

Detector de diodos Agilent Serie 1200 Infinity

Manual de usuario

Agilent Technologies

Avisos

© Agilent Technologies, Inc. 2010-2011, 2012

No se permite la reproducción de parte alguna de este manual bajo cualquier forma ni por cualquier medio (incluyendo su almacenamiento y recuperación electrónicos y la traducción a idiomas extranjeros) sin el consentimiento previo por escrito de Agilent Technologies, Inc. según lo estipulado por las leyes de derechos de autor estadounidenses e internacionales.

Número de referencia del manual:

G4212-95012

Edición

08/2012

Impreso en Alemania

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

Este producto puede usarse como componente de un sistema de diagnóstico in vitro si dicho sistema está registrado ante las autoridades competentes y cumple la normativa aplicable. De lo contrario, únicamente está previsto para un uso general de laboratorio.

Garantía

El material contenido en este documento se proporciona "tal como es" v está sujeto a modificaciones, sin previo aviso, en ediciones futuras. Además, hasta el máximo permitido por la ley aplicable, Agilent rechaza cualquier garantía, expresa o implícita, en relación con este manual v con cualquier información contenida en el mismo, incluyendo, pero no limitado a, las garantías implícitas de comercialización y adecuación a un fin determinado. En ningún caso Agilent será responsable de los errores o de los daños incidentales o consecuentes relacionados con el suministro, utilización o uso de este documento o de cualquier información contenida en el mismo. En el caso que Agilent y el usuario tengan un acuerdo escrito separado con condiciones de garantía que cubran el material de este documento y que estén en conflicto con estas condiciones, prevalecerán las condiciones de garantía del acuerdo separado.

Licencias sobre la tecnología

El hardware y/o software descritos en este documento se suministran bajo una licencia y pueden utilizarse o copiarse únicamente de acuerdo con las condiciones de tal licencia.

Avisos de seguridad

PRECAUCIÓN

Un aviso de **PRECAUCIÓN** indica un peligro. Llama la atención sobre un procedimiento de operación, una práctica o similar que, si no se realizan correctamente o no se ponen en práctica, pueden provocar daños en el producto o pérdida de datos importantes. No avance más allá de un aviso de **PRECAUCIÓN** hasta que se entiendan y se cumplan completamente las condiciones indicadas.

ADVERTENCIA

Un aviso de ADVERTENCIA indica un peligro. Llama la atención sobre un procedimiento de operación, una práctica o similar que, si no se realizan correctamente o no se ponen en práctica, pueden provocar daños personales o la muerte. No avance más allá de un aviso de ADVERTENCIA hasta que se entiendan y se cumplan completamente las condiciones indicadas.

En este manual

Este manual contempla:

- el detector de diodos Agilent 1290 Infinity (G4212A) y
- el detector de diodos Agilent 1260 Infinity (G4212B).

Consulte la información sobre los demás detectores de diodos de Agilent en otros manuales.

1 Introducción

En este capítulo se ofrece una introducción sobre el detector y una descripción general del instrumento.

2 Requisitos y especificaciones de las instalaciones

En este capítulo se ofrece información acerca de los requisitos del entorno y de las especificaciones físicas y de rendimiento.

3 Instalación del módulo

En este capítulo se ofrece información acerca del desembalaje, la verificación de los componentes, las consideraciones sobre las torres de módulos y la instalación del módulo.

4 Configuración LAN

En este capítulo se ofrece información sobre cómo conectar el módulo al ordenador de la ChemStation de Agilent

5 Utilización del módulo

En este capítulo se ofrece información sobre cómo configurar el módulo para un análisis y se explican los ajustes básicos.

6 Optimización del detector

En este capítulo se ofrece información sobre cómo optimizar el detector.

7 Diagnóstico y resolución de problemas

Se ofrece una visión general de las funciones de diagnóstico y de resolución de problemas.

8 Información sobre errores

En este capítulo se describe el significado de los mensajes de error y se proporciona información sobre sus posibles causas. Asimismo, se sugieren las acciones que hay que seguir para corregir dichas condiciones de error.

9 Funciones de test y de calibración

En este capítulo se describen los tests del módulo.

10 Mantenimiento

En este capítulo se describen las tareas de mantenimiento del módulo.

11 Piezas y materiales para mantenimiento

En este capítulo se ofrece información sobre las piezas para mantenimiento.

12 Identificación de cables

En este capítulo se ofrece información acerca de los cables utilizados con los módulos LC Agilent 1260 Infinity y 1290 Infinity.

13 Información sobre el hardware

En este capítulo se describe el detector con información detallada sobre el hardware y los componentes electrónicos.

14 Apéndice

En este capítulo se ofrece información adicional acerca de la seguridad, los aspectos legales e Internet.

Contenido

1 Introducción 9

Visión general del módulo 10 Sistema óptico 11 Materiales bioinertes 18 Mantenimiento preventivo asistido 20 Disposición del instrumento 21

2 Requisitos y especificaciones de las instalaciones 23

Requisitos de las instalaciones24Especificaciones físicas29Especificaciones de rendimiento30

3 Instalación del módulo 35

Desembalaje del módulo 36 Optimización de la configuración de la torre de módulos 38 Instalación del detector 48 Conexiones de flujo al detector 51 Recalibración inicial 55

4 Configuración LAN 57

Qué hacer en primer lugar 58 Configuración de los parámetros TCP/IP 59 Interruptor de configuración 60 Selección del modo de inicialización 61 Protocolo de configuración dinámica de host (DHCP) 65 Selección de la configuración de enlaces 69 Configuración automática con BootP 70 Configuración manual 80 Configuración del ordenador y de la Agilent ChemStation 85

5 Utilización del módulo 95

Preparación del detector 96

Contenido

Configuración del detector con la ChemStation de Agilent 97 Pantallas principales del detector con Agilent Instant Pilot (G4208A) 117 Información sobre disolventes 121

6 Optimización del detector 125

Introducción 126 Descripción de la optimización 127 Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión 135 Optimización de la selectividad 148 Optimización del detector en relación con el sistema 153 Calentamiento del detector 160

7 Diagnóstico y resolución de problemas 163

Descripción de los indicadores del módulo y las funciones de test 164 Indicadores de estado 165 Tests disponibles frente a interfases de usuario 167 Software Agilent Lab Advisor 168 Problemas intermitentes 169 El tipo de tarjeta no coincide al sustituir la tarjeta principal 170

8 Información sobre errores 173

Cuáles son los mensajes de error174Mensajes de error generales175Mensajes de error del detector185

9 Funciones de test y de calibración 195

Introducción 196 Utilización de la celda de cartucho Max-Light de prueba 198 Condiciones del detector 200 Fallo de un test 201 Autotest 202 Test de intensidad 204 Test de celda 207 Test de ruido rápido 210 Test de deriva y ruido de la ASTM 213 Test de rendiia 216 Test de verificación de la longitud de onda 219

Calibración de la longitud de onda 221 Test del convertidor D/A (DAC) 224 Test de corriente oscura 227

10 Mantenimiento 231

Avisos y precauciones 232 Introducción al mantenimiento 234 Descripción del mantenimiento 235 Limpieza del módulo 236 Cambio de la lámpara de deuterio 237 Cambio de la celda de cartucho Max-Light 241 Limpieza de la celda de cartucho Max-Light 246 Almacenamiento de la celda de cartucho Max-Light 247 Secado del sensor de fugas 248 Cambio de las piezas del sistema para el tratamiento de fugas 249 Sustitución del firmware del módulo 251 Información sobre las unidades del módulo 253

11 Piezas y materiales para mantenimiento 255

Descripción de las piezas para mantenimiento 256 Kits 258

12 Identificación de cables 259

Visión general de los cables 260 Cables analógicos 262 Cables remotos 264 Cables BCD 267 Cables CAN/LAN 269 Cables RS-232 270

Contenido

13 Información sobre el hardware 271

Descripción del firmware 272 Conexiones eléctricas 275 Interfaces 278 Ajuste del interruptor de configuración de 8 bits 285

14 Apéndice 291

Seguridad 292 Directiva sobre residuos de aparatos eléctricos y electrónicos 295 Interferencia de radio 296 Emisión de sonido 297 Información sobre disolventes 298 Agilent Technologies en Internet 300

Introducción

Visión general del módulo 10 Sistema óptico 11 Lámpara 12 Celda de flujo de cartucho Max-Light 13 Unidad de la rendija 15 Red de difracción y matriz de diodos 17 Materiales bioinertes 18 Mantenimiento preventivo asistido 20 Disposición del instrumento 21

En este capítulo se ofrece una introducción sobre el detector y una descripción general del instrumento.

Visión general del módulo

El detector está diseñado para obtener el máximo rendimiento óptico, cumplir las normas GLP y facilitar el mantenimiento. Incluye las siguientes características:

- Una velocidad de adquisición de datos máxima de 160 Hz (G4212A) o 80 Hz (G4212B).
- Una sensibilidad superior destinada a la cromatografía líquida convencional, así como aplicaciones ultrarrápidas gracias a un diseño óptico de próxima generación.
- Una mejor sensibilidad con una celda de flujo de cartucho Max-Light de 60 mm.
- Una geometría de celda optimizada para reducir la dispersión de los picos en las aplicaciones de diámetro estrecho.
- Se dispone de celdas de flujo de cartucho Max-Light que pueden utilizarse en aplicaciones estándares y bioinertes.
- Un proceso de integración de picos más fiable y sólido (automático) gracias la disminución del ruido de la línea base, de la deriva, del índice de refracción y de los efectos térmicos, especialmente en condiciones de gradientes ultrarrápidos.
- La utilización de tecnología de seguimiento RFID para la lámpara UV y las celdas de flujo de cartucho Max-Light.
- La detección espectral completa y a varias longitudes de onda a una velocidad de muestreo de 160 Hz (G4212A) o 80 Hz (G4212B), a la vez que se mantiene la velocidad de análisis de la cromatografía líquida ultrarrápida.
- La rendija programable de 1 8 nm (G4212A) y la rendija fija de 4 nm (G4212B) ofrecen una optimización rápida de la sensibilidad, la linealidad y la resolución espectral, así como condiciones óptimas de luz incidente.
- La mejora del control de temperatura electrónico (ETC) ofrece la máxima estabilidad de la línea base y una sensibilidad práctica en condiciones cambiantes de humedad y temperatura ambiente.
- Señales de diagnóstico adicionales para el seguimiento de la temperatura y del voltaje de la lámpara.
- La fácil sustitución de la celda de flujo por el diseño del cartucho.

Para obtener información sobre las especificaciones, consulte "Especificaciones de rendimiento G4212A" en la página 30 o "Especificaciones de rendimiento G4212B" en la página 32.

Sistema óptico

El sistema óptico del detector se ilustra en la Figura 1 en la página 11.

Figura 1 Sistema óptico del detector

1	Lámpara UV
2	Espejo de lámpara
3	Celda de flujo
4	Espejo plegado
5	Rendija programable (G4212A) o fija (G4212B)
6	Red de difracción
7	Matriz

Su fuente de iluminación es una lámpara de descarga de arco de deuterio [1] correspondiente al rango de longitud de onda ultravioleta (UV). Su luz se enfoca mediante un espejo de lámpara [2] sobre la entrada de la celda de flujo de cartucho Max-Light [3] con guías de onda optofluídicas. La luz sale de la celda de flujo de cartucho Max-Light por el lado opuesto y se enfoca mediante un espejo plegado [4] a través de la unidad de la rendija [5] y sobre una red de difracción holográfica [6]; a continuación, la luz se dispersa sobre la matriz de diodos [7]. Esto permite disponer de acceso simultáneo a toda la información relativa a las longitudes de onda.

Lámpara

La fuente de luz para el rango de longitud de onda UV es una lámpara UV de larga duración con etiqueta RFID. Como resultado de la descarga del plasma en un gas de deuterio a baja presión, la lámpara emite luz en el rango de longitud de onda que va desde 190 nm hasta aproximadamente 800 nm.

Figura 2 Lámpara UV

Celda de flujo de cartucho Max-Light

El detector brinda un acceso fácil a las celdas de flujo a través de un cartucho. Pueden insertarse varias celdas de flujo opcionales con el mismo sistema de montaje, que es rápido y sencillo.

Se dispone de celdas de flujo de cartucho Max-Light que pueden utilizarse en aplicaciones estándares y bioinertes. Para probar el detector, se encuentra disponible una celda de cartucho Max-Light de prueba.

Referencia	Descripción
G4212-60008	Celda de cartucho Max-Light (10 mm, V(σ) 1,0 $\mu L)$
G4212-60007	Celda de cartucho Max-Light (60 mm, V(σ) 4,0 μ L)
G5615-60018	Celda de cartucho Max-Light bioinerte (10 mm, V(σ) 1,0 μL) incluye capilar PEEK de 1,5 m de diámetro interno 0,18 mm (0890-1763) y conexiones PEEK, 10/paquete (5063-6591)
G5615-60017	Celda de cartucho Max-Light bioinerte (60 mm, V(σ) 4,0 μ L) incluye capilar PEEK de 1,5 m de diámetro interno 0,18 mm (0890-1763) y conexiones PEEK, 10/paquete (5063-6591)
G4212-60032	Celda de cartucho Max-Light HDR (3,7 mm, V(σ) 0,4 μL
G4212-60038	Celda de cartucho Max-Light ULD (10 mm, V(σ) 0,6 μ L)
G4212-60011	Celda de test de cartucho Max-Light

El principio óptico de la celda de cartucho Max-Light se basa en guías de onda optofluídicas. Se consigue casi el 100 % de la transmisión de luz gracias a la utilización de la reflexión interna total en una fibra de sílice sin recubrimiento. Se eliminan casi completamente los índices de refracción y los efectos térmicos comprometedores, lo que tiene como resultado una deriva significativamente inferior de la línea base.

Sistema óptico

Figura 3 Celda de flujo de cartucho Max-Light

NOTA

Para obtener más información sobre la celda de flujo de cartucho Max-Light, consulte "Elección de la celda de flujo" en la página 129 y "Kit de válvulas de liberación de presión en línea (G4212-68001)" en la página 131.

Unidad de la rendija

Rendija programable (G4212A)

El sistema de microrrendijas aprovecha las propiedades mecánicas del silicio en combinación con la precisa capacidad estructural del micromaquinado masivo. Combina las funciones ópticas necesarias (rendija y obturador) en un componente sencillo y compacto. La anchura de rendija se controla directamente con el microprocesador del instrumento y puede fijarse como un parámetro del método.

Figura 4 Unidad de la rendija

La anchura de rendija influye en el ruido y en la resolución espectral.

Rendija fija (G4212B)

La rendija fija combina las funciones ópticas necesarias (rendija y obturador) en un componente sencillo y compacto. La anchura de rendija se controla directamente con el microprocesador del instrumento y está fijada en 4 nm.

NOTA

En marzo de 2011, el tipo de unidad óptica del detector de diodos G4212B cambió de una "rendija programable (como en G4212A) fijada en 4 nm" a una "rendija fija de 4 nm" real. El primer número de serie fue DEAA301100.

Red de difracción y matriz de diodos

La combinación de dispersión y obtención de imágenes espectrales se consigue con una red de difracción holográfica cóncava. La red de difracción separa el haz de luz en todas las longitudes de onda que lo componen y refleja la luz sobre la matriz de fotodiodos.

La matriz de diodos consta de una serie de 1024 fotodiodos individuales y circuitos de control ubicados en un portador de cerámica. Su rango de longitud de onda se sitúa entre 190 y 640 nm, mientras que el intervalo de muestreo es de ~0,5 nm.

Figura 6 Red de difracción y matriz de diodos

Materiales bioinertes

En el caso del sistema LC bioinerte Agilent 1260 Infinity, Agilent Technologies utiliza materiales de la mejor calidad en el paso de flujo (es decir, las piezas húmedas). Dichos materiales están ampliamente aceptados por los científicos, ya que son óptimamente inertes a las muestras biológicas y garantizan la mejor compatibilidad con muestras y disolventes comunes que cubren un amplio rango de pH. En concreto, el paso de flujo completo no contiene acero inoxidable ni otras aleaciones con metales como hierro, níquel, cobalto, cromo, molibdeno o cobre, que pueden afectar a las muestras biológicas. El recorrido a lo largo de la dirección del flujo de la introducción de la muestra no contiene ningún tipo de metal.

