		NS	NS		NS	NS		NS	NS	94	92	95
Fludioxonil	82	06	95	89	96	98	92		98	606	96	66		88	93		64	79	89	96	97	72	84	96
Myclobutanil	83	06	93	86	91	94	87		94	80	89	93		86	87	51	70	84	81	89	92	79	92	94
Buprofezin	82	81	83	76	87	89	° ≺LOI			NS	NS	NS		80	78		60	82	82	83	85	84	87	91
Flusilazole	94	97	98	94	97	98	95	97	97	6 3	97	97		96	97		93	95	NS	NS	NS	92	95	97
Bupirimate	93	96	98	94	97	98	63	96	97	87 (96	97		93	95	20	90	96	94	96	97	96	98	98
Kresoxim-methyl	87	92	95	84	97	94	86	91	89	86	06	94		86	91		86	• 06	IOI	94	93	89	95	95
Iprobalicarb	 POl>	48	65	<l0< td=""><td>57</td><td>57</td><td>63</td><td>66</td><td>72</td><td>NS</td><td>NS</td><td>NS <</td><td>_</td><td>60</td><td>61</td><td>-LOI</td><td>50</td><td>56</td><td>NS</td><td>NS</td><td>NS</td><td>50</td><td>68</td><td>68</td></l0<>	57	57	63	66	72	NS	NS	NS <	_	60	61	-LOI	50	56	NS	NS	NS	50	68	68
Endosulfan()	75	88	92	74	85	86	82	89	06	76 9	06	91		77	82	52	69	77	62	89	91	78	92	93
Chlorfenapyr	77	89	92	77	88	91	84	06	92		86	06	65	85	86	65	81	88	75	86	06	80	88	92
Oxadixyl	62	84	06	71	82	88	74 8	88	92	65 8	89	93	52	81	84		58	75	68	86	84	49	71	82

												AMDIS match	match											
I	Aubergine,		g/kg	Potato,		g/kg	Cucumber,		g/kg	Banana	_	g/kg	Tangerine	_	g/kg	Orange,		g/kg	Melon,	on, g/kg	D	Olive (oil, g/l	g/kg
Spiked pesticides	20	50	100	20	50	100	20	50	100	20	50	100	20	50	100	20	50	100	20	20	100	20	20	100
Triazophos	82	88	93	82	87	91	69	84	92	84	88	93	99	91	93	77	84	06	72	84	06	74	87	06
Benalaxyl	92	94	95	91	94	95	91	95	95	89	95	94	84	92	92	82	06	93	93	95	96	95	96	96
Endosulfan sulfate	48	58	58	57	67	69	61	68	02	75	17	80	_	50	51	<loi< td=""><td>45</td><td>63</td><td>62</td><td>17</td><td>81</td><td>65</td><td>64</td><td>71</td></loi<>	45	63	62	17	81	65	64	71
Quinoxyfen	91	92	93	89	92	92	92	89	93	06	92	93		92	95	87	91	94	86	89	89	87	06	93
Propiconazole	97	98	66	97	98	98	95	98	86	۲OI	98	98		95	96	83	94	96	96	98	98	96	98	66
Trifloxystrobin	52	64	74	56	72	82	81	85	87	71	86	92	22	78	81	53	75	80	59	74	80	64	81	88
Nuarimol	58	72	74	65	74	81	82	88	89	79	88	82		82	87	60	68	83	78	84	89	73	80	82
Tebuconazole	<loi< td=""><td>67</td><td>81</td><td>56</td><td>73</td><td>82</td><td>. 28</td><td>75</td><td>85</td><td>71</td><td>76</td><td>80</td><td></td><td>73</td><td>73</td><td>50</td><td>70</td><td>80</td><td>63</td><td>78</td><td>84</td><td>70</td><td>68</td><td>69</td></loi<>	67	81	56	73	82	. 28	75	85	71	76	80		73	73	50	70	80	63	78	84	70	68	69
Iprodione	NS	NS	NS	NS	NS	NS	NSN	NS	NS	72	78	77		NS	NS	NS	NS	NS	49	71	76	NS	NS	NS
Phosmet	NS	NS	NS	NS	NS	NS	<pre></pre>	60	81	76	84	91		NS	NS	NS	NS	NS	47	74	81	NS	NS	NS
Bromopropylate	92	95	97	94	97	98	94	97	97	91	95	97		93	95	83	88	95	88	92	94	06	96	97
Bifenthrin	93	98	66	94	66	98	96	97	98	95	96	97	87	94	97	06	94	96	92	93	95	92	97	97
Fenpropathrin	72	85	85	75	80	87	NS	NS	NS	NS	NS	NS	NS	NS	NS	59	74	86	NS	NS	NS	74	83	89
Tebufenpyrad	96	98	98	96	98	66	95	98	98	92	92	95	68	95	97	91	96	98	94	97	98	94	98	98
Tetradifon	84	92	95	84	93	95	87	93	96	76	91	95	<lol< li=""></lol<>	69	79	<loi< td=""><td>70</td><td>83</td><td>83</td><td>91</td><td>95</td><td>72</td><td>92</td><td>95</td></loi<>	70	83	83	91	95	72	92	95
Bifenox	NS	NS	NS	NS	NS	NS	NSN	NS	NS	46	51	71	<lol< li=""></lol<>	60	76	NS	NS	NS	NS	NS	NS	NS	NS	NS
Phosalone	<loi< td=""><td>70</td><td>81</td><td>63</td><td>22</td><td>83</td><td>. 99</td><td>79</td><td>75</td><td>74</td><td>88</td><td>92</td><td>49</td><td>73</td><td>78</td><td>48</td><td>61</td><td>76</td><td>71</td><td>86</td><td>92</td><td>75</td><td>77</td><td>88</td></loi<>	70	81	63	22	83	. 99	79	75	74	88	92	49	73	78	48	61	76	71	86	92	75	77	88
Pyriproxyfen	84	92	94	83	88	95	63	94	94	83	93	94	83	89	91	62	79	85	81	06	94	91	92	96
Cyhalothrin	67	84	81	84	84	57	20	73	76	77	85	88	<lol< li=""></lol<>	59	52	57	61	82	71	78	80	80	90	93
Fenarimol	83	06	94	89	92	95	85	91	93	60	63	74	65	70	86	45	75	85	75	84	83	76	89	92
Pyrazophos	73	87	91	79	84	89	NS	NS	NS	NS	NS	NS	NS	NS	NS	49	67	81	NS	NS	NS	69	86	88
Acrinathrin	<l01< td=""><td>67</td><td>63</td><td>49</td><td>64</td><td>73</td><td>NS</td><td>NS</td><td>NS</td><td>80</td><td>81</td><td>85</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>58</td><td>79</td><td>83</td><td>60</td><td>61</td><td>72</td></l01<>	67	63	49	64	73	NS	NS	NS	80	81	85	NS	NS	NS	NS	NS	NS	58	79	83	60	61	72
Permethrin	81	94	96	85	94	94	86	93	95	75	85	91	09	69	83	68	80	87	80	86	91	84	93	94
Prochloraz	<loi< td=""><td>73</td><td>95</td><td>45</td><td>63</td><td>82</td><td></td><td>63</td><td>69</td><td>62</td><td>78</td><td>89</td><td>-LOI</td><td>55</td><td>57</td><td><l0i< td=""><td>60</td><td>62</td><td>69</td><td>84</td><td>• 06</td><td><0I<</td><td>71</td><td>79</td></l0i<></td></loi<>	73	95	45	63	82		63	69	62	78	89	-LOI	55	57	<l0i< td=""><td>60</td><td>62</td><td>69</td><td>84</td><td>• 06</td><td><0I<</td><td>71</td><td>79</td></l0i<>	60	62	69	84	• 06	<0I<	71	79
Pyridaben	87	93	06	84	94	95	NS	NS	NS	NS	NS	NS		NS	NS	82	89	93	NS	NS	NS	73	91	89
Fenbuconazole	63	74	75	60	75	82	NS	NS	NS	NS	NS	NS		NS	NS	48	66	75	NS	NS	NS	54	75	74
Azoxystrobin	59	81	87	54	84	86	62	74	80	83	85	06	_	62	64	<l01< td=""><td>80</td><td>83</td><td>78</td><td>85</td><td>85</td><td>۲OI</td><td>80</td><td>82</td></l01<>	80	83	78	85	85	۲OI	80	82
Dimetomorphe	NS	SN	NS	80	83	89	NS	NS	SN	<_LOI	81	88	20	85	88	73	86	88	84	06	06	71	82	80
Tolfenpyrad	68	84	06	<l0 < td=""><td>72</td><td>83</td><td>. 09</td><td>78</td><td>91</td><td>76</td><td>85</td><td>89</td><td><pre></pre></td><td>83</td><td>86</td><td>66</td><td>80</td><td>87</td><td>99</td><td>89</td><td>89</td><td>< COI</td><td>76</td><td>84</td></l0 <>	72	83	. 09	78	91	76	85	89	<pre></pre>	83	86	66	80	87	99	89	89	< COI	76	84
 ^a In all of the cases included in this table, the DRS results were confirmed ^b LOI = Limit of identification. ^c NS = Not spiked. 	ded in tl tion.	his tab	le, the l	ORS re:	sults w	ere cont	irmed by	/ NIST	, and ret	ention 1	time di	by NIST, and retention time differences (compared to the pesticide database) were <5 $$	s (comp	ared to	o the pe	sticide d	lataba	se) were	S ℃ S					
NS = Not spiked.																								