Celda de cartucho Max-Light bioinerte ((G5615-60017) y la Celda de cartucho Max-Light bioinerte ((G5615-60018) ofrecen una sensibilidad superior a las aplicaciones bioinertes de fase inversa. En una cromatografía de exclusión molecular (SEC) con baja sal o una cromatografía de intercambio iónico, tenga en cuenta que se puede producir una prolongación de las colas de los picos. Por tanto, en el caso de estas aplicaciones, se recomienda el uso de detectores de diodos (G1315C o D) o detectores de longitud de onda múltiple (G1365C o D) bioinertes universales.

Módulo	Materiales
Bomba cuaternaria bioinerte Agilent 1260 Infinity (G5611A)	Titanio, oro, platino-iridio, cerámica, rubí, PTFE, PEEK
Inyector automático de alto rendimiento bioinerte Agilent 1260 Infinity (G5667A)	Dirección inversa de la introducción de la muestra: • Titanio, oro, PTFE, PEEK, cerámica
	Dirección de la introducción de la muestra: • PEEK, cerámica
Inyector manual bioinerte Agilent 1260 Infinity (G5628A)	PEEK, cerámica
Colector de fracción analítico bioinerte Agilent 1260 Infinity (G5664A)	PEEK, cerámica, PTFE

 Tabla 1
 Materiales bioinertes utilizados en los sistemas Agilent 1260 Infinity

Celdas de flujo bioinertes:

Módulo	Materiales
Celda de flujo estándar bioinerte, (G5615-60022) (para los detectores de diodos Agilent 1260 Infinity G1315C/D)	PEEK, cerámica, zafiro, PTFE
Celda de cartucho Max-Light bioinerte ((G5615-60018) y Celda de cartucho Max-Light bioinerte ((G5615-60017) (<i>para los detectores de diodos Agilent Serie 1200 Infinity</i> <i>G4212A/B</i>)	
Celda de flujo bioinerte, (G5615-60005) (para el detector de fluorescencia Agilent 1260 Infinity G1321B)	PEEK, sílice fundida, PTFE
Intercambiador de calor bioinerte G5616-60050 (para el compartimento de columna termostatizado Agilent 1290 Infinity G1316C)	PEEK (revestimiento de acero)
Cabezas de válvulas bioinertes	G4235A, G5631A, G5639A: PEEK, cerámica (con base de $\mathrm{Al}_2\mathrm{O}_3$)
Capilares de conexión bioinertes	Dirección inversa de la introducción de la muestra: • Titanio
	 Dirección de la introducción de la muestra: Agilent utiliza capilares de PEEK con revestimientos de acero inoxidable que mantienen el paso de flujo libre de cualquier componente de acero y proporcionan una presión estable a más de 600 har.

Tabla 1 Materiales bioinertes utilizados en los sistemas Agilent 1260 Infinity

NOTA

Para garantizar una compatibilidad biológica óptima del sistema LC bioinerte Agilent 1260 Infinity, no incluya módulos ni piezas estándares que no sean inertes en el paso de flujo. No utilice ninguna pieza que no haya sido etiquetada como "bioinerte" por Agilent. Para obtener información sobre la compatibilidad de los disolventes con estos materiales, consulte "Información sobre disolventes para las piezas del sistema LC bioinerte 1260 Infinity" en la página 121. 1

Mantenimiento preventivo asistido

El mantenimiento requiere el cambio de los componentes que están sujetos a desgaste o tensión. Idealmente, la frecuencia de cambio de los componentes debe basarse en la intensidad de utilización del módulo y en las condiciones analíticas, no en un intervalo de tiempo predefinido. La función de mantenimiento preventivo asistido (**EMF**) controla la utilización de componentes específicos del instrumento y suministra información cuando se superan los límites que selecciona el usuario. La información visual de la interfaz de usuario indica que deben programarse procedimientos de mantenimiento.

Contadores de EMF

Los **contadores de EMF** aumentan con el uso y se les puede asignar un límite máximo, que dé lugar a un aviso en la interfase de usuario cuando se exceda dicho límite. Ciertos contadores pueden volver a fijarse en cero una vez que se haya realizado el procedimiento de mantenimiento.

Uso de los contadores de EMF

Los límites seleccionables por el usuario para el **contador de EMF** permiten adaptar el mantenimiento preventivo asistido a los requisitos específicos del usuario. El ciclo útil de mantenimiento depende de los requisitos de uso. Por tanto, los límites máximos se deben determinar de acuerdo con las condiciones específicas de funcionamiento del instrumento.

Configuración de los límites de EMF

La configuración de los límites de **EMF** debe optimizarse durante uno o dos ciclos de mantenimiento. En primer lugar deberán definirse los límites de **EMF** por defecto. Cuando el rendimiento indique que el mantenimiento es necesario, anote los valores indicados en los contadores de EMF. Introduzca estos valores (o ligeramente inferiores a los mostrados) como límites de **EMF** y reinicie los **contadores de EMF** (llévelos a cero). La próxima vez que los contadores excedan los nuevos límites de **EMF**, aparecerá la señal **EMF**, recordando que debería realizarse el mantenimiento.

1

Disposición del instrumento

El diseño industrial del módulo incorpora varias funciones innovadoras. Utiliza el concepto E-PAC de Agilent para el embalaje de piezas electrónicas y mecánicas. Este concepto se basa en la utilización de láminas espaciadoras de espuma de polipropileno expandido (EPP) entre las que se colocan los componentes mecánicos y electrónicos del módulo. El paquete se guarda en una cabina metálica recubierta por otra de plástico. Las ventajas de este embalaje son:

- se eliminan tornillos de sujeción, cerrojos o ataduras, reduciendo el número de componentes y facilitando los procesos de embalaje y desembalaje,
- las láminas de plástico incorporan canales de aire que guían con exactitud el aire refrigerado hasta los lugares necesarios,
- las láminas plásticas amortiguan los choques que puedan sufrir las piezas electrónicas y mecánicas, y
- la cabina interior metálica protege la electrónica interna de interferencias electromagnéticas e incluso ayuda a reducir las emisiones de frecuencia de radio del propio instrumento.

1 Introducción

Disposición del instrumento

2 Requisitos y especificaciones de las instalaciones

Requisitos de las instalaciones 24 Especificaciones físicas 29 Especificaciones de rendimiento 30 Especificaciones 30 Condiciones de la especificación 34

En este capítulo se ofrece información acerca de los requisitos del entorno y de las especificaciones físicas y de rendimiento.

Requisitos de las instalaciones

Es importante disponer de un entorno adecuado para asegurar un funcionamiento óptimo del módulo.

Consideraciones sobre la corriente

La fuente de alimentación del detector tiene capacidad de amplio rango y acepta cualquier voltaje en el rango mostrado en la Tabla 2 en la página 29. En consecuencia, no se incorpora ningún selector de voltaje en la parte posterior del módulo. Tampoco aparecen fusibles accesibles externamente, ya que la fuente de alimentación incluye fusibles electrónicos automáticos.

ADVERTENCIA

El módulo no estará del todo apagado cuando se desenchufa, mientras el cable de alimentación esté conectado.

Los trabajos de reparación del módulo entrañan riesgos de daños personales, por ejemplo, descargas, si abre la cubierta del instrumento y éste está conectado a la corriente.

- Asegúrese de poder acceder siempre al enchufe de corriente.
- → Retire el cable de corriente del instrumento antes de abrir la cubierta del módulo.
- → No conecte el cable al instrumento mientras las cubiertas no estén colocadas.

ADVERTENCIA

Voltaje de línea incorrecto en el módulo

Si los aparatos se conectan a un voltaje de línea superior al especificado, existe peligro de descarga eléctrica o de daños en los instrumentos.

→ Conecte el módulo al voltaje de línea especificado.

PRECAUCIÓN

Conector de corriente inaccesible.

En caso de emergencia, se debe poder desconectar el instrumento de la red en cualquier momento.

- → Asegúrese de que se pueda llegar a desenchufar fácilmente el conector de corriente del instrumento.
- → Deje espacio suficiente detrás del enchufe de corriente del instrumento para poder desenchufar el cable.

2 Requisitos y especificaciones de las instalaciones

Requisitos de las instalaciones

Cables de alimentación

Se proporcionan diferentes opciones de cables de alimentación con el módulo. Los terminales hembra de todos los cables de alimentación son idénticos. Se introduce en el conector de entrada de corriente de la parte posterior. El terminal macho de cada cable de alimentación es diferente y está diseñado para coincidir con los enchufes de cada país o región.

ADVERTENCIA

Ausencia de conexión de tierra o uso de un cable de alimentación no especificado

La ausencia de conexiones de tierra o el uso de un cable de alimentación no especificado pueden provocar electrocución o cortocircuitos.

- No utilice nunca los instrumentos con una toma de corriente desprovista de conexión de tierra.
- No utilice nunca un cable de alimentación distinto al cable de Agilent Technologies diseñado para su región.

ADVERTENCIA

Utilización de cables no suministrados

Si se usan cables que no haya suministrado Agilent Technologies se pueden producir daños en los componentes electrónicos o daños personales.

→ No utilice nunca cables que no sean los suministrados por Agilent Technologies, con el fin de asegurar una correcta funcionalidad y el cumplimiento de los reglamentos de seguridad o de compatibilidad electromagnética.

ADVERTENCIA

Uso no indicado de los cables de alimentación proporcionados

El uso de los cables de alimentación para propósitos no indicados pueden causar lesiones personales o daños a los equipos electrónicos.

→ Nunca utilice los cables de alimentación proporcionados por Agilent Technologies con este instrumento para ningún otro equipo.

Espacio en el banco

Las dimensiones y el peso del módulo (consulte Tabla 2 en la página 29) permiten colocar el módulo en prácticamente cualquier banco de laboratorio. Necesita un espacio adicional de 2,5 cm (1,0 inches) a cada lado y de, aproximadamente, 8 cm (3,1 inches) en la parte posterior para la circulación del aire y las conexiones eléctricas.

Si el banco tiene que soportar un sistema HPLC completo, asegúrese de que esté diseñado para aguantar el peso de todos los módulos.

El módulo se debe utilizar en posición horizontal.

Entorno

El módulo funcionará dentro de las especificaciones a los valores de temperatura ambiente y de humedad relativa descritos en la Tabla 2 en la página 29.

Los tests de deriva de la ASTM requieren un cambio de temperatura inferior a 2 °C/hour (3,6 F/hour) medido durante un período de una hora. La especificación que hemos publicado para la deriva (consulte también "Especificaciones" en la página 30) se basa en estas condiciones. Cambios mayores en la temperatura ambiente producirán una deriva mayor.

Para obtener un mejor rendimiento en cuanto a la deriva, es necesario controlar las fluctuaciones de temperatura. Para lograr el mejor rendimiento, reduzca la frecuencia y la amplitud de los cambios de temperatura por debajo de 1 °C/hour (1,8 F/hour). Pueden ignorarse las turbulencias en torno a un minuto o menos.

PRECAUCIÓN

Condensación dentro del módulo

La condensación dañará la electrónica del sistema.

- → No guarde, traslade ni utilice el módulo bajo condiciones en las que las fluctuaciones de temperatura pudieran provocar condensación dentro del módulo.
- → Si el traslado del módulo se realizó bajo condiciones ambientales frías, manténgalo en su caja hasta que alcance lentamente la temperatura ambiente, para evitar problemas de condensación.

2 Requisitos y especificaciones de las instalaciones

Requisitos de las instalaciones

NOTA

Este módulo está diseñado para funcionar en un entorno electromagnético típico, es decir, en el que esté prohibido la proximidad de transmisores de RF como, por ejemplo, teléfonos móviles.

Especificaciones físicas

Тіро	Especificación	Comentarios
Peso	11.5 kg (26 lbs)	
Dimensiones (altura × anchura × profundidad)	140 x 345 x 435 mm (5,5 x 13,5 x 17 pulgadas)	
Voltaje de línea	100 - 240 VAC, ± 10 %	Capacidad de rango amplio
Frecuencia de línea	50 o 60 Hz, ± 5 %	
Consumo de corriente	160 VA / 130 W / 444 BTU	Máximo
Temperatura ambiente operativa	4-40 °C (39-104 °F)	
Temperatura ambiente no operativa	-40 – 70 °C (-4 – 158 °F)	
Humedad	En funcionamiento: < 80 % Sin estar en funcionamiento: < 95 %	Sin condensación
Altitud operativa	Hasta 2000 m (6562 ft)	
Altitud no operativa	Hasta 4600 m (15091 ft)	Para guardar el módulo
Estándares de seguridad: IEC, CSA, UL	Categoría de instalación II, grado de contaminación 2	Solo para utilización en interiores

Tabla 2 Especificaciones físicas

Especificaciones de rendimiento

Especificaciones

Especificaciones de rendimiento G4212A

 Tabla 3
 Especificaciones de rendimiento G4212A

Тіро	Especificación	Comentarios
Tipo de detección	Matriz de 1024 fotodiodos	
Fuente de luz	Lámpara de deuterio	Equipada con una etiqueta RFID que incluye información típica de la lámpara.
Rango de longitud de onda	190 – 640 nm	
Ruido a corto plazo (ASTM); longitud de onda simple y múltiple	< ± 3 × 10 ⁻⁶ UA a 230 nm/4 nm, con celda de cartucho Max-Light de 10 mm Normalmente, < ± 0,6 × 10 ⁻⁶ UA/cm a 230 nm/4 nm, con celda de cartucho Max-Light de 60 mm	Consultar <i>"Condiciones de las especificaciones"</i> a continuación
Deriva	< 0.5 × 10 ⁻³ UA/hora a 230 nm	Consultar <i>"Condiciones de las especificaciones"</i> a continuación
Rango de absorbancia lineal	> 2,0 AU (5 %) a 265 nm	Consultar <i>"Condiciones de las especificaciones"</i> a continuación
Exactitud de la longitud de onda	±1 nm	Tras la recalibración con líneas de deuterio
Agrupamiento de longitudes de onda	2 – 400 nm	Programable en pasos de 1 nm
Anchura de rendija	1, 2, 4, 8 nm	Rendija programable
Anchura del diodo	~ 0,5 nm	
Velocidad de datos de señal	hasta 160 Hz	
Velocidad de muestreo de los espectros	hasta 160 Hz	

Requisitos y especificaciones de las instalaciones 2

Especificaciones de rendimiento

Тіро	Especificación	Comentarios
Celdas de flujo	Celda de cartucho Max-Light (G4212-60008), Celda de cartucho Max-Light (G4212-60007), Celda de cartucho Max-Light HDR (G4212-60032) Celda de cartucho Max-Light ULD (G4212-60038) Celda de cartucho Max-Light bioinerte (G5615-60018) Celda de cartucho Max-Light bioinerte (G5615-60017) Celda de test de cartucho Max-Light (G4212-60011)	60 bar (presión máxima de 870 psi) El rango de pH entre 1,0 y 12,5 (en función del disolvente) está disponible en las versiones estándares y bioinertes. Tipo cartucho, equipadas con etiquetas RFID que incluyen información típica de las celdas.
Control y evaluación de datos	 Sistema de datos ChemStation Agilent para cromatografía de líquidos EZChrom Elite MassHunter 	 B.04.02 o superior 3.3.2 SP1 o superior B.02.01 SP1 o superior
Control local	Agilent Instant Pilot (G4208A)	B.02.11 o superior
Software de pruebas y diagnóstico	Agilent LabAdvisor	B.01.03 SP4 o superior
Salidas analógicas	Registrador/integrador: 100 mV o 1 V, rango de salida 0,001 – 2 AU, una salida	
Comunicaciones	Red de área de controlador (CAN), RS-232C, APG remoto: señales de preparado, inicio, parada y apagado, LAN	
Seguridad y mantenimiento	Diagnósticos extensos, detección y visualización de errores (a través del módulo de control y ChemStation), detección de fugas, tratamiento seguro de fugas, señal de salida de fugas para apagado del sistema de bombeo. Voltajes bajos en las áreas de mantenimiento principales.	
Características de GLP	Mantenimiento preventivo asistido (EMF) para el seguimiento continuo de la utilización del instrumento en términos del tiempo de encendido de la lámpara, con límites establecidos por el usuario y mensajes de aviso. Registros electrónicos de las tareas de mantenimiento y los errores. Verificación de la exactitud de la longitud de onda con líneas de emisión de la lámpara de deuterio.	
Carcasa	Todos los materiales son reciclables.	

Tabla 3 Especificaciones de rendimiento G4212A

2 Requisitos y especificaciones de las instalaciones

Especificaciones de rendimiento

Especificaciones de rendimiento G4212B

Tabla 4 Especificaciones de rendimiento G4212B

Тіро	Especificación	Comentarios
Tipo de detección	Matriz de 1024 fotodiodos	
Fuente de luz	Lámpara de deuterio	Equipada con una etiqueta RFID que incluye información típica de la lámpara.
Rango de longitud de onda	190 – 640 nm	
Ruido a corto plazo (ASTM); longitud de onda simple y múltiple	< ± 3 × 10 ⁻⁶ UA a 230 nm/4 nm, con celda de cartucho Max-Light de 10 mm Normalmente, < ± 0,6 × 10 ⁻⁶ UA/cm a 230 nm/4 nm, con celda de cartucho Max-Light de 60 mm	Consultar "Condiciones de las especificaciones" a continuación
Deriva	< 0.5 × 10 ⁻³ UA/hora a 230 nm	Consultar "Condiciones de las especificaciones" a continuación
Rango de absorbancia lineal	> 2,0 AU (5 %) a 265 nm	Consultar "Condiciones de las especificaciones" a continuación
Exactitud de la longitud de onda	±1 nm	Tras la recalibración con líneas de deuterio
Agrupamiento de longitudes de onda	2 – 400 nm	Programable en pasos de 1 nm
Anchura de rendija	4 nm	Rendija fija
Anchura del diodo	~ 0,5 nm	
Velocidad de de datos de señal	80 Hz	
Velocidad de muestreo de los espectros	80 Hz	
Celdas de flujo	Celda de cartucho Max-Light (G4212-60008), Celda de cartucho Max-Light (G4212-60007), Celda de cartucho Max-Light HDR (G4212-60032) Celda de cartucho Max-Light ULD (G4212-60038) Celda de cartucho Max-Light bioinerte (G5615-60018) Celda de cartucho Max-Light bioinerte (G5615-60017) Celda de test de cartucho Max-Light (G4212-60011)	presión máxima de 60 bar (870 psi) El rango de pH entre 1,0 y 12,5 (en función del disolvente) está disponible en las versiones estándares y bioinertes. Tipo cartucho, equipadas con etiquetas RFID que incluyen información típica de las celdas.

Especificaciones de rendimiento

Тіро	Especificación	Comentarios
Control y evaluación de datos	Sistema de datos 1 ChemStation Agilent para cromatografía de líquidos 2 EZChrom Elite 3 MassHunter	 B.04.02 DSP3 o superior 3.3.2 SP2 o superior B.04.00 y B.03.01 SP2 o superior
Control local	Agilent Instant Pilot (G4208A)	B.02.11 o superior
Software de pruebas y diagnóstico	Agilent LabAdvisor	B.01.03 SP4 o superior
Salidas analógicas	Registrador/integrador: 100 mV o 1 V, rango de salida 0,001 – 2 AU, una salida	
Comunicaciones	Red de área de controlador (CAN), RS-232C, APG remoto: señales de preparado, inicio, parada y apagado, LAN	
Seguridad y mantenimiento	Diagnósticos extensos, detección y visualización de errores (a través del módulo de control y ChemStation), detección de fugas, tratamiento seguro de fugas, señal de salida de fugas para apagado del sistema de bombeo. Voltajes bajos en las áreas de mantenimiento principales.	
Características de GLP	Mantenimiento preventivo asistido (EMF) para el seguimiento continuo de la utilización del instrumento en términos del tiempo de encendido de la lámpara, con límites establecidos por el usuario y mensajes de aviso. Registros electrónicos de las tareas de mantenimiento y los errores. Verificación de la exactitud de la longitud de onda con líneas de emisión de la lámpara de deuterio.	
Carcasa	Todos los materiales son reciclables.	

Tabla 4 Especificaciones de rendimiento G4212B

Condiciones de la especificación

ASTM: "Práctica estándar para detectores fotométricos de longitud de onda variable utilizados en cromatografía líquida".

Condiciones de referencia:

- Longitud de onda: 230 nm/4 nm con longitud de onda de referencia de 360 nm/100 nm, anchura de rendija de 4 nm, TC de 2 s (o con RT = 2,2 * TC), ASTM
- Celda de cartucho Max-Light ((G4212-60008) con flujo de 0,5 mL/min de agua de calidad LC o Celda de test de cartucho Max-Light (G4212-60011)

Linealidad:

La linealidad se mide con cafeína a 265 nm/4 nm, una anchura de rendija de 4 nm y TC de 1 s (o RT de 2 s) con Celda de cartucho Max-Light (G4212-60008) > 2,0 AU (5 %) [normalmente, 2,5 AU (5 %)].

Las especificaciones se basan en la lámpara con la etiqueta RFID estándar (5190-0917) y es posible que no se cumplan con otros tipos de lámparas o con lámparas antiguas.

Los tests de deriva de la ASTM requieren un cambio de temperatura inferior a 2 °C/hour (3,6 F/hour) medido durante un período de una hora. La especificación que hemos publicado para la deriva se basa en estas condiciones. Cambios mayores en la temperatura ambiente producirán una deriva mayor.

Para obtener un mejor rendimiento en cuanto a la deriva, es necesario controlar las fluctuaciones de temperatura. Para lograr el mejor rendimiento, reduzca la frecuencia y la amplitud de los cambios de temperatura por debajo de 1 °C/hour (1,8 F/hour). Pueden ignorarse las turbulencias en torno a un minuto o menos.

Los tests de rendimiento deberían realizarse con una unidad óptica completamente caliente (más de dos horas). Las medidas de la ASTM requieren que el detector esté encendido al menos 24 h antes del inicio de los tests.

Constante de tiempo frente a tiempo de respuesta

Según la ASTM E1657-98, "Práctica estándar para tests de detectores fotométricos de longitud de onda variable utilizados en cromatografía líquida", la constante de tiempo se convierte en tiempo de respuesta multiplicándola por el factor 2,2.

NOTA

3

Instalación del módulo

Desembalaje del módulo 36 Daños al módulo 36 Lista de control de la entrega 37 Contenido del kit de accesorios del detector 37 Optimización de la configuración de la torre de módulos 38 Configuración de una torre de módulos 39 Configuración de dos torres de módulos 44 Instalación del detector 48 Conexiones de flujo al detector 51 Recalibración inicial 55

En este capítulo se ofrece información acerca del desembalaje, la verificación de los componentes, las consideraciones sobre las torres de módulos y la instalación del módulo.

Desembalaje del módulo

Daños al módulo

Embalaje dañado

Si el embalaje de envío muestra signos de daño externo, llame inmediatamente a la oficina de ventas y servicio técnico de Agilent Technologies. Informe al representante del departamento de servicio técnico de que el instrumento se pudo haber dañado durante el envío.

PRECAUCIÓN

Problemas "Envío defectuoso"

Si presenta signos de posibles daños, no intente instalar el módulo. Es necesario que Agilent realice una inspección para evaluar si el instrumento se encuentra en buen estado o está dañado.

- En caso de estar dañado, notifíquelo a la oficina de ventas y servicio técnico de Agilent.
- Un representante del departamento de servicio técnico de Agilent lo inspeccionará en su domicilio e iniciará las acciones adecuadas.

Condensación

PRECAUCIÓN

Condensación dentro del módulo

La condensación dañará la electrónica del sistema.

- No guarde, traslade ni utilice el módulo bajo condiciones en las que las fluctuaciones de temperatura pudieran provocar condensación dentro del módulo.
- → Si el traslado del módulo se realizó bajo condiciones ambientales frías, manténgalo en su caja hasta que alcance lentamente la temperatura ambiente, para evitar problemas de condensación.
Lista de control de la entrega

Asegúrese de que ha recibido todas las piezas y los materiales junto con el módulo. La lista de control de la entrega se muestra a continuación. Si faltara algo o hubiera alguna pieza dañada, notifíquelo a su oficina local de ventas y de asistencia de Agilent Technologies.

Descripción	Cantidad
Detector	1
Cable de alimentación	1
Cable de red cruzado	1
Cable de red de par trenzado	1
Celda de cartucho Max-Light (según el pedido)	1
Manual de usuario	en el CD de documentación (parte del envío, sin módulo específico)
Kit de accesorios	1

Tabla 5Lista de control del detector

Contenido del kit de accesorios del detector

Contenido del kit de accesorios del detector (referencia G4212-68755)

Referencia	Descripción
5062-2462	Tubo flexible de PTFE, 0,8 mm de diámetro interno, 1,6 mm de diámetro externo, 2 m, repetición de pedido de 5 m (de la celda de flujo a los residuos)
5063-6527	Conjunto de tubos, de 6 mm de d.i., 9 mmde d.e., 1,2 m (a residuos)
5042-9967	Pinza de los tubos (juego de 5 pinzas)
0100-1516	Conexión macho PEEK, 2/paq.
5067-4660	Capilar de entrada SST 0,12 mm de d.i., 220 mm de longitud
5181-1516	Cable CAN

Optimización de la configuración de la torre de módulos

Optimización de la configuración de la torre de módulos

Si el módulo forma parte de un sistema LC Agilent 1260 Infinity o 1290 Infinity completo, obtendrá un rendimiento óptimo si lo instala según la configuración siguiente. Estas configuraciones optimizan el paso de flujo del sistema y garantizan un volumen de retardo mínimo.

En el caso de otras posibles configuraciones, consulte el manual del sistema LC Agilent 1260 Infinity o 1290 Infinity.

3

Configuración de una torre de módulos

Configuración de una torre de módulos para LC Agilent 1260 Infinity

Optimice el rendimiento instalando los módulos del sistema LC Agilent 1260 Infinity en la siguiente configuración (consulte Figura 7 en la página 40 y Figura 8 en la página 41). Esta configuración optimiza el paso de flujo para reducir el volumen de retardo y el espacio necesario en el banco.

Optimización de la configuración de la torre de módulos

Figura 7 Configuración recomendada de una torre de módulos para el modelo 1260 Infinity (vista frontal)

Optimización de la configuración de la torre de módulos

Figura 8 Configuración recomendada de una torre de módulos para el modelo 1260 Infinity (vista posterior)

Configuración de una torre de módulos para LC Agilent 1290 Infinity

Para garantizar un rendimiento óptimo, instale los módulos del sistema LC binario Agilent 1290 Infinity en la siguiente configuración (consulte la Figura 9 en la página 42 y la Figura 10 en la página 43). Esta configuración optimiza el paso de flujo para reducir el volumen de retardo y el espacio necesario en el banco.

Optimización de la configuración de la torre de módulos

La Bomba binaria Agilent 1290 Infinity se debe instalar siempre en la base de la torre de módulos.

Figura 9 Configuración recomendada de la torre de módulos para el sistema 1290 Infinity con bomba binaria (vista frontal)

Optimización de la configuración de la torre de módulos

Figura 10 Configuración recomendada de la torre de módulos para el sistema 1290 Infinity con bomba binaria (vista posterior)

Optimización de la configuración de la torre de módulos

Configuración de dos torres de módulos

Configuración de dos torres de módulos para el sistema LC Agilent 1260 Infinity

Para evitar una altura excesiva de la torre de módulos cuando se incorpora el termostato del inyector automático al sistema, se recomienda formar dos torres de módulos. Algunos usuarios prefieren la menor altura de esta distribución, incluso sin el termostato del inyector automático. Se necesita un capilar ligeramente más largo entre la bomba y el inyector automático. (Consulte la Figura 11 en la página 44 y la Figura 12 en la página 45).

Termostato para el inyector automático de líquidos (opcional)

Figura 11 Configuración recomendada de dos torres de módulos para el modelo 1260 Infinity (vista frontal)

Optimización de la configuración de la torre de módulos

Figura 12 Configuración recomendada de dos torres de módulos para el modelo 1260 (vista posterior)

Optimización de la configuración de la torre de módulos

Configuración de dos torres de módulos para LC Agilent 1290 Infinity

En caso de que el termostato del inyector automático esté incorporado en el sistema, se recomienda una configuración de dos torres de módulos. De esta forma, los dos módulos pesados (la bomba 1290 Infinity y el termostato) se colocan en la base de cada torre y se evita crear una torre alta. Algunos usuarios prefieren la menor altura de esta distribución, incluso sin el termostato del inyector automático. Se necesita un capilar ligeramente más largo entre la bomba y el inyector automático. (Consulte la Figura 13 en la página 46 y la Figura 14 en la página 47).

Termostato del ALS (opcional)

Figura 13

Configuración recomendada de dos torres de módulos para el sistema 1290 Infinity con bomba binaria (vista frontal)

Optimización de la configuración de la torre de módulos

Corriente CA

Figura 14 Configuración recomendada de dos torres de módulos para el sistema 1290 Infinity con bomba binaria (vista posterior)

Instalación del detector

Piezas necesarias	Número	Descripción		
	1	Detector		
	1	Cable de alimentación		
	1	Cable LAN (cable de red cruzado o de par trenzado)		
	Para obte general d	ener información sobre otros cables, consulte a continuación y el apartado "Visión e los cables" en la página 260.		
Software necesario	Instant Pi rendimier	lot y/o ChemStation con las revisiones adecuadas; consulte "Especificaciones de no G4212A" en la página 30 o "Especificaciones de rendimiento G4212B" en la página 32.		
Preparaciones	Localice e	espacio necesario		
	Suministre conexiones de corriente			
	Desemba	le el módulo		
ADVERTENCIA	El módulo no estará del todo apagado cuando se desenchufa, mientras el cable de alimentación esté conectado.			
	Los trabajos de reparación del módulo entrañan riesgos de daños personales, por ejemplo, descargas, si abre la cubierta del instrumento y éste está conectado a la corriente.			
	→ Asegi	úrese de poder acceder siempre al enchufe de corriente.		
	→ Retire	el cable de corriente del instrumento antes de abrir la cubierta del módulo.		
	→ No co	necte el cable al instrumento mientras las cubiertas no estén colocadas.		

1 Apunte la dirección MAC de la interfaz LAN (parte posterior del módulo, bajo el interruptor de configuración; consulte Figura 17 en la página 58). Es necesario para la configuración LAN (consulte el capítulo *"Configuración LAN"*).

Figura 15 Vista posterior del detector: conexiones eléctricas y etiqueta

- **2** Establezca el interruptor de configuración según el modo de inicialización requerido (de forma predeterminada, IP fija o Bootp); consulte el capítulo *"Configuración LAN"*.
- **3** Coloque el módulo en la torre de módulos; consulte "Optimización de la configuración de la torre de módulos" en la página 38.
- **4** Asegúrese de que el interruptor de corriente frontal del módulo esté apagado (OFF).
- **5** Conecte el cable de alimentación al conector de alimentación situado en la parte posterior del módulo.
- 6 Conecte el cable CAN a los otros módulos de Agilent.
- 7 Conecte el cable LAN (por ejemplo, de una Agilent ChemStation como controlador) al conector LAN del detector.
- 8 Conecte el cable analógico (opcional).
- 9 Conecte el cable remoto APG (opcional) para los instrumentos no Agilent.
- **10** Encienda el equipo pulsando el botón en la parte inferior de la izquierda del módulo. El indicador de estado debería estar verde.

Instalación	del detector
NOTA	El módulo se encenderá al pulsar el interruptor de la línea de alimentación y se iluminará una lámpara de indicación verde. El módulo se apagará cuando el interruptor sobresalga y la luz verde esté apagada.
NOTA	El módulo se entrega con los valores de los ajustes de configuración predeterminados. Para cambiar estos valores, consulte el capítulo <i>"Configuración LAN"</i> .
NOTA	Tras su encendido, el detector pasa por varios estados de calentamiento de la unidad óptica y control de la temperatura. Esto se describe en "Calentamiento del detector" en la página 160.
	Espere a que la unidad óptica se caliente y estabilice convenientemente (más de 60 minutos).