Table 1. (continued)

	<u>s</u>
	2
	Ξ.
	0
	6
	E C
	8
	1
	ē
	D
	a
	<u> </u>
	8
	ž.
	8
	<u></u>
	ő
	<u> </u>
	<u>e</u>
	d)
	ž
	<u> </u>
	ē.
	ິ
	a
	a tange
	and tai
	2
	5
	a
	5
	l, poi
	_
1	0
	~
	≍
	-
	0
	Ľ.
	ğ
	z
	S.
	ช .
	Ξ.
	C
	Z
	Ψ.
	-
1	ō
	רסו) י
	on (LOI)
	tion (LOI)
	cation (LOI)
	fication (LOI)
	tification (LOI)
	entification (LOI)
	dentification (LOI)
	identification (LOI)
	of identification (LOI)
	s of identification (LOI)
	its of identification (LOI)
	mits of identification (LOI)
	limits of identification (LOI)
	d limits of identification (LOI)
	0
	and limits of identification (LOI)
	0
	0
	0
	0
	0
	0
	0
	0
	selected ion, and
	selected ion, and
	0
	selected ion, and
	etention time, selected ion, and
	selected ion, and
	etention time, selected ion, and
	etention time, selected ion, and
	etention time, selected ion, and
	etention time, selected ion, and
	etention time, selected ion, and
	Locked retention time, selected ion, and
	Locked retention time, selected ion, and
	etention time, selected ion, and
	e 2. Locked retention time, selected ion, and
	e 2. Locked retention time, selected ion, and
•••••••••••••••••••••••••••••••••••••••	e 2. Locked retention time, selected ion, and
	e 2. Locked retention time, selected ion, and

							, LOI,	g/kg	
Compound	R_{t} , min ^a	Target ion ^b	Q1 ^b	Q2 ^b	Q3 ^b	Cucumber	Olive oil	Potato	Tangerine
Dichlorvos	2.915	108.9 (100)	184.9 (25.50)	186.9 (7.90)	144.9 (7.20)	20 < LOI > 50	10 < LOI > 20	20 < LOI > 50	50 < LOI> 100
Mevinphos	3.797	127.0 (100)	192.0 (26.10)	109.0 (25.40)	67.0 (12.60)	5 < LOI > 10	10 < LOI > 20	5 < LOI > 10	5 < LOI> 10
Methomil	4.763	105.0 (100)	88.0 (37.10)	77.0 (22.60)	U	100 < LOI > 500	100 < LOI >500	100 < LOI > 500	100 < LOI > 500
Omethoate	5.003	156.0 (100)	110.0 (94.20)	109.0 (43.70)	79.0 (45.70)	100 < LOI > 500			
Diphenylamine	5.258	169.1 (100)	168.1 (62.40)	167.1 (33.40)	83.5 (9.90)	NS^d	FOI 5	FOI 5	NS
Etoprophos	5.371	157.9 (100)	126.0 (46.10)	139.0 (45.60)	200.0 (32.00)	10 < LOI > 20	10 < LOI> 20	5 < LOI > 10	20 < LOI > 50
Chlorporpham	5.522	127.0 (100)	213.0 (39.60)	153.0 (49.60)	171.0 (30.30)	FOI 5	5 < LOI >10	FOI 5	FOI 5
Monocrotophos	5.868	127.0 (100)	192.0 (15.60)	109.0 (11.20)	193.0 (8.90)	20 < LOI > 50	100 < LOI > 500	10 < LOI > 20	NS
Dicloran	6.279	206.0 (100)	176.0 (93.60)	124.0 (50.50)	160.0 (47.60)	5 < LOI > 10	20 < LOI > 50	20 < LOI > 50	10 < LOI > 20
Dimethoate	6.340	87.0 (100)	125.0 (59.50)	93.0 (60.00)	143.0 (12.60)	10 < LOI > 20	20 < LOI > 50	10 < LOI > 20	20 < LOI > 50
Ethoxyquin	6.415	202.1 (100)	174.1 (45.80)	145.0 (21.30)	203.1 (14.80)	FOI 5	FOI 5	FOI 5	FOI 5
Lindane	6.730	180.9 (100)	182.9 (94.80)	218.9 (77.00)	111.0 (67.70)	10 < LOI > 20	5 < LOI > 10	10 < LOI > 20	5 < LOI > 10
Fonophos	6.944	109.0 (100)	137.0 (42.50)	246.0 (36.90)	110.0 (22.20)	FOI 5	FOI 5	FOI 5	FOI 5
Propyzamide	6.974	172.9 (100)	174.9 (63.40)	144.9 (32.00)	255.0 (22.70)	FOI 5	FOI 5	FOI 5	FOI 5
Pyrimethanil	7.064	198.1 (100)	199.1 (46.50)	200.0 (5.60)	100.0 (3.20)	FOI 5	FOI 5	FOI 5	5 < LOI > 10
Diazinon	7.233	179.0 (100)	137.0 (95.60)	152.0 (64.50)	199.0 (58.10)	FOI 5	FOI 5	FOI 5	FOI 5
Pirimicarb	7.838	166.1 (100)	72.0 (70.80)	238.1 (22.40)	167.1 (10.10)	FOI 5	FOI 5	FOI 5	FOI 5
Chlorpyriphos-methyl	8.296	285.9 (100)	287.9 (72.20)	125.0 (57.70)	290.0 (15.90)	5 < LOI > 10	FOI 5	FOI 5	FOI 5
Vinclozolin	8.315	212.0 (100)	285.0 (67.80)	198.0 (96.50)	186.9 (80.60)	FOI 5	FOI 5	FOI 5	FOI 5
Tolclophos-methyl	8.404	265.0 (100)	267.0 (37.60)	125.0 (21.70)	266.0 (10.80)	FOI 5	FOI 5	FOI 5	FOI 5
Alachlor	8.515	160.0 (100)	188.0 (91.40)	146.0 (36.20)	237.0 (26.40)	FOI 5	5 < LOI > 10	FOI 5	10 < LOI > 20
Metalaxyl	8.668	206.1 (100)	160.1 (57.90)	249.2 (38.90)	220.2 (39.80)	NS	10 < LOI > 20	FOI 5	NS
Prometryn	8.670	241.0 (100)	184.0 (71.20)	226.0 (55.00)	106.0 (28.80)	FOI 5	FOI 5	5 < LOI > 10	20 < LOI > 50
Methiocarb	9.024	168.0 (100)	153.0 (60.70)	109.0 (46.10)	91.0 (23.70)	100 < LOI > 500	NS	10 < LOI > 20	100 < LOI > 500
Fenitrothion	9.036	277.0 (100)	125.0 (96.50)	109.0 (77.20)	260.0 (52.80)	10 < LOI > 20	10 < LOI > 20	5 < LOI > 10	20 < LOI > 50
Primiphos-methyl	9.153	290.0 (100)	276.0 (80.50)	305.0 (36.20)	233.0 (31.70)	FOI 5	FOI 5	FOI 5	FOI 5
Dichlofluanid	9.207	123.0 (100)	167.0 (36.60)	224.0 (31.10)	225.9 (21.70)	100 < LOI > 500	20 < LOI > 50	50 < LOI > 100	20 < LOI > 50
Malathion	9.400	173.0 (100)	127.0 (84.90)	125.0 (82.60)	158.0 (43.40)	10 < LOI > 20			
Fenthion	9.560	278.0 (100)	125.0 (23.30)	109.0 (18.10)	169.0 (17.30)	5 < LOI > 10	5 < LOI > 10	FOI 5	
Dimethylvinphos	9.575	295.0 (100)	297.0 (66.00)	109.0 (84.10)	204.0 (10.40)	10 < LOI > 20			