3

Instalación del módulo

Conexiones de flujo al detector

		0	
1	1	U	
ir	10	rt	

Utilice únicamente piezas bioinertes en los módulos bioinertes.

Piezas necesarias	Número	Descripción
	1	Sistema
	1	Celda de flujo de cartucho Max-Light
	1	Capilares y tubos del Kit de accesorios

PRECAUCIÓN

Degradación de la muestra y contaminación del instrumento

Las piezas metálicas del paso de flujo pueden interactuar con las moléculas biológicas de la muestra y provocar la degradación y la contaminación de la muestra.

- → En el caso de las aplicaciones bioinertes, utilice siempre piezas bioinertes especiales que se puedan identificar mediante el símbolo de bioinerte o mediante otros marcadores descritos en este manual.
- → En un sistema bioinerte, no mezcle módulos ni piezas bioinertes con los que no sean inertes.

NOTA Este procedimiento muestra el detector fuera de un sistema. En un cromatógrafo de líquidos Agilent 1260 Infinity, el detector se encuentra debajo de un TCC G1316 del banco. En un cromatógrafo de líquidos Agilent 1290 Infinity, el detector se encuentra entre un TCC G1316C (debajo) y el compartimento de disolventes (encima). (Consulte "Optimización de la configuración de la torre de módulos" en la página 38).

Conexiones de flujo al detector

Conexiones de flujo al detector

NOTA

El detector debe funcionar con la cubierta frontal colocada para proteger el área de la celda de flujo de las corrientes exteriores fuertes.

NOTA

Si se sustituye la celda de flujo por una celda de flujo diferente, debe limpiarse con isopropanol. CELL-IN y CELL-OUT deben estar cerrados con los conectores.

NOTA

Para proteger la celda de flujo frente a la sobrepresión, consulte "Kit de válvulas de liberación de presión en línea (G4212-68001)" en la página 131.

Recalibración inicial

El detector ha sido calibrado inicialmente con una celda de flujo en fábrica. Tras instalar el detector con la celda de flujo de cartucho Max-Light entregada o nueva y calentarlo al menos durante 2 horas, se deberá realizar una recalibración ("Calibración de la longitud de onda" en la página 221). Esta recalibración corregirá los cambios leves debidos

- variaciones significativas de las condiciones ambientales (temperatura, humedad) durante el transporte y almacenamiento,
- variaciones significativas de las condiciones ambientales (temperatura, humedad) en la ubicación final y
- variaciones entre la celda de test de fábrica y la celda de flujo instalada.

3 Instalación del módulo Recalibración inicial

4 Configuración LAN

Qué hacer en primer lugar 58 Configuración de los parámetros TCP/IP 59 Interruptor de configuración 60 Selección del modo de inicialización 61 Protocolo de configuración dinámica de host (DHCP) 65 Información general (DHCP) 65 Configuración (DHCP) 67 Selección de la configuración de enlaces 69 Configuración automática con BootP 70 Acerca de Agilent BootP Service 70 Funcionamiento de BootP Service 71 Situación: no se puede establecer la comunicación LAN 71 Instalación de BootP Service 72 Dos métodos para determinar la dirección MAC 74 Asignación de direcciones IP mediante Agilent BootP Service 75 Cambio de la dirección IP de un instrumento mediante Agilent BootP Service 78 Configuración manual 80 Con Telnet 81 Con Instant Pilot (G4208A) 84 Configuración del ordenador y de la Agilent ChemStation 85 Configuración del ordenador para la configuración local 85

Configuración de la Agilent ChemStation 88

En este capítulo se ofrece información sobre cómo conectar el módulo al ordenador de la ChemStation de Agilent

Qué hacer en primer lugar

El módulo integra una interfase para comunicación LAN

1 Anote la dirección MAC (Media Access Control, control de acceso a medios) para su utilización posterior. La dirección MAC o dirección de hardware de las interfases LAN es un identificador exclusivo a nivel mundial. Ningún otro dispositivo de red tendrá la misma dirección de hardware. La dirección MAC puede encontrarse en una etiqueta en la parte posterior del detector bajo el interruptor de configuración (consulte Figura 17 en la página 58).

Referencia de la placa base del detector Código de revisión, proveedor, año y semana de la unidad Dirección MAC País de origen

- 2 Conecte la interfase LAN del instrumento (consulte Figura 17 en la página 58) a
 - la tarjeta de red del ordenador mediante un cable de red cruzado (punto a punto) o
 - a un concentrador o conmutador con un cable estándar LAN.

Figura 17 Localización de las interfases LAN y de la etiqueta MAC

Configuración de los parámetros TCP/IP

Configuración de los parámetros TCP/IP

Para que funcione correctamente en un entorno de red, debe configurarse la interfaz LAN con parámetros de red TCP/IP válidos. Estos parámetros son:

- Dirección IP
- · Máscara de subred
- · Puerta de enlace predeterminada

Pueden configurarse los parámetros TCP/IP de las siguientes formas:

- mediante la solicitud automática de los parámetros a un servidor BOOTP basado en la red (con el llamado protocolo Bootstrap)
- mediante la solicitud automática de los parámetros a un servidor DHCP basado en la red (con el llamado protocolo de configuración dinámica de host). Este modo requiere un módulo de LAN integrado o una tarjeta de interfaz LAN G1369C, consulte "Configuración (DHCP)" en la página 67
- · mediante la configuración manual de los parámetros con Telnet
- mediante la configuración manual de los parámetros utilizando el Instant Pilot (G4208A)

La interfaz LAN diferencia varios modos de inicialización. El modo de inicialización (en abreviado, "modo ini") establece cómo determinar los parámetros TCP/IP activos después de haber encendido el dispositivo. Los parámetros pueden derivarse de un ciclo BootP o de la memoria no volátil, o bien, inicializarse con valores predeterminados conocidos. El modo de inicialización se selecciona con el interruptor de configuración; consulte Tabla 7 en la página 61.

Interruptor de configuración

Interruptor de configuración

El interruptor de configuración se encuentra en la parte posterior módulo.

Figura 18 Localización del interruptor de configuración

El módulo se entrega con todos los interruptores en la posición OFF, tal y como se muestra a arriba.

ΝΟΤΑ

Para llevar a cabo la configuración LAN, coloque en posición OFF SW1 y SW2.

Tabla 6Ajustes predeterminados de fábrica

Modo de inicialización ("ini")	Bootp, todos los interruptores hacia abajo. Para obtener más información, consulte "Selección del modo de inicialización" en la página 61
Configuración de enlaces	velocidad y modo dúplex determinados mediante autonegociación; más información en "Selección de la configuración de enlaces" en la página 69

Selección del modo de inicialización

Se pueden seleccionar los siguientes modos de inicialización (ini):

 Tabla 7
 Interruptores del modo de inicialización

	SW 6	SW 7	SW 8	Modo ini
ON	APAG ADO	APAG ADO	APAG ADO	BootP
	APAG ADO	APAG ADO	ENCE NDIDO	BootP y almacenar
	APAG ADO	ENCE NDIDO	APAG ADO	Utilizar almacenados
	APAG ADO	ENCE NDIDO	ENCE NDIDO	Utilizar predeterminados
	ENCE NDIDO	APAG ADO	APAG ADO	DHCP ¹

¹ Requiere firmware B.06.40 o superior. Módulos sin LAN integrada; consulte la tarjeta de interfaz LAN G1369C.

Bootp

Cuando se selecciona el modo de inicialización **Bootp**, el módulo intenta descargar los parámetros de un servidor **Bootp**. Los parámetros obtenidos se convierten de inmediato en parámetros activos. No se almacenan en la memoria no volátil del módulo. Por tanto, los parámetros se pierden con el próximo ciclo de alimentación del módulo.

Selección del modo de inicialización

Bootp & Store

Al seleccionar la opción**Bootp & Store**, los parámetros obtenidos del servidor **Bootp** se convierten de inmediato en parámetros activos. Además, se almacenan en la memoria no volátil del módulo. De esta forma, después de un ciclo de alimentación, estarán aún disponibles. Así se logra la configuración "BootP una vez" del módulo.

Ejemplo: es posible que el usuario no desee que el servidor **Bootp** esté activo en la red constantemente. Por otro lado, es posible que no disponga de otro método de configuración que no sea **Bootp**. En este caso, el usuario inicia el servidor **Bootp** de manera temporal, enciende el módulo en el modo de inicialización **Bootp & Store**, espera hasta que se haya completado el ciclo **Bootp**, cierra el servidor **Bootp** y desactiva el módulo. A continuación, selecciona el modo de inicialización "Utilizar almacenados" y enciende de nuevo el módulo. A partir de este momento, el usuario puede establecer la conexión TCP/IP al módulo con los parámetros obtenidos en este ciclo **Bootp** único.

Figura 20 Bootp y almacenar (Principio)

NOTA

Utilice el modo de inicialización **Bootp & Store** con precaución, ya que la escritura en la memoria no volátil consume tiempo. Por tanto, en caso de que el módulo tenga que obtener los parámetros de un servidor **Bootp** cada vez que se encienda, se recomienda el modo de inicialización **Bootp**.

Using Stored

Cuando se selecciona el modo de inicialización **Using Stored**, los parámetros se obtienen de la memoria no volátil del módulo. Se establecerá la conexión TCP/IP al utilizar estos parámetros. Los parámetros se configuraron con anterioridad mediante uno de los métodos descritos.

Figura 21 Utilizar almacenados (Principio)

Using Default

Cuando se selecciona la opción **Using Default**, se utilizan los parámetros predeterminados. Estos parámetros habilitan una conexión TCP/IP a la interfaz LAN sin necesidad de ninguna otra configuración; consulte Tabla 8 en la página 63.

Figura 22 Utilizar predeterminados (Principio)

NOTA

Si utiliza la dirección predeterminada en la red de área local, podría tener problemas de red. Tenga cuidado y cámbiela por una dirección válida inmediatamente.

Tabla 8	Utilizar	parámetros	predetermi	nados
---------	----------	------------	------------	-------

Dirección IP:	192.168.254.11
Máscara de subred:	255.255.255.0
Puerta de enlace predeterminada	no especificada

Selección del modo de inicialización

Dado que la dirección IP predeterminada es una dirección de red local ya existente, no será enrutada por ningún dispositivo de red. Por lo tanto, el ordenador y el módulo deben residir en la misma subred.

El usuario puede abrir una sesión Telnet utilizando la dirección IP predeterminada y cambiar los parámetros almacenados en la memoria no volátil del módulo. Después, puede cerrar la sesión, seleccionar el modo de inicialización "Utilizar almacenados", encender de nuevo el dispositivo y establecer la conexión TCP/IP con los parámetros nuevos.

Cuando el módulo está conectado directamente al ordenador (por ejemplo, mediante un cable cruzado o un concentrador local) y está separado de la red de área local, el usuario sólo tiene que mantener los parámetros predeterminados para establecer la conexión TCP/IP.

NOTA

En el modo **Using Default**, no se borran automáticamente los parámetros almacenados en la memoria del módulo. Si el usuario no los modifica, estarán disponibles cuando se cambie de nuevo al modo "Utilizar almacenados".

Configuración LAN 4 Protocolo de configuración dinámica de host (DHCP)

Protocolo de configuración dinámica de host (DHCP)

Información general (DHCP)

El protocolo de configuración dinámica de host (DHCP) es un protocolo de configuración automática utilizado en las redes IP. La funcionalidad DHCP se encuentra disponible en los módulos HPLC de Agilent con la interfaz LAN integrada y el firmware "B" (B.06.40 o superior).

- Detector de longitud de onda variable G1314D/E/F
- Detector de diodos de Agilent G1315C/D
- · Detector de longitud de onda múltiple G1365C/D
- · Detector de diodos G4212A/B
- · Bomba binaria G4220A/B
- Tarjeta de interfaz LAN G1369C
- Sistema LC 1120/1220

Cuando se selecciona el modo de inicialización "DHCP", la tarjeta intenta descargar los parámetros de un servidor DHCP. Los parámetros obtenidos se convierten de inmediato en parámetros activos. No se almacenan en la memoria no volátil de la tarjeta.

Además de solicitar los parámetros de red, la tarjeta también envía su nombre de host al servidor DHCP. El nombre de host equivale a la dirección MAC de la tarjeta, por ejemplo, *0030d3177321*. Es responsabilidad del servidor DHCP reenviar la información del nombre de host/dirección al servidor de nombres de dominio (DNS). La tarjeta no proporciona ningún servicio para la resolución del nombre de host (por ejemplo, NetBIOS).

Figura 23 DHCP (principio)

4 Configuración LAN

Protocolo de configuración dinámica de host (DHCP)

ΝΟΤΑ	1 Puede pasar un tiempo antes de que el servidor DHCP actualice el servidor DNS con la información del nombre de host.
	2 Puede ser necesario modificar completamente el nombre de host con el sufijo DNS, por ejemplo, <i>0030d3177321.country.company.com</i> .
	3 El servidor DHCP puede rechazar el nombre de host propuesto por la tarjeta y asignar un nombre según las convenciones de nomenclatura locales.

Protocolo de configuración dinámica de host (DHCP)

Configuración (DHCP)

Software necesario

Los módulos de la torre de módulos deben tener como mínimo el firmware del conjunto A.06.34 y de los módulos mencionados anteriormente, es decir, B.06.40 o superior (deben ser del mismo conjunto de firmware).

1 Apunte la dirección MAC de la interfaz LAN (suministrada con la tarjeta de interfaz LAN G1369C o la placa base). Esta dirección MAC se encuentra en la etiqueta de la tarjeta o en la parte posterior de la placa base, por ejemplo, 0030d3177321.

En el Instant Pilot, la dirección MAC se puede encontrar en **Details**, en el apartado LAN.

	System Info	
		-
Property	Value	
Contro	oller : DE12345678 (G4208A) 🛛 🖉 🗖	
Main Revision	B.02.12 [0001]	Reload
DAI	D : DE64260019 (G1315D)	
Main Revision	B.06.41 [0002]	
Resident Revison	B.06.40 [0007]	Print
On-time	3d 01:33h	
Installed Options	Dhcp	
LAN TCP/IP Mode	DHCP	
LAN TCP/IP Address	130.168.132.219	
LAN MAC Address	0030D314F89E	
Board ID	TYPE=G1315-66565, SER=MAC, REV=AC, MFG=	
Lamp	2140-0820 : 848728	
Cell	no info	
	T	Exit
Information on each m	odule.	10:08

Figura 24 Configuración LAN en Instant Pilot

2 Ajuste el interruptor de configuración en DHCP, tanto en la tarjeta de interfaz LAN G1369C como en la placa base de los módulos mencionados anteriormente.

4 Configuración LAN

Protocolo de configuración dinámica de host (DHCP)

	iuijetu e			o (interrupt	
SW 4	SW 5	SW 6	SW 7	SW 8	Modo de inicialización
ON	OFF	OFF	OFF	OFF	DHCP

 Tabla 9
 Tarjeta de interfaz LAN G1369C (interruptor de configuración en la tarjeta)

 Tabla 10
 Módulos LC incluidos 1120/1220 (interruptor de configuración en la parte posterior del instrumento)

SW 6	SW 7	SW 8	Modo de inicialización
ON	OFF	OFF	DHCP

- 3 Encienda el módulo que contiene la interfaz LAN.
- **4** Configure el software de control (por ejemplo, ChemStation de Agilent, LabAdvisor, la herramienta de actualización del firmware) y utilice la dirección MAC como nombre de host, por ejemplo, *0030d3177321*.

El sistema LC debe resultar visible en el software de control (consulte la nota en el apartado "Información general (DHCP)" en la página 65).

Selección de la configuración de enlaces

La interfase LAN soporta funcionamientos de 10 ó 100 Mbps en los modos completo o medio-dúplex. En la mayoría de los casos, el dúplex-completo es compatible cuando el dispositivo de conexión a la red, por ejemplo el interruptor o hub de red, es compatible con especificaciones de auto-negociación IEEE 802.3u.

Cuando se conectan dispositivos a la red no compatibles con la autonegociación, la interfase LAN se configurará para funcionamientos medio-dúplex a 10 ó 100 Mbps.

Por ejemplo, cuando se conecta a un hub de no negociación a 10 Mbps, la interfase LAN se configurará automáticamente para funcionar medio-dúplex a 10 Mbps.

Si el módulo no puede conectarse a la red mediante la autonegociación, puede configurar manualmente el modo de funcionamiento del enlace mediante los interruptores de configuración del enlace del módulo.

	SW 3	SW 4	SW 5	Configuración de enlaces
ON	OFF	-	-	velocidad y modo dúplex determinados mediante autonegociación
	ON	OFF	OFF	configurar manualmente a 10 Mbps, medio-dúplex
	ON	OFF	ON	configurar manualmente a 10 Mbps, dúplex-completo
	ON	ON	OFF	configurar manualmente a 100 Mbps, medio-dúplex
	ON	ON	ON	configurar manualmente a 100 Mbps, dúplex-completo

Tabla 11 Interruptores de configuración de enlaces

Configuración automática con BootP

ΝΟΤΑ	Todos los ejemplos que se muestran en este capítulo no funcionarán en su entorno. Necesita sus propias direcciones IP, de máscara de subred y de puerta de enlace.
NOTA	Asegúrese de que el interruptor de configuración del detector esté bien ajustado. La configuración deberá ser BootP o BootP & Store ; consulte Tabla 7 en la página 61.
NOTA	Asegúrese de que el detector conectado a la red esté apagado.
NOTA	Si no tiene instalado el programa BootP Service de Agilent en su ordenador, instálelo con ayuda del DVD de la ChemStation de Agilent, ubicado en la carpeta BootP .

Acerca de Agilent BootP Service

Agilent BootP Service se utiliza para asignar una dirección IP a la interfase LAN.

Agilent BootP Service se proporciona en el DVD de ChemStation. Agilent BootP Service se instala en un servidor o un PC en LAN para proporcionar una administración centralizada de las direcciones IP para los instrumentos de Agilent en una LAN. BootP service debe ejecutar un protocolo de red TCP/IP y no puede ejecutar un servidor DHCP.

Funcionamiento de BootP Service

Cuando un instrumento está encendido, una interfase LAN del instrumento emite una petición para una dirección IP o nombre de host y proporciona su dirección MAC como identificador. Agilent BootP Service responde a esta petición y pasa al instrumento solicitante una dirección IP y nombre de host definidos previamente que están asociados con la dirección MAC del hardware.

El instrumento recibe su dirección IP y nombre de host y mantiene la dirección IP mientras esté encendido. El apagado del instrumento provocaría la pérdida de su dirección IP, por lo que Agilent BootP Service debe estar ejecutándose cada vez que se encienda el instrumento. Si Agilent BootP Service se ejecuta en segundo plano, el instrumento recibirá su dirección IP durante el encendido.

La interfase LAN de Agilent puede configurarse para almacenar la dirección IP y no la perderá en caso de interrupción de la alimentación.

Situación: no se puede establecer la comunicación LAN

Si no se puede establecer una comunicación LAN con BootP Service, haga las siguientes comprobaciones en el ordenador:

- ¿Se ha iniciado BootP Service? Durante la instalación de BootP, el servicio no se ha iniciado automáticamente.
- ¿El cortafuegos bloquea BootP Service? Añada BootP Service como una excepción.
- ¿La interfaz LAN está utilizando el modo BootP en lugar de los modos "Utilizar almacenados" o "Utilizar predeterminados"?

Configuración automática con BootP

Instalación de BootP Service

Antes de instalar y configurar Agilent BootP Service, asegúrese de tener a mano las direcciones IP del ordenador y los instrumentos.

- 1 Inicie sesión como Administrador u otro usuario con privilegios de Administrador.
- 2 Cierre todos los programas de Windows.
- **3** Inserte el DVD del software de Agilent ChemStation en la unidad. Si el programa de instalación se inicia automáticamente, haga clic en **Cancel** para detenerlo.
- 4 Abra Windows Explorer.
- **5** Vaya al directorio BootP en el DVD de Agilent ChemStation y haga doble clic en **BootPPackage.msi**.
- 6 Si es necesario, haga clic en el icono **Agilent BootP Service**... en la barra de tareas.
- 7 Aparece la pantalla Welcome del Agilent BootP Service Setup Wizard Haga clic en Next.
- 8 Aparece la pantalla de **End-User License Agreement**. Lea las condiciones, indique su aceptación y, a continuación, haga clic en **Next**.
- **9** Aparece la ventana de selección de la **Destination Folder**. Instale BootP en la carpeta predeterminada o haga clic en **Browse** para elegir otra ubicación. Haga clic en **Next**.

La ubicación por defecto para la instalación es:

C:\Archivos de programa\Agilent\BootPService\

10 Haga clic en Install para comenzar la instalación.
Configuración automática con BootP

BootP Settings			
BootP Tab File:			
C:\Documents and Setti	ngs\All Users\Application Data\Agilent\BootP\TabFile		
Create Tab File Edit BootP Addresses			
- Logging			
Do you want to log	g bootP requests?		
BootP Log File:	BootP Log File:		
C:\Documents and Settings\All Users\Application Data\Agilent\BootP\LogFile			
- Default Settings-			
D orduk ookingo			
Subnet mask:	0.0.0.		
Gateway:	0.0.0.		
	OK Cancel Help		

11 Cuando se completa la carga de los archivos, aparece la pantalla **BootP Settings**.

Figura 25 Pantalla Ajustes Bootp

12 En la sección **Default Settings** de la pantalla, puede introducir la máscara de subred y la puerta de enlace (si las conoce).

Se pueden utilizar los valores predeterminados:

- La máscara de subred predeterminada es 255.255.255.0
- La puerta de enlace predeterminada es 192.168.254.11
- 13 En la pantalla BootP Settings, haga clic en OK. La pantalla Agilent BootP Service Setup indica que ha terminado.
- 14 Haga clic en Finish para salir de la pantalla Agilent BootP Service Setup.
- 15 Extraiga el DVD de la unidad.

La instalación ha terminado.

16 Inicie BootP Service en los servicios de Windows[®]: en el escritorio de Windows[®], haga clic con el botón derecho del ratón en el icono Computer, seleccione Administrar > Servicios y aplicaciones > Servicios. Seleccione Agilent BootP Service y haga clic en Start.

Dos métodos para determinar la dirección MAC

Activación del registro para descubrir la dirección MAC a través de BootP

Si desea ver la dirección MAC, seleccione la casilla de verificación **Do you want to log BootP requests?**.

- 1 Abra Ajustes de BootP desde Inicio > Todos los programas > Agilent BootP Service > EditBootPSettings.
- 2 En BootP Settings... seleccione Do you want to log BootP requests? para habilitar el registro.

Figura 26 Activación del registro de BootP

El archivo de registro se encuentra en

C:\Documents and Settings\All Users\Datos de programa\Agilent\BootP\LogFile

Contiene una entrada de dirección MAC para cada dispositivo que solicita información de configuración desde BootP.

- **3** Haga clic en **OK** para guardar los valores o **Cancel** para rechazarlos. La edición finaliza.
- 4 Después de cada modificación de los ajustes de BootP (por ejemplo, EditBootPSettings) es necesario detener o iniciar BootP service para que BootP service acepte los cambios. Consulte "Detención de Agilent BootP Service" en la página 78 o "Reinicio de Agilent BootP Service" en la página 79.
- **5** Cancele la selección de la casilla **Do you want to log BootP requests?** después de configurar los instrumentos; de lo contrario, el archivo de registro llenará rápidamente el espacio del disco.

Determinación de la dirección MAC a partir directamente de la etiqueta de la tarjeta de interfaz LAN

- **1** Apague el instrumento.
- 2 Lea la dirección MAC de la etiqueta y anótela.

La dirección MAC está impresa en una etiqueta que se encuentra en la parte posterior del módulo.

Consulte Figura 16 en la página 58 y Figura 17 en la página 58.

3 Encienda el instrumento.

Asignación de direcciones IP mediante Agilent BootP Service

Agilent BootP Service asigna la dirección MAC del hardware del instrumento a una dirección IP.

Determinación de la dirección MAC del instrumento a través de BootP Service

- 1 Apague y vuelva a encender el instrumento.
- **2** Después de que el instrumento realice una autoevaluación, abra el archivo de registro de BootP Service con el Bloc de notas.
 - La ubicación predeterminada para el archivo de registro es C:\Documents and Settings\All Users\Datos de programa\Agilent\BootP\LogFile.
 - El archivo de registro no se actualizará si está abierto.

Los contenidos serán similares a lo siguiente:

02/25/10 15:30:49 PM

Estado: Petición BootP recibida en la última capa

Estado: Petición BootP recibida desde dirección de hardware: 0010835675AC

Error: Dirección de hardware no encontrada en BootPTAB: 0010835675AC

Estado: Procesamiento de petición BootP finalizado en la última capa

3 Registre la dirección de hardware (MAC) (por ejemplo, 0010835675AC).

- **4** El error significa que a la dirección MAC no se le ha asignado una dirección IP y que el archivo Tab no tiene esta entrada. La dirección MAC se guarda en el archivo Tab cuando se asigna una dirección IP.
- 5 Cierre el archivo de registro antes de encender otro instrumento.
- **6** Cancele la selección de la casilla **Do you want to log BootP requests?** después de configurar los instrumentos a fin de evitar que el archivo de registro ocupe un espacio en disco excesivo.

Cómo añadir cada instrumento a la red mediante BootP

- Vaya a Inicio > Todos los programas > Agilent BootP Service y seleccione Edit BootP Settings. Aparece la pantalla Ajustes de BootP.
- 2 Cancele la selección de **Do you want to log BootP requests?** una vez que se han agregado todos los instrumentos.

La casilla **Do you want to log BootP requests?** no debe estar seleccionada cuando haya terminado de configurar los instrumentos; de lo contrario, el archivo de registro llenará rápidamente el espacio del disco.

- **3** Haga clic en Edit BootP Addresses... Aparece la pantalla Edit BootP Addresses.
- 4 Haga clic en Add... Aparece la pantalla Add BootP Entry.

Mac Address	
Host Name	
IP Address	· · ·
Comment	
Subnet Mask	255 . 255 . 255 . 0
Gateway	· · ·
<u>0</u> K	Cancel <u>H</u> elp

Figura 27 Activación del registro de BootP

- **5** Introduzca los siguientes datos del instrumento:
 - Dirección MAC
 - Nombre de host. Introduzca un nombre de host de su elección.

El nombre de host debe empezar con caracteres alfanuméricos (es decir, LC1260).

- Dirección IP
- Comentario (opcional)
- Máscara de subred
- Dirección de la puerta de enlace (opcional)

La información de la configuración introducida se guarda en el archivo Tab File.

- 6 Haga clic en OK.
- 7 Salga de Edit BootP Addresses pulsando Close.
- 8 Salga de BootP Settings pulsando OK.
- 9 Después de cada modificación de los ajustes de BootP (por ejemplo, Edit-BootPSettings) es necesario detener o iniciar BootP service para que acepte los cambios. Consulte "Detención de Agilent BootP Service" en la página 78 o "Reinicio de Agilent BootP Service" en la página 79.
- **10** Apague y vuelva a encender el instrumento.

0

Si ha cambiado la dirección IP, apague y vuelva a encender el instrumento para que se apliquen los cambios.

11 Utilice la herramienta PING para verificar la conectividad. Para ello, abra una ventana de comandos y escriba:

Ping 192.168.254.11 (por ejemplo).

El archivo Tab File se encuentra en

C:\Documents and Settings\All Users\Application Data\Agilent\BootP\TabFile

Cambio de la dirección IP de un instrumento mediante Agilent BootP Service

Agilent BootP Service se inicia automáticamente cuando se reinicia el PC. Para cambiar los ajustes de Agilent BootP Service, debe detener el servicio, realizar los cambios y, a continuación, reiniciar el servicio.

Detención de Agilent BootP Service

1 Desde el panel de control de Windows, seleccione Herramientas administrativas > Servicios. Aparece la pantalla Services.

Figura 28 Pantalla Servicios de Windows

- 2 Haga clic con el botón derecho del ratón en Agilent BootP Service.
- 3 Seleccione Stop.
- 4 Cierre la pantalla Services and Administrative Tools.

Edición de la dirección IP y otros parámetros en EditBootPSettings

- 1 Seleccione Inicio > Todos los programas > Agilent BootP Service y seleccione Edit BootP Settings. Aparece la pantalla BootP Settings.
- **2** Cuando se abre por primera vez la pantalla **BootP Settings**, muestra los ajustes predeterminados desde la instalación.

- Edit BootP Addresses × IP Address Hardware Address Host Name Comment Subnet Mask Gateway 006000111999 AgilentLC1 10.1.1.101 Agilent LC1 right... 255.255.255.0 Agilent LC2 left ... 255.255.255.0 0000 101.1.1.102 005000222888 AglentLC2 0.0.0.0 I FI Add. Modify. Delete Close Help
- 3 Pulse Edit BootP Addresses... para editar el archivo Tab.

Figura 29 Edite la pantalla Direcciones de BootP

4 En la pantalla **Edit BootP Addresses**..., pulse **Add**... para crear una nueva entrada o seleccione una línea existente y pulse **Modify**... o **Delete** para cambiar la dirección IP, el comentario, la máscara de subred, por ejemplo, en el archivo Tab.

Si ha cambiado la dirección IP, será necesario apagar y volver a encender el instrumento para que se apliquen los cambios.

- 5 Salga de Edit BootP Addresses... pulsando Close.
- 6 Salga de Ajustes de BootP pulsando Aceptar.

Reinicio de Agilent BootP Service

- En el panel de control de Windows, seleccione Herramientas administrativas > Servicios. Aparece la pantalla Services, consulte Figura 28 en la página 78.
- 2 Haga clic con el botón derecho del ratón en Agilent BootP Service y seleccione Start.
- **3** Cierre las pantallas **Services and Administrative Tools**.

4 Configuración LAN Configuración manual

Configuración manual

La configuración manual sólo afecta al conjunto de parámetros almacenados en la memoria no volátil del módulo. Nunca afecta a los parámetros que estén activos en el momento de la configuración. Por tanto, se puede configurar el dispositivo manualmente cuando se desee. Para activar los parámetros almacenados, es necesario apagar y encender el sistema, dado que los interruptores de selección del modo de inicialización lo permiten.

Figura 30 Configuración manual (Principio)

Con Telnet

Cuando es posible establecer una conexión TCP/IP al módulo (parámetros TCP/IP configurados por cualquier método), los parámetros pueden modificarse mediante una sesión Telnet.

- 1 Abra la ventana de la línea de comandos (DOS) del sistema haciendo clic en el botón **Inicio** de Windows y seleccionando **Ejecutar...** Escriba "cmd" y presione OK (Aceptar).
- 2 En la línea de comandos del sistema (DOS), escriba lo siguiente:

```
    c:\>telnet <dirección IP> 0
    c:\>telnet <nombre del servidor>
    c:\>telnet 134.40.30.205
```

Figura 31 Telnet - Iniciar una sesión

donde <dirección IP> es la dirección IP asignada de un ciclo Bootp, una sesión de configuración con el controlador manual o la dirección IP predeterminada (consulte "Interruptor de configuración" en la página 60).

Cuando se establezca la conexión, el módulo responderá con lo siguiente:

Figura 32 Se establece una conexión con el módulo

3 Teclee

? y presione Intro para consultar los comandos disponibles.