(continued)
5
Table

							, LOI,	g/kg	
Compound	R_{t} , min ^a	Target ion ^b	Q1 ^b	Q2 ^b	$Q3^{b}$	Cucumber	Olive oil	Potato	Tangerine
Chlorpyriphos	9.617	197.0 (100)	199.0 (95.90)	314.0 (78.80)	316.0 (51.10)	5 < LOI > 10	5 < LOI > 10	5 < LOI > 10	LOI 5
Parathion	9.637	291.0 (100)	109.0 (77.90)	97.0 (65.90)	139.0 (43.60)	20 < LOI > 50	10 < LOI > 20	100 < LOI > 500	20 < LOI > 50
Triadimefon	9.693	57.1 (100)	208.0 (44.20)	128.0 (25.10)	181.0 (23.50)	5 < LOI > 10	FOI 5	FOI 5	5 < LOI > 10
Isocarbophos	9.802	136.0 (100)	121.0 (67.50)	120.0 (45.10)	110.0 (36.60)	10 < LOI > 20	50 < LOI > 100	10 < LOI > 20	10 < LOI > 20
Tetraconazole	9.932	336.1 (100)	338.1 (33.10)	337.0 (15.20)	100.9 (13.90)	LOI 5	FOI 5	FOI 5	FOI 5
Cyprodinil	10.282	224.1 (100)	225.1 (62.40)	210.0 (9.90)	70.0 (6.90)	LOI 5	FOI 5	FOI 5	FOI 5
Isofenphos methyl	10.418	199.0 (100)	121.0 (80.00)	241.0 (40.00)	231.0 (30.00)	5 < LOI > 10	FOI 5	FOI 5	5 < LOI > 10
Thiabendazole	10.469	201.0 (100)	174.0 (75.60)	129.0 (6.20)	U	50 < LOI > 100	10 < LOI > 20	5 < LOI > 10	5 < LOI > 10
Penconazole	10.514	248.0 (100)	159.0 (94.60)	161.0 (61.00)	250.0 (33.10)	LOI 5	FOI 5	FOI 5	10 < LOI > 20
Tolylfluanid	10.623	137.0 (100)	106.0 (39.40)	240.0 (27.80)	181.0 (25.90)	10 < LOI > 20	10 < LOI > 20	20 < LOI > 50	20 < LOI > 50
Isofenphos	10.808	213.0 (100)	121.0 (53.90)	255.0 (44.30)	185.0 (40.40)	LOI 5	FOI 5	FOI 5	FOI 5
Quinalphos	10.826	146.0 (100)	157.1 (61.00)	156.1 (35.50)	118.0 (44.40)	10 < LOI > 20	5 < LOI > 10	10 < LOI > 20	5 < LOI > 10
Triadimenol	10.834	112.0 (100)	168.1 (80.00)	128.0 (67.70)	131.0 (49.80)	10 < LOI > 20	10 < LOI > 20	10 < LOI > 20	20 < LOI > 50
Mecarban	10.870	131.0 (100)	159.0 (54.30)	160.0 (42.50)	96.9 (103.50)	10 < LOI > 20	10 < LOI > 20	5 < LOI > 10	10 < LOI > 20
Fipronil	10.905	367.0 (100)	369.0 (69.19)	213.0 (30.20)	351.0 (6.60)	FOI 5	10 < LOI > 20	10 < LOI > 20	5 < LOI > 10
Procymidone	10.981	96.0 (100)	283.0 (70.50)	285.0 (45.60)	67.0 (41.40)	FOI 5	5 < LOI > 10	FOI 5	FOI 5
Methidathion	11.150	145.0 (100)	85.0 (58.80)	93.0 (16.00)	125.0 (15.20)	20 < LOI > 50	10 < LOI > 20	20 < LOI > 50	10 < LOI > 20
-Endosulfan	11.318	240.9 (100)	236.9 (98.30)	238.9 (93.50)	194.9 (89.10)	5 < LOI > 10	FOI 5	5 < LOI > 10	10 < LOI > 20
Mepanipyrim	11.532	222.1 (100)	223.0 (51.80)	77.0 (11.80)	67.0 (11.10)	LOI 5	FOI 5	FOI 5	FOI 5
Hexaconazole	11.761	83.0 (100)	214.0 (63.60)	216.0 (42.30)	175.0 (28.70)	FOI 5	5 < LOI > 10	FOI 5	5 < LOI > 10
Imazalil	11.894	215.0 (100)	172.9 (93.70)	217.0 (64.20)	174.9 (62.50)	20 < LOI > 50	10 < LOI > 20	20 < LOI > 50	FOI 5
Flutolanil	11.920	172.9 (100)	145.0 (28.90)	281.1 (20.40)	323.1 (13.80)	NS	FOI 5	FOI 5	NS
Fludioxonil	12.045	248.0 (100)	127.0 (36.30)	154.0 (28.40)	153.0 (18.50)	LOI 5	10 < LOI > 20	FOI 5	FOI 5
Myclobutanil	12.220	179.0 (100)	150.0 (47.90)	181.0 (33.00)	152.0 (26.90)	LOI 5	5 < LOI > 10	FOI 5	5 < LOI > 10
Iprobalicarb	12.255	119.0 (100)	134.0 (58.00)	116.0 (51.90)	158.0 (27.30)	5 < LOI > 10	20 < LOI > 50	20 < LOI > 50	20 < LOI > 50
Buprofezin	12.289	105.0 (100)	106.0 (48.00)	104.0 (46.80)	172.0 (40.20)	LOI 5	FOI 5	FOI 5	5 < LOI > 10
Flusilazole	12.297	233.1 (100)	206.0 (31.70)	234.0 (19.30)	220.1 (8.00)	LOI 5	FOI 5	FOI 5	FOI 5
Bupirimate	12.403	273.1 (100)	208.1 (77.80)	316.2 (37.70)	166.1 (50.20)	LOI 5	FOI 5	FOI 5	FOI 5
Kresoxim-methyl	12.454	116.0 (100)	206.0 (59.40)	131.0 (55.20)	132.0 (23.90)	LOI 5	FOI 5	FOI 5	FOI 5
-Endosulfan	12.579	194.9 (100)	236.9 (85.10)	207.0 (81.10)	159.0 (66.80)	5 < LOI > 10	5 < LOI > 10	5 < LOI > 10	10 < LOI > 20

MEZCUA ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 92, NO. 6, 2009 1795

continued)
9
2
ð
Ē
ab
ື
H

							, LOI,	g/kg	
Compound	R_{t} , min ^a	Target ion ^b	Q1 ^b	Q2 ^b	$Q3^{b}$	Cucumber	Olive oil	Potato	Tangerine
Chlorfenapyr	12.613	59.0 (100)	247.0 (7.80)	249.0 (5.90)	408.0 (4.90)	5 < LOI > 10	5 < LOI > 10	5 < LOI > 10	10 < LOI > 20
Oxadixyl	12.949	105.0 (100)	163.0 (97.80)	132.0 (76.30)	120.0 (45.30)	5 < LOI > 10	10 < LOI > 20	5 < LOI > 10	10 < LOI > 20
Triazophos	13.228	161.0 (100)	162.0 (67.00)	172.0 (40.90)	257.0 (29.40)	5 < LOI > 10	10 < LOI > 20	5 < LOI > 10	10 < LOI > 20
Ofurace	13.283	132.0 (100)	160.0 (77.80)	232.1 (54.80)	281.1 (39.40)	5 < LOI > 10	10 < LOI > 20	20 < LOI > 50	NS
Benalaxil	13.373	148.0 (100)	91.0 (41.80)	206.0 (26.90)	204.0 (20.10)	FOI 5	FOI 5	FOI 5	FOI 5
Endosulfan sulfate	13.380	272.0 (100)	274.0 (83.50)	229.0 (61.00)	387.0 (45.60)	10 < LOI > 20	20 < LOI > 50	10 < LOI > 20	20< LOI > 50
Quinoxifen	13.385	237.0 (100)	272.0 (39.10)	307.0 (32.60)	309.0 (19.60)	FOI 5	FOI 5	FOI 5	FOI 5
Propiconazole	13.470	173.0 (100)	259.0 (72.60)	175.0 (63.20)	261.0 (54.70)	FOI 5	5 < LOI > 10	FOI 5	FOI 5
Trifloxystrobin	13.657	116.0 (100)	131.0 (61.70)	222.0 (34.10)	186.0 (24.20)	5 < LOI > 10	10 < LOI > 20	10 < LOI > 20	10< LOI > 20
Tebuconazole	13.716	125.0 (100)	250.0 (98.80)	127.0 (35.60)	252.0 (32.40)	10 < LOI > 20	20 < LOI > 50	5 < LOI > 10	10< LOI > 20
Nuarimol	13.724	235.0 (100)	107.0 (88.20)	203.0 (80.20)	139.0 (75.20)	5 < LOI > 10	FOI 5	5 < LOI > 10	FOI 5
Triphenyl phosphate	13.862	326.0 (100)	325.0 (80.70)	215.0 (19.10)	170.0 (17.80)	FOI 5	FOI 5	FOI 5	FOI 5
Iprodione	14.195	187.0 (100)	314.0 (69.70)	189.0 (65.80)	244.0 (65.30)	5 < LOI > 10	100 < LOI > 500	20 < LOI > 50	50< LOI > 100
Phosmet	14.252	160.0 (100)	317.0 (4.10)	192.0 (1.50)	o	20 < LOI > 50	20 < LOI > 50	50 < LOI > 100	50< LOI > 100
Bromopropylate	14.308	340.9 (100)	338.9 (51.30)	342.9 (49.20)	182.9 (48.70)	5 < LOI > 10	FOI 5	FOI 5	FOI 5
Bifenthrin	14.419	181.1 (100)	165.0 (31.40)	166.0 (29.60)	182.1 (15.10)	FOI 5	FOI 5	FOI 5	5< LOI > 10
Tebufenpyrad	14.547	318.0 (100)	171.0 (52.70)	333.0 (78.20)	276.0 (38.50)	FOI 5	FOI 5	FOI 5	FOI 5
Bifenox	14.592	341.0 (100)	343.0 (65.90)	311.0 (35.60)	189.0 (34.20)	10 < LOI > 20	10 < LOI > 20	100 < LOI > 500	20< LOI > 50
Tetradifon	14.690	159.0 (100)	111.0 (72.00)	299.0 (59.70)	227.0 (58.90)	FOI 5	5 < LOI > 10	FOI 5	20< LOI > 50
Phosalone	14.838	182.0 (100)	121.0 (40.50)	184.0 (33.40)	367.0 (25.40)	10 < LOI > 20	20 < LOI > 50	10 < LOI > 20	10< LOI > 20
Pyriproxyfen	14.928	136.0 (100)	78.0 (14.10)	96.0 (13.00)	226.0 (8.30)	FOI 5	FOI 5	FOI 5	LOI 5
Cyhalothrin	15.185	181.0 (100)	197.0 (84.20)	208.1 (50.50)	141.1 (30.30)	10 < LOI > 20	10 < LOI > 20	5 < LOI > 10	20< LOI > 50
Fenarimol	15.201	139.0 (100)	219.0 (69.70)	107.0 (68.60)	251.0 (60.00)	FOI 5	5 < LOI > 10	FOI 5	LOI 5
Pyrazophos	15.359	221.1 (100)	232.1 (34.60)	373.1 (25.50)	237.1 (18.70)	100 < LOI > 500	10 < LOI > 20	5 < LOI > 10	NS
Acrinatrin	15.362	208.0 (100)	181.0 (80.00)	289.0 (59.90)	209.0 (52.20)	10 < LOI > 20	10 < LOI > 20	10 < LOI > 20	100< LOI > 500
Permethrin	15.684	183.1 (100)	163.0 (19.40)	165.0 (16.70)	184.0 (15.80)	20 < LOI > 50	5 < LOI > 10	5 < LOI > 10	5< LOI > 10
Pyridaben	15.762	147.0 (100)	117.0 (15.00)	148.1 (12.00)	309.1 (8.00)	100 < LOI > 500	10 < LOI > 20	5 < LOI > 10	100< LOI > 500
Prochloraz	15.865	180.1 (100)	308.0 (53.20)	310.0 (52.40)	198.0 (18.00)	50 < LOI > 100	20 < LOI > 50	5 < LOI > 10	20< LOI > 50
Cyfluthrin	16.109	163.0 (100)	206.0 (70.70)	165.0 (67.50)	227.0 (52.60)	100 < LOI > 500	100 < LOI > 500	100 < LOI > 500	100< LOI > 500
Fenbuconazole	16.116	129.0 (100)	198.1 (46.10)	125.0 (39.30)	211.1 (6.00)	100 < LOI > 500	10 < LOI > 20	10 < LOI > 20	100< LOI > 500

							LOI, g/kg	g/kg	
Compound	R_{t} , min ^a	R _t , min ^a Target ion ^b	Q1 ^b	$Q2^{b}$	$Q3^{b}$	Cucumber	Olive oil	Potato	Tangerine
Cypermethrin	16.484	163.0 (100)	181.0 (71.60)	165.0 (65.60)	209.0 (45.10)	100 < LOI > 500	100 < LOI > 500	100 < LOI > 500	100< LOI > 500
Fluvalinate tau	17.359	250.0 (100)	252.0 (34.30)	209.0 (28.80)	181.0 (24.30)	100 < LOI > 500	100 < LOI > 500	100 < LOI > 500	100< LOI > 500
Deltamethrin	18.000	181.0 (100)	253.0 (66.90)	251.0 (42.90)	255.0 (32.60)	100 < LOI > 500	100 < LOI > 500	100 < LOI > 500	100< LOI > 500
Azoxystrobin	18.315	344.0 (100)	388.0 (30.00)	345.0 (28.40)	372.0 (16.10)	10 < LOI > 20	20 < LOI > 50	LOI 5	20< LOI > 50
Dimethomorph	18.342	301.0 (100)	303.0 (34.20)	387.0 (30.30)	165.0 (26.00)	50 < LOI > 100	20 < LOI > 50	10 < LOI > 20	20< LOI > 50
Tolfenpyrad	18.423	383.0 (100)	197.0 (73.60)	171.0 (65.40)	211.0 (40.10)	10 < LOI > 20	20 < LOI > 50	5 < LOI > 10	20< LOI > 50
^{<i>a</i>} R_t = Retention time.									

Percent relative abundance shown in parentheses

Only two qualifier ions selected.

VS = Not spiked

MEZCUA ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 92, No. 6, 2009 1797

The full-scan mode is a standard feature in all MS detectors. However, most methods employ it for qualitative analysis only. A major advantage of the full-scan mode over the SIM mode is the simultaneous identification of other eluted compounds that could be of interest. A major disadvantage is that, generally, the full-scan method is less sensitive than the SIM method, although new generation equipment yields sufficient sensitivity to meet current regulations (12). Recently, the use of library searching methods for GC/MS has made it possible to search the large National Institute of Standards and Technology (NIST) pesticide libraries in minutes (13).

With retention time locked (RTL)-GC/MS, the detection selectivity is greatly improved by linking the locked retention time to the mass spectral data. This reduces the risk of false positives. Nowadays, these methods have been widely developed to analyze multiresidues in fresh vegetables, fruit, and honey (14-16). The automated mass spectral deconvolution and identification system (AMDIS; 13) is post-processing software for extracting "purified" mass spectra from a one-dimensional gas chromatogram. The AMDIS offers the possibility of identifying compounds by both mass spectra and retention index (or retention time) together.

This paper reports the development and evaluation of a rapid, automated screening method for the detection of pesticide residues in food using GC/MS. It is based on the use of deconvolution reporting software (DRS) together with a database containing mass spectra and locked retention times for 927 pesticides and endocrine disruptors (13). Simultaneously with the screening, the method performs an automatic quantification of 95 target pesticides. The method is RTL, and the analytical column is backflushed by reversing the column flow at the end of the run in order to minimize maintenance of the system.