🖼 Telnet 134.40.30.205	
Agilent Technologies	G4212A PR00100015
command syntax	description
? / ip <x.x.x.x> sm <x.x.x.x> gw <x.x.x.x> exit ></x.x.x.x></x.x.x.x></x.x.x.x>	display help info display current LAN settings set IP Address set Subnet Mask set Default Gateway exit shell

Figura 33 Comandos Telnet

Configuración manual

Valor	Descripción
?	contiene la sintaxis y descripciones de los comandos
/	muestra los ajustes de LAN actuales
ip <x.x.x.x></x.x.x.x>	establece la dirección IP nueva
sm <x.x.x.></x.x.x.>	establece la máscara de subred nueva
gw <x.x.x></x.x.x>	establece la pasarela predeterminada nueva
exit	sale del intérprete de comandos y se guardan todos los cambios

Tabla 12	Comandos	Telnet
----------	----------	--------

- 4 Para cambiar un parámetro haga lo siguiente:
 - valor del parámetro, por ejemplo:

ip 134.40.28.56

A continuación, presione Intro, donde parámetro)se refiere al parámetro de configuración que está definiendo y valor a las definiciones que está asignando a dicho parámetro. Cada entrada de parámetro va seguida de un retorno de carro.

5 Utilice "/" y presione Intro para ver los ajustes actuales.

Figura 34 Telnet - Ajustes actuales en el modo Utilizar almacenados

información sobre la interfase LAN Dirección MAC, modo de inicialización El modo de inicialización es Utilizar almacenados ajustes TCP/IP activos

Estado TCP/IP - preparado aquí conectado al ordenador con controlador (por ejemplo, Agilent ChemStation), no conectado aquí

🔤 Telnet 134.40.30.205	
>ip 192.168.29	54.12
LAN Status Pag	ge
MAC Address	: 0030D317521C
Init Mode	: Using Stored
TCP/IP Propert	ties
- active -	- 124 48 28 885
IP Haaress	- 134.40.30.205
Subnet Mask	: 255.255.248.0
Def. Gateway — stored —	: 134.40.24.1
IP Address	: 192.168.254.12
Subnet Mask	: 255,255,248,0
Def. Gateway	: 134.40.24.1
TCP/IP Status	: Ready
Controllers >_	: no connections

6 Cambie la dirección IP (en este ejemplo, 192.168.254.12) y escriba "/" para ver los ajustes.

Figura 35 Telnet - Cambiar los ajustes IP

NOTA

cambio de la configuración IP a El modo de inicialización es Utilizar almacenados

ajustes TCP/IP activos

ajustes TCP/IP almacenados en la memoria no volátil

conectado al ordenador con software de controlador (por ejemplo, Agilent ChemStation), no conectado aquí

7 Cuando haya terminado de teclear los parámetros de configuración, escriba **exit** y presione **Intro** para salir y guardar los parámetros.

Figura 36 Cerrar la sesión Telnet

Si se cambia el interruptor de modo de inicialización en este momento a Utilizar almacenados, el instrumento tomará los parámetros almacenados cuando se reinicie el módulo. En el ejemplo anterior, sería 192.168.254.12.

Con Instant Pilot (G4208A)

Para configurar los parámetros TCP/IP antes de conectar el módulo a la red, se puede utilizar Instant Pilot (G4208A).

- 1 En la ventana de bienvenida, presione el botón More (Más).
- 2 Seleccione Configure (Configurar).
- **3** Pulse el botón **DAD**.
- 4 Desplácese hasta los ajustes de la LAN.

V	Configure - DAD	
Setting	Value	
Symbolic Name	<not set=""></not>	A
UV-Lamp Tag	Use lamp tag settings	
Analog Out 1	0V - 1V output range	
UV lamp	Stays off at power on	
LAN IP	<mark>134</mark> . 40. 28. 56	
LAN Subnet Mask	255.255.255.0	
LAN Def. Gateway	134.40.24.1	
		Cancel
		Done
Valid from 0 to 255		16:08

Figura 37 Instant Pilot - Configuración LAN (modo Editar)

- **5** Presione el botón **Edit** (sólo visible si no se está en modo Editar), aplique los cambios necesarios y presione el botón **Done**.
- 6 Abandone la pantalla haciendo clic en Exit.

Configuración del ordenador y de la Agilent ChemStation

Configuración del ordenador para la configuración local

Este procedimiento describe el cambio de los ajustes TCP/IP en su ordenador para adecuarlos a los parámetros predeterminados del módulo en una configuración local (consulte Tabla 8 en la página 63).

1 Abra Propiedades de conexión de área local y seleccione **Internet Protocol** (TCP/IP). Haga clic en **Properties**.

🚣 Local Area Connection Properties 🔗 🍸 🗙		
General Advanced		
Connect using:		
Broadcom NetXtreme Gigabit Etherne		
This connection uses the following items:		
 Client for Microsoft Networks Grie and Printer Sharing for Microsoft Networks QoS Packet Scheduler Internet Protocol (TCP/IP) 		
Install Uninstall Properties		
Description Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks.		
 Show icon in notification area when connected Notify me when this connection has limited or no connectivity 		
OK Cancel		

Configuración del ordenador y de la Agilent ChemStation

2 Puede introducir aquí la dirección IP del módulo o utilizar la Alternative Configuration.

Internet Protocol (TCP/IP) Properties				
General Alternate Configuration	General Alternate Configuration			
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.				
Obtain an IP address automatic	Obtain an IP address automatically			
$\square^{\mathbb{C}}$ Use the following IP address: –				
[P address:				
S <u>u</u> bnet mask:				
Default gateway:				
Obtain DNS server address au	tomaticallu			
C Use the following DNS server a	addresses:			
Preferred DNS server:				
Alternate DNS server:				
	Ad <u>v</u> anced			
	OK Cancel			

Configuración del ordenador y de la Agilent ChemStation

3 Nosotros utilizaremos el acceso directo LAN a través del cable LAN cruzado con la dirección IP del módulo.

Internet Protocol (TCP/IP) Propertie	5	? ×	
General Alternate Configuration			
If this computer is used on more than one network, enter the alternate IP settings below.			
C Automatic private IP address			
User configured			
IP address:	192 . 168 . 254 . 10		
S <u>u</u> bnet mask:	255 . 255 . 255 . 0		
Default gateway:			
Preferred DNS server:			
<u>A</u> lternate DNS server:			
Preferred <u>W</u> INS server:			
Alternate WI <u>N</u> S server:	· · ·		
	OK C	ancel	

4 Haga clic en **OK** para guardar la configuración.

Configuración del ordenador y de la Agilent ChemStation

Configuración de la Agilent ChemStation

Este procedimiento describe la configuración de la Agilent ChemStation B.04.02 para el sistema 1290 Infinity utilizando el 1290 Infinity DAD (G4212A) como módulo de interfase.

NOTA

La LAN debe estar conectada al detector debido a la alta carga de datos en comunicación al software de control.

1 Abra el editor de configuración de la ChemStation.

- 2 Seleccione en el menú Configure Instruments.
- 3 Seleccione Modular 3D LC System.
- **4** Asigne un nombre al instrumento.

Configuración del ordenador y de la Agilent ChemStation

5 Haga clic en **OK**.

Select Instrument
Instrument Type:
LC 3D Data Analysis only LC Data Analysis only
Modular 3D LC System
Modular 3D LC System (Classic)
Modular LC System Modular LC System (Classic)
(inclanal 20 official (oncoro)
Instrument Name:
G42124
Initially Start Instrument Session?
C Yes C No
Initial Screen Window Size:
• Normal C Icon C Full screen
OK Cancel <u>H</u> elp

6 Seleccione LC System Access — Access Point y haga clic en Add.

G4212A - Device Configuration Modular 3D LC System Modules LC System Access Access Point Dual Channel Iface 35900E CTCAutoSampler CTC PAL AutoSampler	GPIB C LAN GPIB.Address:
Selected Modules LC System Access Access Point OK Cancel	Delete

Configuración del ordenador y de la Agilent ChemStation

7 Haga clic en OK.

El editor de configuración mostrará el nuevo instrumento.

- 8 Si fuera necesario, cambie las ubicaciones de carpeta en Configure Path.
- 9 Guarde la configuración actual mediante File Save.

10 Salga del editor de configuración.

11 Inicie la Agilent ChemStation.

Se mostrará una aviso durante el primer arranque o cuando se haya modificado la configuración del sistema. Configuración del ordenador y de la Agilent ChemStation

12 La columna izquierda muestra los módulos que pueden configurarse. Es posible seleccionar el módulo manualmente de la lista. Nosotros utilizamos el modo Configuración automática. Haga clic en Yes.

Agilent 1100/1200/1290 Se	ties LC Auto Configuration → ← there is no configuration available for this instrument! Do you want to auto-configure R?	↑ ↓ Configure
Ask for configuration change	Yes No	

13 Introduzca la dirección IP o el nombre de host del módulo con el acceso LAN.

Agilent 1	IP address Hostname	1290 Series LC Auto	o Configurati 🔀
	ОК	Cancel	Help

14 Haga clic en OK.

El módulo seleccionado se mostrará en la ventana derecha (con el número de serie). También se muestran todos los módulos conectados a través de CAN al detector.

Configuración del ordenador y de la Agilent ChemStation

Agilent 1100/1200/1290 Series LC	Auto Configuration.	Agilent 1100/1200/1290 Series LC	
HipALS			Ŷ
	→		ψ
isoPump	÷		Configure
QuatPump			
ColumnComp	-		
Ask for configuration change at ChemStation	ı startup		

15 Haga clic en **OK** para continuar la carga de la ChemStation.

16 Es posible ver los detalles del módulo seleccionándolo y haciendo clic en **Configure**.

1100/1200/1290 DAD Configu	ration: Instrument 1	×
Communication		
Device name	1290 Infinity DAD	
Type ID	G4212A 💌	
Serial number	PR00100015	
Firmware revision	B.06.23 [0003]	
	Connection settings	
Options		
OK	Cancel	Help

En **Connection Settings** es posible cambiar la IP/Nombre de host del módulo (es posible que sea necesario volver a iniciar la ChemStation).

Tras una carga correcta de la ChemStation, se debería ver el módulo o módulos como elementos activos en la interfase gráfica de usuario (GUI).

Configuración del ordenador y de la Agilent ChemStation

Figura 38 Pantalla tras la carga satisfactoria de la ChemStation

Configuración del ordenador y de la Agilent ChemStation

Preparación del detector 96 Configuración del detector con la ChemStation de Agilent 97 La interfaz gráfica de usuario del detector 99 Ajustes de control 103 Ajustes de parámetros de método 104 Ajustes generales del método 105 Ajustes avanzados de los parámetros del método 108 Ajustes de espectro 109 Otros ajustes avanzados de los parámetros del método 111 Ajustes de la tabla de tiempos 112 Curvas de instrumento 114 Configuración de instrumento 115 Pantallas principales del detector con Agilent Instant Pilot (G4208A) 117 Información sobre disolventes 121

En este capítulo se ofrece información sobre cómo configurar el módulo para un análisis y se explican los ajustes básicos.

Preparación del detector

Para obtener el mejor rendimiento del detector:

- Deje que la lámpara se caliente y estabilice al menos durante una hora (el encendido inicial del módulo requiere más tiempo en función del entorno y de las necesidades de la aplicación); consulte el apartado "Condiciones de la especificación" en la página 34.
- En el caso de medidas de elevada sensibilidad, es necesario un entorno estable; consulte el apartado "Entorno" en la página 27. Evite corrientes procedentes de sistemas de aire acondicionado.
- La configuración de una longitud de onda de referencia adecuada podría mejorar el comportamiento de la línea base. De forma alternativa, utilice el intercambiador de calor de 1,6 μ L del TCC G1316C.
- No trabaje con los paneles frontales extraídos. Si se extrae el panel frontal del TCC G1316C (situado normalmente debajo del detector) cuando este dispositivo está configurado a temperaturas elevadas, el aire en ascenso podría influir en la estabilidad de la línea base del detector.

Configuración del detector con la ChemStation de Agilent

La configuración del detector se muestra con la ChemStation B.04.02 de Agilent, que se basa en el detector de diodos 1290 Infinity (G4212A). Las pantallas presentarán un aspecto diferente según el controlador (por ejemplo, Agilent Instant Pilot, EZChrom Elite, MassHunter). En el caso de Instant Pilot, consulte el apartado "Pantallas principales del detector con Agilent Instant Pilot (G4208A)" en la página 117.

NOTA

Este apartado describe únicamente los ajustes del detector. Para obtener información sobre la ChemStation de Agilent u otros módulos de las series 1260 Infinity o 1290 Infinity, consulte la documentación correspondiente o el manual del sistema.

Tras una carga correcta de la ChemStation, debería ver el módulo como un elemento activo en la interfaz gráfica de usuario (GUI).

Configuración del detector con la ChemStation de Agilent

Figura 39 Método y análisis de la ChemStation

Configuración del detector con la ChemStation de Agilent

La interfaz gráfica de usuario del detector

Configuración del detector con la ChemStation de Agilent

💎 1290 Infinity DAD	
EMF Not Ready	
)-

La interfaz gráfica de usuario del detector consta de varias áreas activas. Si mueve el cursor del ratón sobre los iconos, la imagen del cursor cambiará y podrá hacer clic en el botón (1) para:

- "Activar el dispositivo/Apagar el dispositivo (en espera)"
- Encender/apagar la lámpara

~	12	90 I	nfinity [DAD	
0	EMF)		Idle	1
		-Uhu)-
	WL	BW	RefWL	RefBW	[mAU]
А	254.0	4	360.0	100	1.7
В	210.0	4	360.0	100	14.1
С	214.0	4	360.0	100	13.8
D	230.0	4	360.0	100	1.1
Е	260.0	4	360.0	100	1.2

Información de señal, activada con el botón (1), muestra los valores reales de todas las señales seleccionadas

- Nombre de la señal (A, B, C, etc.)
- Longitud de onda/anchura de banda de muestreo
- · Longitud de onda/anchura de banda de referencia
- Absorbancia

Si se activan más señales, el tamaño de la interfaz gráfica de usuario cambiará en consecuencia.

Configuración del detector con la ChemStation de Agilent

💎 1290 Ini	finity DAD 📃 🔳
O EMF⊘	Idle e
Control Method Set Error Method Identify Device Balancing Switch UV Lamp o	

Al hacer clic con el botón derecho del ratón en el Área activa, se abrirá un menú para:

- Mostrar la interfaz Control (ajustes especiales del módulo)
- Mostrar la interfaz Método (similar a la que se muestra a través del menú Instrumento: Método de instrumento de configuración)
- Establecer el método de error
- Identificar el módulo (el LED de estado parpadeará)
- Realizar un equilibrado
- Encender/apagar la lámpara UV (igual que hacer clic en el botón "Activar el dispositivo/Apagar el dispositivo (en espera)")

Estado del módulo muestra el estado de análisis, preparado o error, así como "Texto no preparado" o "Texto de error".

- Error (rojo)
- No preparado (amarillo)
- Preparado (verde)
- Preanálisis, postanálisis (morado)
- Análisis (azul)
- Inactivo (verde)
- Sin conexión (gris oscuro)
- En espera (gris claro)

Configuración del detector con la ChemStation de Agilent

~	1290 I	nfinity	DAD	
0	EMF		Idle	

El estado EMF muestra:

- Sin conexión (gris)
- · Aceptar; sin mantenimiento necesario
- Aviso del EMF; podría ser necesario un mantenimiento o una comprobación (amarillo)

• Aviso del EMF; mantenimiento necesario (rojo) Importante: solo es posible acceder a los ajustes de EMF a través de Agilent Lab Advisor o de Instant Pilot. Los límites se pueden cambiar. En función de dicho límite, la interfaz de usuario muestra el estado anterior.

Información de la etiqueta RFID se muestra al mover el cursor del ratón sobre la etiqueta de la celda de flujo o de la lámpara. Se suministra la siguiente información sobre la celda de flujo y la lámpara:

- Número de referencia
- Fecha de fabricación
- Número de serie

Se ofrecen también otros detalles.

Lamp tag information

Burn time	93.3 h
Minimum lifetime	2000.0 h
Number of ignitions	10
Product Number	5190-0917
Serial Number	824337
Production Date	4/9/2009 8:23:53 AM
Tested Date	7/16/2009 1:50:04 PM
Intensity at test	37275 counts

Cell tag information

Cell Name	Max-Light Cell
Product Number	G4212-60008
Serial Number	10PP042325
Production Date	2/5/2009 12:49:06 PM
Optical path length	10.0 mm
Cell Volume (o)	1.0 µL
Maximum pressure	60 bar
Tested Date	7/10/2009 1:44:52 PM
Cell Revision	0

Configuración del detector con la ChemStation de Agilent

Ajustes de control

Lamps: pueden APAGARSE/ENCENDERSE. At Power On: encendido automático de la lámpara en el arranque.