Experimental

Chemicals and Reagents

Pesticide analytical standards were purchased from Dr. Ehrenstorfer (Ausburg, Germany) or Riedel de-Haën (Seelze, Individual pesticide Germany). stock solutions (approximately 500 g/mL) were prepared in methanol or ethyl acetate and were stored at -18 C. HPLC grade acetonitrile (ACN) and methanol were obtained from Merck (Darmstadt, Germany). Primary-secondary amine (PSA) sorbent material was obtained from Supelco (Bellefonte, PA).

Sample Treatment

Fruit, vegetable, and olive oil samples were purchased from different local markets. The extraction procedure used for fruit and vegetable samples [the so-called quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, described elsewhere; 17, 18], comprised the following steps: A representative 15 g portion of previously homogenized sample was weighed in a 200 mL PTFE centrifuge tube. Then 15 mL ACN was added, and the tube was shaken vigorously for 1 min. After this, 1.5 g NaCl and 4 g MgSO₄ were added,

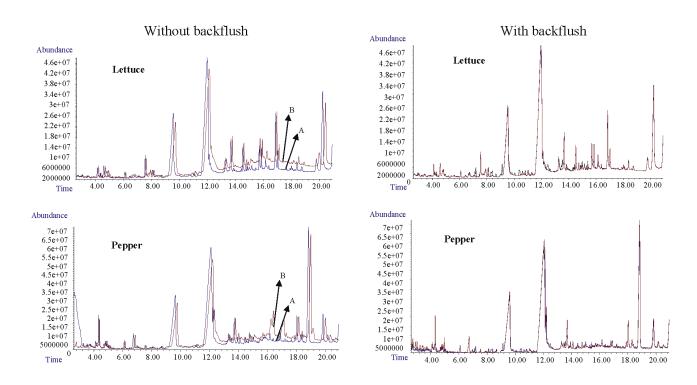


Figure 1. Extracts of lettuce and pepper injected 3 times with a 2 min backflush and 3 times without backflush. The first and third injections are shown in each case. Without backflushing, the third injection (B) shows carryover, and retention time shifts compared to the first injection (A).

and the shaking process was repeated for 1 min. The extract was then centrifuged (3700 rpm) for 1 min. A 5 mL amount of the supernatant (acetonitrile phase) was then transferred to a 15 mL graduated centrifuge tube containing 250 mg PSA and 750 mg MgSO₄, which was then shaken energetically for 20 s. Following this, the extract was centrifuged again (3700 rpm) for 1 min. Finally, an extract containing the equivalent of 1 g of sample/mL of nearly 100% ACN was obtained.

Olive oil samples were extracted by matrix solid-phase dispersion, with a preliminary liquid–liquid extraction using aminopropyl as the sorbent material, with a cleanup performed in the elution step with Florisil. The complete procedure was described previously (19).

GC/MS System

GC/MS analyses were run on an Agilent 7890 series gas chromatograph (Agilent Technologies, Santa Clara, CA) interfaced to an Agilent 5975 mass selective detector (MSD). Retention time locking, data acquisition, processing, and instrumental control were performed by the Agilent MSD ChemStation software (E.0200.493 version). A programmable temperature vaporizing (PTV) inlet was used in the solvent vent mode; an empty 1.8 mm id liner was placed in the PTV injector. Analytes were separated in an Agilent HP-5MSi capillary column (5% biphenyl/95% dimethylsiloxane), 15 m 0.25 mm id, 0.25 m film thickness. A deactivated fused-silica restrictor (0.171 m 0.120 mm id, 0.1 m film thickness) was placed in the transfer line, which was connected to the capillary column through a QuickSwap device. The QuickSwap device is a purged T-connection placed between the end of the GC column and the entrance to the MSD transfer line. The inlet operating conditions were injection volume, 10 L, and injection speed, 30 000 L/min; the temperature program was set at 79 C for 0.25 min, programmed to 300 C at 710 C/min, and kept at this temperature for 2 min. The helium carrier gas flow was maintained at a constant pressure of 17.296 psi. As RTL method was used, using the locked retention time of chlorpyriphos methyl divided by 2 (8.297 min) as the reference; this retention time was taken from the Agilent Pesticide and Endocrine Disruptor database. The retention time database was created with a chromatographic method in which the run time was double the run time proposed in this paper. All of the conditions in the methods were the same except for the column length; the reference method used a column length of 30 m length, and the proposed method 15 m. To compare experimental retention times with those registered in the database, division by 2 was required.

As an example, the retention time of chlorpyriphos methyl (used as the reference) in the original method with a column of 30 m length was 16.594 min, and in the proposed method using a column of 15 m was 8.297 min. The oven temperature program was 70 C for 1 min, programmed to 150 C at 50 C/min, then to 200 C at 6 C/min, and finally to 280 C at 16 C/min; it was kept at this temperature for 5 min. After that, a post-run of 5 min was carried out with a temperature of

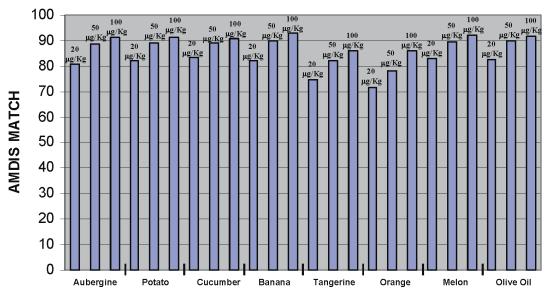


Figure 2. Mean AMDIS match values obtained after DRS analysis of full-scan chromatograms obtained by RTL GC of aubergine, potato, cucumber, banana, tangerine, orange, melon, and olive oil extracts at three concentration levels of 20, 50, and 100 g/kg.

290 C. During the post-run, the column head pressure was lowered to 1 psi and the pressure in the Quick Swap increased to 60 psi. During this post-run time, the column flow was reversed in order to backflush high-boiling components from the head of the column and out through the split vent of the PTV inlet.

Electron impact mass spectra in the full-scan mode were obtained at 70 eV; the monitoring was from m/z 50 to 400. The ion source and quadrupole analyzer temperatures were fixed at 230 and 150 C, respectively.

Trace ion detection (20) was turned on. This is a filtering algorithm to smooth peaks. This filtering is an advanced form of averaging used to remove the noise riding on the signal. Trace ion detection provides better S/N values and helps deconvolution to confirm target compounds.

Automatic Screening

A pesticide mixture containing the compounds listed in Table 1 was spiked into eight different matrix extracts: aubergine, potato, cucumber, banana, tangerine, orange, melon, and olive oil. All compounds were added at three spiking levels: 20, 50, and 100 g/kg. The spiked extracts were analyzed by GC/MS in the full-scan mode using the RTL method detailed above. DRS (Version A.03.00) was used to identify the compounds in chromatograms obtained in the full-scan mode in these matrixes. This software results from a marriage of three different software packages: the Agilent GC/MS ChemStation, the NIST Mass Spectral Search Program with the NIST'05 MS Library, and the Automated Mass Spectral Deconvolution and AMDIS software (Version 2.64), also from NIST. The deconvolution parameters in AMDIS were fixed as follows: adjacent peak subtraction, 2; resolution, high; sensitivity, very high; and shape requirements, medium.

The used database has the possibility of increasing the number of compounds. This feature is very interesting for the user. The way to include new compounds in the database is by analyzing a pure standard of the new substance using the proposed RTL method and storing the mass spectrum in the database, along with its locked retention time. This retention time must be expressed in seconds because absolute retention times in seconds instead of retention index values are employed for this method. The AMDIS software allows the substitution of retention times expressed in seconds for retention index values. Therefore, retention times obtained must be multiplied by 60. The retention times must also be multiplied by 2, because the original database retention times were obtained by analysis in an analytical column of 30 m length using a method that took exactly twice as long; the retention times obtained for this method are exactly half of those stored in the Pesticide and Endocrine Disruptor database. The AMDIS retention index calibration file automatically converts real retention times obtained in the chromatogram, so they are comparable to those stored in the database.

Quantification of Target Compounds

Table 2 lists the locked retention time (min), the target ion, and the qualifier ions for the 95 pesticides selected for full-scan quantification. Matrix-matched solutions were prepared by spiking the selected matrixes (after the extraction) with all of the pesticides at 5, 10, 20, 50, 200, and 500 g/kg.

The quantification of target compounds was performed in the full-scan mode. An automatic method was used to identify and quantify the samples. For this automatic method, three ions and the retention time were selected for each compound (Table 1).

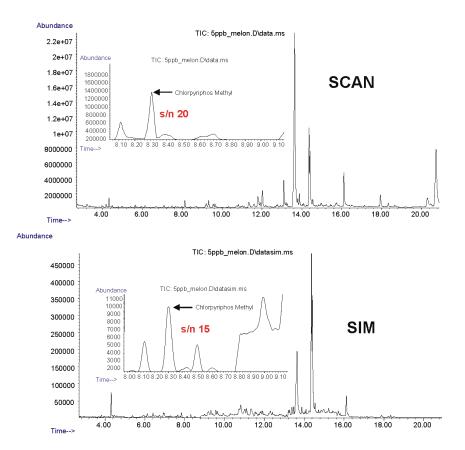


Figure 3. Total ion chromatograms in full-scan and SIM modes of a melon extract spiked at 5 g/kg. The areas of the chromatograms where chlorpyriphos-methyl elutes are magnified. The S/N of chlorpyriphos-methyl is shown in the chromatograms.

Limit of identification (LOI) values were determined for each compound; this limit was considered to be the minimum concentration identified by the DRS software with the selected library.

The LOI of each compound in each matrix was investigated to ensure the S/N was equal to or higher than 10, and they were used as LOQs. Linearity of the analytical response was evaluated by the injection of a matrix-matched solution at six concentrations levels, ranging from the LOI of each compound up to 500 g/kg.

Results and Discussion

GC/MS System

The GC system employed had a QuickSwap device placed between the end of the column and the entrance to the MSD transfer line. A small purge gas flow mixed with the column effluent and passed through the deactivated fused silica restrictor inside the transfer line and into the MSD source. This device provided a means of removing or changing the column without needing to cool and vent the mass spectrometer; gave protection against unwanted air entry when doing routine maintenance on columns and inlets; and offered a means for backflushing columns to remove high-boiling components, thus reducing both run times and cool-down times, as well as minimizing ghosting from run to run.

Backflush is a means of discarding high-boiling compounds from a column after the peaks of interest have eluted. It saves analysis time and has the following additional benefits: longer column life (due to less high-temperature exposure), protection from air and water at high temperatures, and less chemical background and contamination of the MSD source.

The advantage of using backflush in the column was demonstrated for two different matrixes: lettuce and pepper. Six 10 L injections were made of each extract—three with and three without backflushing; the chromatograms obtained are shown in Figure 1. Both lettuce and pepper samples showed the same results. When analyses were run without backflush, the baseline increased, and retention times shifted a mean of 5 s after three injections. In Figure 1, the third injection (labeled B) shows considerable chromatographic deterioration compared to the first injection (labeled A). However, when injections were performed with 2 min of backflushing at the end of each run, the baseline and retention times were stable. As shown by the overlapped chromatograms in Figure 1, backflushing eliminated carryover and retention time shifts.

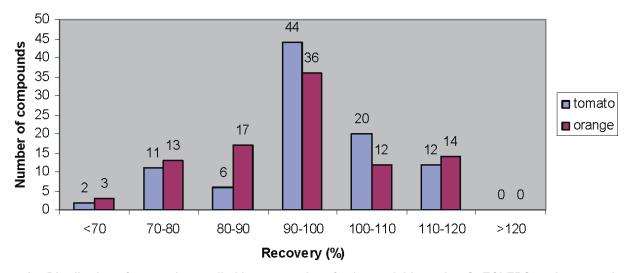


Figure 4. Distribution of recoveries studied in two matrixes for 95 pesticides using QuEChERS as the extraction procedure.

Automatic Screening

Matrixes from different categories were chosen to perform this study. Spiked samples of aubergine, potato, cucumber, banana, tangerine, orange, melon, and olive oil at 20, 50, and 100 g/kg were analyzed by the RTL GC/MS method; full-scan spectra were analyzed with DRS. Analysis with DRS provides a report with the following information: the retention time of the identified compound, CAS number, compound name, match quality, and the retention time difference (in seconds) between the observed peak and the database value, and the match and hit number—all by searching the deconvoluted spectrum against the entire NIST Mass Spectral Library.

In Table 1, the match values obtained by AMDIS for all of the compounds in the selected matrixes at the three concentrations are given. In all cases included in Table 1, DRS showed confirmation by NIST and retention time differences (compared to the pesticide database) of less than 5 s.

This study has been performed to find out about the influence of concentration and matrix in the identification capabilities of the proposed method. Means of the AMDIS match values are shown in Figure 2 for all of the selected pesticides in aubergine, potato, cucumber, banana, tangerine, orange, melon, and olive oil extracts at 20, 50, and 100 g/kg. A clear relationship is observed between the mean match values for all of the studied matrixes and the pesticide concentration level. Match values increased when the concentration was higher. Lower concentrations imply lower S/Ns, and deconvoluted spectra are affected with ions from the matrix.

The influence of the matrix was also observed (Figure 2); matrixes with high acid content, such as tangerine and orange, usually showed lower match values compared to the rest of the studied matrixes. The extracts of matrixes with high acid content probably also contained the largest number of volatile natural products. They could interfere with the pesticide analysis, and the deconvolution process was less effective than in other types of matrixes.

The AMDIS match values were, in general, better than 90. A small group of pesticides (dichlorvos, monocrotophos, dimethoate, metalaxyl, prometryn, fenitrothion, malathion, fenthion, parathion, isocarbophos, thiabendazole, tolylfluanide, methidathion, phenamiphos, buprofecin, iprovalicarb, ofurace, endosulfan sulphate, trifloxystrobin, nuarimol, tebuconazole, iprodione, phosmet, fenpropathrin, phosalone, -cyhalothrin, pyrazophos, acrinathrin, prochloraz; fenbuconazole, azoxystrobin, and imazalil) showed lower match values (70-90). Taking into account these results, the target match value was fixed at 70. Furthermore, a reduced group of pesticides with specific commodities at low concentration (20 g/kg) showed match values lower than 70 (Table 1). Those cases represented 3% of the total determinations performed. In such cases, the NIST match value obtained and the retention time difference in AMDIS were 60 and 5 s, respectively. Therefore, they were considered as possible positive findings, but some additional parameters should be necessary for confirmation.

With regard to automatic screening, isofenphos methyl is a special case. Although this compound was not included in the commercial library due to its particular interest (3, 4), it was introduced additionally into the commercial database. Its determination was performed following the procedures described in the *Experimental* section.

Analysis of Target Compounds

Our first option for performing analysis of target compounds was to develop an acquisition method in the SIM mode, since the system provides the possibility of acquiring data in full-scan and SIM modes within the same analysis. Two alternatives were considered: to make a unique method that includes the acquisition of 100 compounds in SIM; or to develop two different SIM methods, each including

Pesticide	Concn, mg/kg, EUPT FV 10	Positives found with the proposed screening method	Quantification with the proposed method, concn, mg/kg
Acetamiprid	0.419	Yes	а
Boscalid	0.238	Yes	а
Chlorpyriphos-methyl	0.078	Yes	0.076
Diazinon	0.603	Yes	0.609
Endosulfan sulfate	0.107	Yes	0.119
Hexythiazox	0.509	No ^b	а
Isofenphos-methyl	0.499	Yes	0.521
Kresoxim-methyl	0.050	Yes	0.049
Malathion	0.771	Yes	0.769
Metamidophos	0.342	Yes	0.342
Methiocarb	0.043	Yes	0.050
Methiocarb sulfone	0.065	No ^b	а
Methiocarb sulfoxide	0.051	No ^b	а
Methomyl	0.739	Yes	0.790
Oxamyl	0.322	Yes	а
Pendimethalin	0.074	Yes	а
Phosmet	0.236	Yes	0.235
Quinoxifen	0.298	Yes	0.298
Triadimenol	0.331	Yes	0.325
Vinclozolin	1.040	Yes	1.038

Table 3.	Carrot sample from European Proficiency Test (EUPT) FV 10 analyzed by the RTL method for simultaneous
screening	g and target compound quantification

^a Not included in the quantification method.

^b Not included in the database used.