Analog Output Range: se puede configurar en 100 mV o 1 V a escala completa (1 V = de forma predeterminada).

UV lamp Tag: Detecta automáticamente una lámpara con etiqueta RFID. Si no se utiliza ninguna etiqueta RFID, se muestra *"lámpara UV no preparada"* y no se puede encender. Es necesario escoger un modo compatible basado en la lámpara utilizada; consulte la información de la lámpara sin etiqueta RFID debajo.

Automatic Turn On: El módulo se puede activar en una fecha/hora concreta. Si *"Encender lámpara UV"* al arrancar está configurado, la lámpara también se encenderá.

Lámpara sin etiqueta RFID

En caso de utilizar una lámpara sin etiqueta RFID, la interfase de usuario mostrará esta circunstancia al seleccionar un modo compatible.

Es posible utilizar el detector fuera de la especificación garantizada.

Configuración del detector con la ChemStation de Agilent

Ajustes de parámetros de método

Estos ajustes están disponibles a través de **Menu – Instrument – Setup Instrument Method** o haciendo clic con el botón derecho del ratón en el área activa de la interfase gráfica de usuario del detector.

NOTA

La ficha Curvas de instrumento no se muestra cuando se abren los ajustes de parámetros de método al hacer clic con el botón derecho del ratón sobre la interfase gráfica de usuario del detector.

Configuración del detector con la ChemStation de Agilent

Ajustes generales del método

Señales

<u>Signals</u>											
	Use Signal	Wave length	1	Band width		R W	eferenc aveleng	e ith	Refere Bandu	ence vidt	e h
Signal A		254.0	•	4.0	2		360.0	+	100.0	÷	nm
Signal B	V	210.0	•	4.0	\$		360.0	-	100.0	÷	nm
Signal C	$\mathbf{\nabla}$	214.0	•	4.0	2		360.0	-	100.0	÷	nm
Signal D	\checkmark	230.0	-	4.0	2		360.0	-	100.0	\$	nm
Signal E	\checkmark	260.0	•	4.0	\$		360.0	-	100.0	÷	nm
Signal F		273.0	÷	4.0	÷	V	360.0	÷	100.0	÷	nm
Signal G		280.0	÷	4.0	÷	\checkmark	360.0	÷	100.0	÷	nm
Signal H		250.0	-	100.0	÷	V	360.0	* *	100.0	÷	nm

Se pueden configurar hasta 8 señales individuales. Para cada una de las señales, se puede configurar la longitud de onda y la anchura de banda, tanto de muestreo como de referencia. Límites:

Longitud de onda: entre 190,0 y 640,0 nm, en pasos de 0,1 nm Anchura de banda: entre 1,0 y 400,0 nm, en pasos de 0,1 nm La configuración de una longitud de onda de referencia adecuada podría mejorar el comportamiento de la línea base. Como alternativa, utilice el intercambiador de calor de 1,6 μ L del TCC G1316C o un intercambiador de calor opcional del detector de diodos (si estuviera disponible).

Configuración del detector con la ChemStation de Agilent

Anchura de pico

Peakwidt	h			
		>0.10 min (2.0 s response time) (2.5 Hz)	-	
		<0.0016 min (0.016s response time) (160 Hz)	_	
Stoptime		>0.0016 min (0.03s response time) (160 Hz)		
		>0.003 min (0.062 s response time) (80 Hz)		
	۸.	>0.006 min (0.12 s response time) (40 Hz)		
•	As	>0.012 min (0.25 s response time) (20 Hz)		
0		>0.025 min (0.5 s response time) (10 Hz)	-	min
		>0.05 min (1.0 s response time) (5 Hz)		
		>0.10 min (2.0 s response time) (2.5 Hz)	-	
		>0.20 min (4.0 s response time) (1.25 Hz)		
		>0.40 min (8.0 s response time) (0.62 Hz)		
		>0.85 min (16.0 s response time) (0.31 Hz)		

"Anchura de pico" permite seleccionar la anchura de pico (tiempo de respuesta) del análisis. Se define como la anchura, en minutos, medida a media altura del pico. Ajuste la anchura de pico al pico más estrecho previsto en el cromatograma. La anchura de pico define el tiempo de respuesta óptimo del detector. El detector de picos ignora los picos que son mucho más estrechos o más anchos que la anchura de pico establecida. El tiempo de respuesta es el tiempo entre el 10 % y el 90 % de la señal de salida en respuesta a una función escalonada de entrada. Cuando se selecciona la opción de almacenamiento de todos los espectros, los espectros que se obtienen dependen continuamente de la configuración de la anchura de pico. El tiempo especificado por la anchura de pico se utiliza como un factor en la adquisición de los espectros. El tiempo de adquisición de un espectro es ligeramente menor que la anchura de pico dividida por 8.

Límites: al ajustar la anchura de pico (en minutos), el tiempo de respuesta correspondiente se configura automáticamente y se selecciona la velocidad de muestreo apropiada para la adquisición de la señal y de los espectros.

- No utilice una anchura de pico más estrecha de la necesaria.
- G4212B: no utilice un tiempo de respuesta de 0,025 seconds (sin filtrado/ruido elevado); en realidad, la cromatografía líquida ultrarrápida no genera picos < 0,0025 min/ < 0,15 sec.

NOTA

El detector de diodos 1290 Infinity (G4212A) tiene una velocidad de muestreo de hasta 160 Hz.

El detector de diodos 1260 Infinity (G4212B) tiene una velocidad de muestreo de hasta 80 Hz.

Configuración del detector con la ChemStation de Agilent

Anchura de pico (tiempo programado)

	Peakwidth	
1	same as Peakwidth	•
	same as Peakwidth	
	2-times greater than Peakwidth	
	4-times greater than Peakwidth	
	8-times greater than Peakwidth	

Estas opciones se pueden aplicar durante la operación programada.

Cuando se usa en una tabla de tiempos, la anchura de pico cambia los filtros utilizados durante la adquisición de espectros controlados por picos, pero no la velocidad de muestreo de una señal cromatográfica.

NOTA

Esta configuración solo tiene sentido con los espectros controlados por picos; permite cambiar la configuración de la anchura de pico con el fin de representar el ensanchamiento de los picos al final del análisis.

Tiempo de parada/Tiempo posterior

Stoptime			Posttime			
۲	As Pump/Injector		۲	Off		
0	1.00 💲	min	0		1.00 🔅	min

El tiempo de parada representa el momento en el que se detiene completamente el sistema (como bomba o inyector) o el módulo (si es diferente del tiempo de parada del sistema). La recopilación de datos se detiene en este momento. Se puede utilizar un tiempo posterior para permitir que los componentes del módulo se equilibren (por ejemplo, tras el cambio de gradiente o de temperatura).

Ajustes avanzados de los parámetros del método

Estos ajustes están disponibles si se hace clic en el enlace **Advanced** de los ajustes de los parámetros del método (siempre que los ajustes de la tabla de tiempos estén abiertos).

Esta pantalla muestra los ajustes predeterminados.

+ Advanced					-	
Spectrum						
Store :	None		-			
Range from:	190.0	to	400.0 💲	nm		
Step:	2.0	; nm				
Threshold:	10.0	: mAU				
Analog Output						
Output 1:						
Zero Offset: 5 Attenuation: 1000	; % ▼ mAU					
Margin for negative Absorbance		Slit				
100 📫 mAU			4	▼ nm		
Autobalance		Lamps on required for aquisition				
V Prerun			🔽 UV Lamp)		

Figura 40 Ajustes de parámetros de método

NOTA

El detector de diodos 1260 Infinity (G4212B) tiene una anchura de rendija fija de 4 nm.
Configuración del detector con la ChemStation de Agilent

Ajustes de espectro

Almacenar

Spectrum		
Store :	None	
	None	
Range from:	Apex	nm
0.	Apex+Baselines	
Step:	Apex+Slopes	
Threshold	Apex+Slope+Baselines	
	All in Peak	
Analog Output	Every 2nd Spectrum	
Dutnut 1:	All	

Define qué puntos de los espectros de la *"señal A"* van a adquirirse y guardarse. La señal A se utiliza para controlar la *"adquisición de espectros controlados por picos"*; el resto de la señales no influye en la adquisición de espectros. Límites:

entre 190,0 y 640,0 nm, en pasos de 0,1 nm, tanto para valores altos como bajos. El valor alto debe ser mayor que el valor bajo al menos en 0,1 nm.

Ninguno	No se adquiere ningún espectro.
Máximo	Los espectros se adquieren en el máximo del pico.
Máximo + Líneas base	Los espectros se adquieren en el máximo y en las líneas base del pico.
Máximo + Pendientes	Los espectros se adquieren en el máximo, en la pendiente ascendente y en la pendiente descendente del pico.
Máximo + Pendientes + Líneas base	Los espectros se adquieren en el máximo, en las líneas base, en la pendiente ascendente y en la pendiente descendente del pico.
Todos en el pico	Todos los espectros se adquieren dentro del pico.
Cada 2.º espectro	Los espectros se adquieren continuamente como en el caso de la opción "Todos", pero solo se almacena cada segundo espectro. Los demás espectros se descartan. De este modo, se reduce la cantidad de datos almacenados.
Rango	Define el rango de longitud de onda en el que se almacenan los espectros. Límites: entre 190 y 640 nm, en pasos de 1 nm, tanto para valores altos como bajos. El valor alto debe ser mayor que el valor bajo al menos en 2 nm.

Configuración del detector con la ChemStation de Agilent

Paso	Define la resolución de longitud de onda en la que se almacenan los espectros. Límites: entre 0,10 y 100,00 nm nm, en pasos de 0,1 nm.
Umbral	El umbral es la altura en mUA del pico previsto más pequeño. El detector de picos ignora los picos inferiores al valor del umbral y no guarda los espectros. Límites: entre 0,001 y 1000,00 mAU, en pasos de 0,001 mAU.

Otros ajustes avanzados de los parámetros del método

Analog Output	
Output 1:	
Zero Offset: 5 🛟 % Attenuation: 1000 💌 mAL	J
Margin for negative Absorbance	Slit
100 🔒 mAU	4 v nm
Autobalance	Lamps on required for aquisition
V Prerun	V Lamp
Postrun	

Esta pantalla, que forma parte de los ajustes avanzados del método, muestra los ajustes predeterminados.

Salida analógica	El rango se puede establecer en 100 mV o en la escala total de 1 V; consulte el apartado "Ajustes de control" en la página 103.
Compensación cero	Entre 1 y 99 %, en pasos de 1 % (5 % es igual a 50 mV).
Atenuación	Entre 0,98 y 2000 mAU, en valores discretos para 100 mV o la escala total de 1 V.
Margen de absorbancia negativa	Utilice este campo para modificar el tratamiento de la señal del detector y para incrementar el margen de absorbancia negativa. Utilice esta opción si, por ejemplo, el gradiente de disolvente produce una disminución de la absorbancia de la línea base, así como para el análisis GPC. Límites: entre 100 y 4000 mAU. Cuanto mayor sea el valor, mayor será el ruido de la línea base. Configure este valor solamente si espera una absorbancia negativa superior a -100 mAU.
Rendija (G4212A)	Puede seleccionar la anchura de banda óptica (1, 2, 4 o 8 nm) del detector; cuanto más estrecha sea la rendija, más pequeña será la anchura de banda óptica del instrumento, pero menor será la sensibilidad. Cuanto más pequeña sea la anchura de banda, mayor será la resolución espectral.
Equilibrado automático	Define si se debe realizar un equilibrado antes de un análisis o tras su finalización.
Lámpara encendida requerida para el análisis	Si no se activa, la lámpara se apagará tras la finalización del análisis.

5

Configuración del detector con la ChemStation de Agilent

Ajustes de la tabla de tiempos

Ventana de la tabla de tiempos

+ Ad	van	ced		
+ Tin	neta	able		*
Time	$^{\wedge}$	Function	Parameter	
—				
	bby	Hemove	Liear all	
	Cut	Сору	Paste	

Es posible configurar eventos de tiempo para cambiar las funciones y los parámetros correspondientes a lo largo del tiempo de análisis. Agregue las líneas necesarias. Límites de tiempo:

entre 0,00 y 99999,00 minutes, en pasos de 0,01 min. Los botones situados en el área inferior permiten agregar, quitar, cortar, copiar, pegar o eliminar completamente las líneas de la tabla de tiempos.

Funciones

Parámetro

Es posible configurar eventos de tiempo para cambiar las funciones y los parámetros correspondientes a lo largo del tiempo de análisis. Agregue las líneas necesarias. Límites:

entre 0,00 y 99999,00 minutes, en pasos de 0,01 min.

Los parámetros seleccionables dependen de la función escogida.

Configuración del detector con la ChemStation de Agilent

Gráfico de la tabla de tiempos

En esta vista se muestra cómo cambian las señales activadas en función de la tabla de tiempos.

Setup Method				1								x
😻 1290 Infinit	DAD	🔆 Instrun	nent Curves	1					1	290 Infinity		
Cinerals						•				1230 mmmty		
<u>Signais</u>						-	+ Adva	nced				
	Use	Wave	Band	Reference	Reference		+ Time	able				A
	Signal	length	width	Wavelength	Bandwidth		Time 4	Function	Parameter			
Signal A	\mathbf{V}	254.0 🛟	4.0	360.0 🗧	100.0 📫 nm		1	Change Signal 👻	Signal A, Wave	elength: 250 nm, E	Bandwidth: 100 nm,	UseRef: Off
Signal B	V	210.0 🛟	4.0	360.0 🗧	100.0 📫 nm		<u>1</u> 3	Change Signal	Signal A, Wave	elength: 270 nm, t •	Bandwidth: 100 nm,	. UseHet: Uff
Signal C	\mathbf{V}	214.0 🛟	4.0 🛟	360.0 🛟	100.0 📫 nm		/ \		Select Signa			
Signal D	V	230.0 🛟	4.0	360.0 🛟	100.0 📫 nm				Signal A	•		
Signal E	V	260.0	4.0	360.0 🗧	100.0 📫 nm				Settings			
Signal F		273.0 📫	4.0 🗘	360.0 📫	100.0 📜 nm				Wavelength	Randwidth	Reference	Reference
Signal G		280.0 🔅	4.0 0	360.0	100.0 📜 nm		Add	<u>R</u> emove Cle	a	Danuwiuun	Wavelength	Bandwidth
Signal H		250.0 🔅	100.0 🔅	360.0 🔅	100.0 🔅 nm		Cut	Copy Pa	270. 🗧	100.0 🛟 🚺	360.0 🗘	100.0 📜 nm
Peakwidth						ŀ			1			
						1						
Show timetab	e graph											
0, 0, 🛃												
■ ¥ 1290 Inf V Sign V Sign V Sign V Sign V Sign V Sign	nity DAD al A al B al C al C al C al C al F al G al H		nm	300 - 290 - 280 - 270 - 260 - 250 - 240 - 230 -			2	3	4	5 min	Signal A Signal B Signal C Signal D Signal E Signal F Signal G Signal H	

Configuración del detector con la ChemStation de Agilent

Curvas de instrumento

Setup Method
V 1290 Infinity DAD K Instrument Curves
1290 Infinity DAD:
Board Temperature (*C)
Optical Unit Temperature (°C)
🔲 UV Lamp Anode Voltage (V)
Contrace Fild
64014. 1280 Interly 640. Signal A (mAl) 64014. 1280 Interly 640. Signal A (mAl) 64011. 1280 Interly 640
DEVICTO MINES DAGI (V) Cang Awaki Vistage (V)
15 20 25 30 36 40 46 60 69 60 nin ★ Change Adjust Belonce 4

El detector consta de varias señales (temperaturas internas, voltajes de lámparas), que se pueden utilizar para diagnosticar problemas. Puede tratarse de problemas con la línea de base derivados de problemas de desviación/deriva de las lámparas de deuterio por cambios de temperatura. Estas señales se pueden utilizar además de la señal de línea de base normal para determinar la correlación con la temperatura o el voltaje/corriente de la lámpara. Estas señales están disponibles a través de la Representación en línea/señal de datos de la Agilent ChemStation y/o el software Agilent Lab Advisor. Configuración del detector con la ChemStation de Agilent

Configuración de instrumento

Estos ajustes están disponibles a través del menú **Instrument – Instrument** Configuration.