50 compounds. When the SIM LOD values of the target compound, calculated as the minimal concentration with S/N = 3, were evaluated and compared with the LOI in the full-scan mode, our expectation was to improve the sensitivity by 10 times when working in SIM compared with full scan. However, the LOD achieved for most of the compounds in both SIM alternatives (the SIM method with 100 compounds, and the two different methods with 50 compounds each) were similar to those in the full-scan mode.

The proposed method had an analysis time of 22 min. In order to perform a SIM method for 50 selected pesticides, it was necessary to create 13 retention time windows with 166 selected ions. Due to the properties of the pesticides, 76% of them eluted between 6 and 15 min.

Figure 3 shows chromatograms in full-scan and SIM models of a melon extract spiked at 5 g/kg. The areas of the chromatograms where chlorpyriphos-methyl elutes are magnified. S/N ratio values are very close in SIM (S/N = 11) and full-scan (S/N = 14) chromatograms for chlorpyrifos-methyl, and the same trend was observed for the other compounds (data not shown). The difference in the S/N values in SIM and full-scan chromatograms were in the range of ± 5 . The developed quantification method was performed in full-scan mode.

LOI was evaluated for all compounds in the eight different matrixes. In Table 2, values for four different matrixes are shown, corresponding to the four commodity categories: cucumber (high water content), olive oil (high oil content), potato (high protein or high starch content), and tangerine (high acid content). LOIs lower than 20 g/kg were achieved for 70% of the studied pesticides.

The linearity of the pesticides listed in Table 2 was studied in aubergine, potato, cucumber, banana, tangerine, orange, melon, and olive oil matrixes from the LOI to 500 g/kg. A linear response was obtained for all pesticides in all of the selected matrixes within the studied range, and r^2 values >0.99 were obtained in all cases.

For the recovery study, spiked samples were prepared for each of the two matrixes selected (tomato and orange) at the 100 g/kg level. The QuEChERS method was carried out 5 times on each matrix. The data evaluation was carried out by comparing the peak intensities of the spiked samples to those obtained by matrix-matched standard calibration. Extracted "blank" matrixes may have contained some of the investigated pesticides. Therefore, blank correction from the calibration samples and also from the spiked samples was necessary during the analysis. The distribution of the recoveries is shown in Figure 4. More than 95% of the pesticides under

Table 4. Analysis of 117 market-purchased fruit, vegetable, and olive oil samples using the proposed automatic simultaneous screening and quantificatio method

Identified pesticides

Chloropyriphos

Thiabendazole Imazalil

Diclorvos

Fenhexamid

Thiabendazole

Imazalil

Thiabendazole Imazalil

Imazalil

Ethoxyquin

Imazalil

Dichlorvos

Ethoxyquin Thiabendazole

Imazalil

_

Cyprodinil

_

Bifenthrin

Pirimiphos-methyl

Fenthion

Bifenthrin

Procymidone

Isoprocarb

Sample

Red_apple_s1

Green_pepper_s2 Red_pepper_s3

Carrot_s4

Lettuce_s6

Apple_s7

Apple_s8

Pear s9

Pear_s10

Pear_s11

Pepper_s12

Pepper_s13

Tomato_s14 Carrot_s15 Kiwi_s35 Strawberry_s36 Carrot_s16

Watermelon_s17

Melon_s18

Nectarine_s19

Banana s23 Melon_s24 Apple_s25

Apple_s26 Tomato_s27

Peach_s28

Peach_s30 Lettuce_s31 Onion_s32

Tangerine_s29

Red_pepper_s20 Leek_s21 Tomato_s22

Kiwi s5

Table 4. (continued)

oposed tification	Sample	Sample Identified pesticides	
	Banana_s33		
ncn, g/kg	Apple_s34	Pirimicarb	а
30		Fenhexamid	а
а	Apple_s37	Dichlorvos	15
23		Ethoxyquin	а
а		Chlorpyrifos	20
		Thiabendazole	а
		Imidazole	а
	Strawberry_s38	Fludioxonil	35.22
а		Cyprodinil	20
		Kresosim-methyl	24.85
а	Strawberry_s39	Bupirimate	25.15
а		Cyprodinil	2.66
а	Strawberry_s40	Benzophenone	а
а	Strawberry_s41	Benzophenone	а
а	Strawberry_s42	Benzophenone	а
а	Strawberry_s43	Benzophenone	а
а	Strawberry_s44	Benzophenone	а
15		Cyprodinil	83
а		Fludioxonil	51.39
а		Myclobutanil	3.66
а		Bupirimate	57
	Strawberry_s45	Benzophenone	а
40		Ciprodinil	106.38
		Fludioxonil	27.55
		Miclobutanil	14.08
		Kresosim-methyl	8.68
	Strawberry_s46	Benzophenone	а
		Ciprodinil	6.48
28		Miclobutanil	28.63
15		Ciproconazole	а
а	Strawberry_s47	Benzophenone	а
		Cyprodinil	7.21
		Fludioxonil	10.84
12		Bupirimate	1.89
	Strawberry_s48	Benzophenone	а
		Cyprodinil	5.76
		Azoxystrobin	7.15
	Strawberry_s49	Benzophenone	а
83		Metalaxyl	а
		Cyprodinil	830.84
а		Penconazole	6.74
		Fludioxonil	589.84
		Bupirimate	64.02

Table 4. (continued)

Table 4. (continued)

Table 4. (continued)				Table 4. (continued)		
Sample	Identified pesticides	Concn, g/kg	Sample	Identified pesticides	Concn, g/kg	
Strawberry_s50	Benzophenone	а	Banana_s69	Chlorpyriphos	232.5	
	Mepaipyrin	а		Imazalil	307.8	
trawberry_s51	Benzophenone	а	Pear_s70	Diphenylamine	973.59	
trawberry_s52	Diphenylamine	а		Imazalil	609.16	
	Benzophenone	а		Iprodione	1116.79	
	Azoxystrobin	а		Phosalone	113.46	
	Nuarimol	2.07	Endive_s71	Cyhalothrin	25.99	
ourgette_s53	Benzophenone	а	Pepper_s72	_		
ourgette_s54	Benzophenone	а	Pepper_s73	_		
ourgette_s55	Benzophenone	а	Carrot_s74	_		
	Tetraconazole	а	Carrot_s75	—		
	Mehomil	11.66	Carrot_s76	—		
	Pyrimethanil	1.21	Cucumber_s77	—		
omato_s56	Benzophenone	а	Tomato_s78	Pyriproxyfen	43.47	
	Metribuzin	а	Tomato_s79	Pyriproxyfen	27.16	
	Terbucarb	а	Apple_s80	Diphenylamine	20	
	Rabendazole	а		Ethoxyquin	33.48	
	Mepanipyrim	а		Pirimicarb	22.34	
	Chloropropylate	а		Chorpyriphos	3.91	
Tomato_s57	Benzophenone	а		Thiabendazole	1931.06	
	Pyrimethanil	3.98	Apple_s81	Diphenylamine	32	
	Tebuconazole	33.03		Chorpyriphos	4.91	
	Bromopropylate	305.91		Thiabendazole	38.58	
omato_s58	Benzophenone	а	Apple_s82	Diphenylamine	35.00	
	Triadimenol	а		Fuberidazole	а	
omato_s59	Benzophenone	а		Chlorpyriphos	3.09	
	Bromopropylate	7.82		Imazalil	14.42	
	Pyriproxyfen	6.28		Quinoxyfen	2.28	
reen beans_s60	Benzophenone	а		Boscalide	а	
	Metalaxyl	а	Melon_s83	_		
ucumber_s61	Benzophenone	а	Melon_s84	Cyprodinil	8.39	
angerine_s62	Imazalil	1.61				
	Chlorpyriphos	22.01		Procymidone	59.95	
emon_s63	Thiabendazole	144.26	Melon_s85	_		
	Imazalil	1754.92	Melon_s86	_		
emon_s64	Imazalil	2.79	Melon_s87	_		
range_s65	Imazalil	111.15	Melon_88	Cyproconazole	а	
	Malathion	67.93		Azoxystrobin	101.52	
	Thiabendazole	17	Pear_s89	Boscalide	а	
range_s66	Imazalil	93.63	Pear_s90	Diphenylamine	15	
	Thiabendazole	3.35		Imazalil	722.01	
	Prochloraz	39.70	Apple_s91	Ethoxyquin	19	
anana_s67	Benzophenone	а				
	Chlorpyriphos	2.4		Thiabendazole	1686.21	
anana_s68	Benzophenone	а	Watermelon_s92	_		
	Chlorpyriphos	5.7	Watermelon_s93	—		

Table 4. (continued)

•	-		
Sample	Identified pesticides	Concn, g/kg	
Watermelon_s94	_		
Watermelon_s95	Tebufenpyrad	50.46	
Watermelon_s96	Tebufenpyrad	38.12	
Kiwi_s97	Chlorpyriphos	11.15	
Nectarine_s98	Myclobutanil	13.47	
Peach_s98	Tetraconazole	26.72	
Potato_s99	Flutolanil	а	
Potato_s100	Flutolanil	а	
	Chlorpropham	1.43	
Potato_s101	Chlorpropham	2.16	
Potato_s102	Chlorpropham	4.9	
Potato_s103	—		
Olive oil_s106	—		
Olive oil_s107	—		
Olive oil_s108	—		
Olive oil_s109	—		
Olive oil_s110	—		
Olive oil_s111	—		
Olive oil_s112	—		
Olive oil_s113	—		
Olive oil_s114	Terbuthylazine	а	
Olive oil_s115	Terbuthylazine	а	
Olive oil_s116	—		
Olive oil_s117	—		

^a Not included in the quantification method.

study presented recoveries between 80 and 110%. These recoveries were in the 70–120% acceptance range of the DG SANCO/2007/3131 of the European Quality Control Guidelines in all cases. The generally good recoveries obtained indicate the adequacy of the method for application over a wide multiresidue range.

Screening of Real Samples

To evaluate the performance of the automated screening, it was first tested with a carrot sample from the European Proficiency Test (EUPT) FV 10 (21) extracted by the QuEChERS method. The obtained results, shown in Table 3, were satisfactory. Acetamiprid, boscalid, chlorpyriphos-methyl, diazinon. endosulfan sulfate. isofenphos-methyl, kresoxim-methyl. malathion. metamidophos, methiocarb, methomyl, pendimethalin, phosmet, quinoxifen, triadimenol, and vinclozolin were identified by the screening method in the carrot EUPT sample. Hexythiazox, methiocarb sulfone, and methiocarb sulfoxide were not identified by the screening method since these compounds were not included in the AMDIS database.

Quantification of the sample was performed with the automatic quantification method. Concentrations of chlorpyriphos-methyl, diazinon, kresoxim-methyl, malathion, metamidophos, methomyl, pendimethalin, phosmet, quinoxifen, triadimenol, and vinclozolin were typically within 7% of the concentrations given by the EUPT. Acetamiprid, boscalid, oxamyl, and pendimethalin were not included in the quantification method, and their concentrations are not given.

After that, the proposed approach was applied to different market-purchased samples. Results obtained are shown in Table 4. Eighty percent of the samples contained at least one pesticide. A total of 131 positives was found by the screening method, and the concentrations of 93 positives were determined. Quantification of each sample was made with the corresponding matrix-matched calibration plot, depending on the specific commodity category. All samples shown in this table were analyzed by DRS; the match values obtained were higher than 60%, and retention time differences between the pesticide database and observed values were <5 s. In addition, all positive results given by AMDIS were confirmed as being positive by the NIST library.

Conclusions

A rapid method for the simultaneous screening and quantification of pesticide residues in food has been developed and evaluated. It uses GC-quadrupole-MS together with DRS and a commercial pesticide database. The results obtained in the analysis of a EUPT sample, as well as 118 market-purchased samples, yielded satisfactory results. For quantification purposes, 95 pesticides were included in the method, but the scope is clearly extendable to a greater number of pesticides. Furthermore, the commercial database used for the automatic screening can be easily enlarged to include new compounds. Eighty percent of the analyzed samples gave positive findings for a total of 113 pesticide hits. This represents a higher number of hits than reported by the enforcement laboratories, which is a consequence of the greater screening capability of the proposed method. A smaller number, 71% of the positive samples detected, were quantified with the quantification method proposed.

We consider the LOI values achieved to be adequate, lower than 20 g/kg in 80% of the studied pesticides, and lower than 5 g/kg in 40% of the pesticides studied. It is important to note that, in acidic commodities, such as oranges, the AMDIS matches obtained were lower than in the other studied matrixes.

The use of backflushing represents a very important advantage in the robustness of the method. Another important advantage of the method is the capability to perform retrospective analysis in food samples.

Acknowledgments

We acknowledge funding support from The European Commission, DG SANCO (Specific Agreement No. 2007/1 to Framework Partnership Agreement No. SANCO/2007/FOOD SAFETY/025-Pesticides in Fruit and Vegetables). We also gratefully acknowledge the "Juan de la Cierva" research contract from the Spanish Ministry of Science and Technology.

References

- (1) Huang, Z., Li, Y., Chen, B., & Yao, S. (2007) *J. Chromatogr. B* **853** 154–162
- (2) Nguyen, T.D., Han, E.M., Seo, M.S., Kim, S.R., Yun, M.Y., Lee, D.M., & Lee, G.H. (2008) Anal. Chim. Acta 619, 67–74
- (3) Mezcua, M., Ferrer, C., García-Reyes, J.F., Martinez-Bueno, M.J., Sirgrist, M., & Fernández-Alba, A.R. (2009) *Food Chem.* 112, 221–225
- Mezcua, M., Ferrer, C., Garcia-Reyes, J.F., Martínez-Bueno, M.J., Albarracín, M., Claret, M., & Fernández-Alba, A.R. (2008) *Rapid Commun. Mass Spectrom.* 22, 1384–1392
- (5) Council Directive of 15 July 1991 (91/414/EEC) concerning the placing of plant protection products on the market (OJ L 230 19.8) 1991, p.1
- (6) Garcia-Reyes, J.F., Hernando, M.D., Molina-Díaz, A., & Fernández-Alba, A.R. (2007) *Trends Anal. Chem.* 26, 828–841
- (7) Garcia-Reyes, J.F., Hernando, M.D., Ferrer, C., Molina-Díaz,
 A., & Fernández-Alba, A.R. (2007) *Anal. Chem.* 79,
 7308–7323
- (8) Ferrer, I., Fernández-Alba, A.R., Zweigenbaum, J.A., & Thurman, E.M. (2006) *Rapid Commun. Mass Spectrom.* 20, 3659–3668

- (9) Thurman, E.M., Ferrer, I., Malato, O., & Fernández-Alba, A.R. (2006) *Food Addit. Contam.* 23, 1169–1178
- (10) Ma, X.D., Li, C.J., Tao, C.J., Liu, W., & Zheng, S.S. (2001) *Rapid Commun. Mass Spectrom.* 15, 15–19
- (11) Zhang, W.G., Xiao, G.C., Cai, H.X., An, Q., & Li, C.J.
 (2006) Rapid Commun. Mass Spectrom. 20, 609–614
- (12) Tahboub, Y.R., Zaater, M.F., & Barri, T.A. (2006) *Anal. Chim. Acta* 558, 62–68
- (13) Wylie, P.L. (2006) Agilent Application Note 598-5076EN, Wilmington, DE
- (14) Sandra, P., Tienpont, B., & David, F. (2003) J. Chromatogr. A 1000, 299–309
- (15) Munoz, J.A., Gonzalez, E.F., Garca-Ayuso, L.E., Casado, A.G., & Cuadros-Rodrguez, L. (2003) *Talanta* **60**, 433–447
- (16) Van Stee, L.L.P., & Brinkman, U.A.Th. (2008) J. Chromatogr. A 1186, 109–122
- (17) Anastassiades, M., Lehotay, S.J., Stajnbher, D., & Schenk,
 F.J. (2003) J. AOAC Int. 86, 412–431
- (18) Lehotay, S.J., De Kok, A., Hiemstra, M., & Van Bodegraven,
 P. (2005) J. AOAC Int. 88, 595–614
- (19) Roushall, R., & Prest, H. (2007) Agilent Technologies Publication 5989-6425EN, Wilmington, DE
- (20) Ferrer, C., Gómez, M.J., García-Reyes, J.F., Ferrer, I., Thurman, E.M., & Fernández-Alba, A. (2005) J. Chromatogr. A 1069, 183–194
- (21) European Proficiency Test and CRL Portal (2009) http://www.crl-pesticides.eu