HipALS BinPump IsoPump UusPump QualPump ColumnComp	→ ← Con
--	---------

Figura 41 Menú Instrument Configuration

La pantalla **Instrument Configuration** permite agregar módulos adicionales a un sistema.

Configuración del detector con la ChemStation de Agilent

ilent 1	100/1200/	/129(0 Series I	.C Auto	o Configur	ati [
۲	IP address	192	2.168.254.	11		
0	Hostname					
					1	
	OK		Cano	el	He	lp

Utilice la función **Auto Configuration** para definir la comunicación LAN entre la Agilent ChemStation y el módulo host (generalmente el detector Agilent). Los parámetros modificados se aplican tras reiniciar la ChemStation.

Device name: basado en el módulo. Type ID: basado en el módulo (número de producto). Algunos módulos permiten cambiar el tipo en función del hardware/firmware. El resultado es un cambio de características y funciones. Serial number: basado en el módulo.

Firmware revision: basado en el módulo. Options: enumera las opciones instaladas.

Pantallas principales del detector con Agilent Instant Pilot (G4208A)

A continuación se ilustran las principales pantallas para la utilización del detector.

		Welcome			
					Control
1290 Ir	finity	DAD G4212/	A - PR00100015		
			1 Co 2 Ma 3 Dia	onfigu ainter agno	<mark>ire</mark> nance sis
Method	Sequence	Status	Logbook	М	ore 🛆
1 Syste 2 Contro 3 DAD :	m : Set Default blier : Format U Spectrum	s SB 1 Syste 2 Syste 4 DAD : 5 More 64212	em : On / Off em : Get Ready em : Clear Error Balance A - PR00100015	rs	Control Details

La pantalla Bienvenida muestra todos los módulos del sistema.

La pantalla Control permite

- Encender/apagar la lámpara
- Prepararse
- Reiniciar errores
- Equilibrar
- · Tomar espectro

5

Pantallas principales del detector con Agilent Instant Pilot (G4208A)

	System Info	
Property	Value	
Main Revision Board ID	T.00.05 [0008] TYPE=G4208-66500, SER=001077, REV=B.02.00, N	Reload
Main Revision	DAD : PR00100015 B.06.23 [0003]	Print
Resident Revison On-time	B.06.20 [0001] Od 03:34h	
LAN TCP/IP Mode	192.168.254.11 0020D217521C	
Board ID	TYPE=G4212-65800, REV=BE, MFG=ZZ, SER=M/	
Cell	G4212-60011 : 200PP00015	
		Exit
Information on each m	odule.	16:43

	Configure - DAD	
]
Setting	Value	[
Symbolic Name		
UV-Lamp Tag	Use lamp tag settings	
Analog Out 1	0V - 1V output range	
UV lamp	Stays off at power on	
LAN IP	192.168.254.11	
LAN Subnet Mask	255.255.255.0	
LAN Def. Gateway	255.255.255.255	X
		Cancel
	T	Done
		\square
Enter up to 30 character	rs 📃	16:43
T T		

La pantalla **System Info** enumera la información del detector.

- · Revisión del firmware
- A tiempo
- Ajustes LAN
- · Información de la placa base
- Información de la etiqueta RFID de la lámpara
- Información de la etiqueta RFID de la celda de flujo

La pantalla Configuration permite configurar

- · El nombre simbólico del módulo
- El control de temperatura
- La utilización de la etiqueta RFID de la lámpara y la celda
- El rango de salida analógica
- La lámpara UV en el arranque
- · Ajustes LAN

Pantallas principales del detector con Agilent Instant Pilot (G4208A)

	Method - DEFAULT all		
Setting	Value		
D	AD : PP00099010		
Stoptime	OFF		
Posttime	OFF		
Signal A	254.0, 4.0; Ref. 360.0, 100.0 nm		
Signal B	210.0, 4.0; Ref. 360.0, 100.0 nm		
Signal C	214.0, 4.0; Ref. 360.0, 100.0 nm		
Signal D	230.0, 4.0; Ref. 360.0, 100.0 nm		
Signal E	260.0, 4.0; Ref. 360.0, 100.0 nm		
Signal F	273.0, 4.0; Ref. 360.0, 100.0 nm		
Signal G	280.0, 4.0; Ref. 360.0, 100.0 nm		× 1
Signal H	250.0, 100.0; Ref. 360.0, 100.0 nm		Cancel
UV Lamp Required	Yes		
Spectrum	190.0 nm - 400.0 nm step 2.0 nm		- 🗸
Slit Width	<mark>4 nm</mark> ≑	T	Done
<u>'</u>			
			14:51

La pantalla **Method** enumera todos los parámetros de método del detector. Estos parámetros se pueden editar.

Pantallas principales del detector con Agilent Instant Pilot (G4208A)

	Maintenance - DAD				
				\frown	
Message		Date	Time	EM	
	EMF Events		<u> </u>	Setup	
[Empty]			_	<u> </u>	
	Error Events		1 Calibrate	M.	
[Empty]			2 Lamp Info	Maint	
	Maintenance Entrie	s	3 Cell Info	Ivian II.	
[Empty]				1 😽)	
				Entry	
				luent.	
			*	Evit	
•					
				13:47	
System	Controller DAD		Ĭ		
		•			

Diagnosis	
Lamp intensity test	
Calibration Test	Exec.
Cell test - No Pass / Fail result	
<u> </u>	Exit
	16:44

La pantalla Maintenance permite

- Configurar EMS
- Mantenimiento (calibrar, información de celda/lámpara)
- Registrar actividades de mantenimiento
- Identificar módulos (indicador parpadeante)

La actualización de firmware se puede realizar a través de la ventana Mantenimiento del sistema.

La pantalla **Diagnose** suministra acceso a tests específicos de módulo

- Intensidad de la lámpara
- Calibración
- Celda

Información sobre disolventes

Siga las siguientes recomendaciones en la utilización de disolventes.

- Siga las recomendaciones para evitar el crecimiento de algas, consulte los manuales de la bomba.
- Las pequeñas partículas pueden bloquear permanentemente los capilares y las válvulas. Por tanto, filtre siempre los disolventes a través de filtros de $0,4~\mu m$.
- Evite o minimice el uso de disolventes que puedan corroer algunas partes del paso de flujo. Tenga en cuenta las especificaciones del rango de pH determinado por diferentes materiales como las celdas de flujo, los materiales de las válvulas, etc. y las recomendaciones de los apartados siguientes.

Información sobre disolventes para las piezas del sistema LC bioinerte 1260 Infinity

En el caso del sistema LC bioinerte Agilent 1260 Infinity, Agilent Technologies utiliza materiales de la mejor calidad (consulte "Materiales bioinertes" en la página 18) en el paso de flujo (es decir, las piezas húmedas). Dichos materiales están ampliamente aceptados por los científicos, ya que son óptimamente inertes a las muestras biológicas y garantizan la mejor compatibilidad con muestras y disolventes comunes que cubren un amplio rango de pH. En concreto, el paso de flujo completo no contiene acero inoxidable ni otras aleaciones con metales como hierro, níquel, cobalto, cromo, molibdeno o cobre, que pueden afectar a las muestras biológicas. El recorrido a lo largo de la dirección del flujo de la introducción de la muestra no contiene ningún tipo de metal.

Sin embargo, no hay materiales que combinen la adecuación de los instrumentos HPLC versátiles (válvulas, capilares, resortes, cabezas de las bombas, celdas de flujo, etc.) con la compatibilidad completa con todos los productos químicos y las aplicaciones que son posibles. En este apartado se recomiendan los disolventes preferidos. Se deben evitar los productos químicos que causen problemas. Asimismo, se debe minimizar la exposición a los productos químicos, por ejemplo, en los procedimientos de limpieza a corto plazo. Tras utilizar productos químicos potencialmente agresivos, se debe enjuagar el sistema con disolventes HPLC estándares compatibles. Información sobre disolventes

PEEK

El PEEK (polieteretercetona) posee unas propiedades excelentes con respecto a la compatibilidad biológica, la resistencia química y la estabilidad mecánica y térmica. Por lo tanto, es el material más adecuado para los instrumentos bioquímicos. Es estable en el rango de pH especificado. Asimismo, es inerte a muchos disolventes comunes. Todavía existen varias incompatibilidades conocidas con productos químicos como el cloroformo, el cloruro de metileno, THF, DMSO, los ácidos fuertes (ácido nítrico > 10 %, ácido sulfúrico > 10 %, ácidos sulfónicos, ácido tricloroacético), los halógenos o las disoluciones halógenas acuosas y el fenol y sus derivados (cresoles, ácido salicílico, etc.).

Cuando se utiliza por encima de la temperatura ambiente, el PEEK es sensible a las bases y a varios disolventes orgánicos que causan que se expanda. Ya que los capilares de PEEK normales son muy sensibles a las altas presiones, y especialmente en dichas condiciones, Agilent utiliza capilares de PEEK con revestimientos de acero inoxidable para mantener el paso de flujo libre de cualquier componente de acero y garantizar una presión estable de al menos 600 bar. En caso de duda, consulte la documentación disponible sobre la compatibilidad química del PEEK.

Titanio

El titanio es altamente resistente a los ácidos oxidantes (por ejemplo, ácido nítrico, perclórico e hipocloroso) en un amplio rango de concentraciones y temperaturas. Esta característica se debe a una fina capa de óxido en la superficie que se estabiliza con compuestos oxidantes. Los ácidos reductores (por ejemplo, ácido clorhídrico, sulfúrico y fosfórico) pueden provocar una ligera corrosión que aumenta con la concentración y la temperatura del ácido. Por ejemplo, la tasa de corrosión con HCl al 3 % (aproximadamente, pH de 0,1) a temperatura ambiente es de alrededor de 13 μ m/año. A temperatura ambiente, el titanio es resistente a concentraciones de ácido sulfúrico de alrededor del 5 % (aproximadamente, pH de 0,3). La adición de ácido nítrico a los ácidos clorhídrico o sulfúrico reduce en gran medida las tasas de corrosión. El titanio es susceptible a la corrosión en metanol anhidro. Esta situación se puede evitar si se añade una pequeña cantidad de agua (alrededor del 3 %). Se puede producir una ligera corrosión con > 10 % de amoníaco.

Sílice fundida

La sílice fundida es inerte frente a todos los disolventes y los ácidos comunes, excepto el ácido fluorhídrico. Las bases fuertes lo corroen y no se debe utilizar a temperatura ambiente con un pH mayor que 12. La corrosión de las ventanas de las celdas de flujo puede afectar negativamente a los resultados de medición. En el caso de un pH mayor que 12, se recomienda el uso de celdas de flujo con ventanas de zafiro.

0ro

El oro es inerte a todos los disolventes, los ácidos y las bases comunes de HPLC en el rango de pH especificado. Los cianuros complejos y los ácidos concentrados como el agua regia (una mezcla de ácidos clorhídricos y ácidos nítricos concentrados) lo pueden corroer.

Óxido de circonio

El óxido de circonio (ZrO_2) es inerte a casi todos los ácidos, las bases y los disolventes comunes. En el caso de las aplicaciones de HPLC, no existe ninguna incompatibilidad documentada.

Platino/iridio

El platino/iridio es inerte a casi todos los ácidos, las bases y los disolventes comunes. En el caso de las aplicaciones de HPLC, no existe ninguna incompatibilidad documentada.

PTFE

El PTFE (politetrafluoroetileno) es inerte a casi todos los ácidos, las bases y los disolventes comunes. En el caso de las aplicaciones de HPLC, no existe ninguna incompatibilidad documentada.

Zafiro, rubí y cerámica con base de AI_2O_3

El zafiro, el rubí y la cerámica con base de Al_2O_3 son inertes a casi todos los ácidos, las bases y los disolventes comunes. En el caso de las aplicaciones de HPLC, no existe ninguna incompatibilidad documentada.

Los datos anteriores se han recopilado de fuentes externas y solo deben considerarse como referencia. Agilent no garantiza que dicha información sea correcta ni que esté completa. La información no se puede generalizar debido a los efectos catalíticos de las impurezas, como los iones metálicos, los ligandos, el oxígeno, etc. La mayoría de los datos disponibles corresponden a temperatura ambiente (normalmente, 20 - 25 °C, 68 - 77 °F). Si es posible que aparezca corrosión, suele aumentar a temperaturas superiores. En caso de duda, consulte los recursos adicionales.

6

Introducción 126 Descripción de la optimización 127 Elección de la celda de flujo 129 Kit de válvulas de liberación de presión en línea (G4212-68001) 131 Información sobre aplicaciones 131 Información especial sobre la celda de flujo de cartucho de 60 mm 132 Información especial sobre las celdas de flujo de cartucho bioinertes 134 Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión 135 Longitud de paso de la celda de flujo 135 Anchura de pico (tiempo de respuesta) 137 Longitud de onda y anchura de banda de muestra y de referencia 139 Anchura de rendija (G4212A) 143 Optimización de la adquisición espectral 146 Margen para la absorbancia negativa 147 Optimización de la selectividad 148 Cuantificación de picos que eluyen simultáneamente mediante la supresión de picos 148 Calificadores de relación para la detección selectiva de clases de compuestos 151 Optimización del detector en relación con el sistema 153 Volumen de retardo y volumen extracolumna 153 Cómo configurar el volumen de retardo óptimo 153 Cómo conseguir una sensibilidad más elevada 154 Calentamiento del detector 160

En este capítulo se ofrece información sobre cómo optimizar el detector.

Introducción

El detector dispone de varios parámetros que pueden utilizarse para optimizar su rendimiento. Se recomiendan distintos ajustes en función de si se necesita optimizar la señal o los datos espectrales. Los siguientes apartados describen la optimización de:

- la sensibilidad, la selectividad y la linealidad de la señal;
- la sensibilidad y la resolución espectral (solo para los detectores de diodos);
- el espacio en disco requerido para almacenar los datos.

NOTA

La información de este capítulo debería considerarse como una introducción básica a las técnicas del detector de diodos. Algunas de estas técnicas pueden no estar disponibles en el software del instrumento que controla el detector.

Cómo optimizar el rendimiento del detector

La siguiente información le proporcionará instrucciones sobre cómo optimizar el rendimiento del detector. Siga estas instrucciones como punto de partida de las nuevas aplicaciones. Se trata de recomendaciones útiles sobre cómo optimizar los parámetros del detector.

Descripción de la optimización

Parámetro	Impacto		
1 Selección de la celda de flujo	 resolución de los picos frente a sensibilidad 		
 Elija la celda de flujo en función de la columna usada ("Elección de la celda de flujo" en la página 129). 			
2 Conexión de la celda de flujo	resolución cromatográfica		
3 Ajuste de la anchura de pico (tiempo de respuesta)	 resolución de los picos frente a sensibilidad y frente a espacio en disco 		
 Utilice la anchura de pico que se recomienda en el apartado "Elección de la celda de flujo" en la página 129 como punto de partida. Fije la anchura de pico a un valor cercano a la anchura de uno de los picos estrechos de interés del cromatograma. 			
4 Ajuste de la longitud de onda y la anchura de banda			
 Longitud de onda de muestreo: No pase nunca por alto un pico por utilizar una longitud de onda dispersa como 250 nm con una anchura de banda de 100 nm. Seleccione una longitud de onda específica con una anchura de banda óptica reducida si necesita selectividad; por ejemplo, 254,0 nm / 4 nm y 360,0 nm / 100 nm como longitud de onda de referencia. Fije la longitud de onda de muestreo a un pico o a un valle para obtener una mejor linealidad general; seleccione un valle para obtener una mejor linealidad en el caso de las concentraciones elevadas. 	 sensibilidad frente a selectividad sensibilidad frente a linealidad 		
 Longitud de onda de referencia: Seleccione una longitud de onda de referencia con una anchura de banda amplia (30100 nm) y un rango de longitud de onda en el que los analitos tengan poca o nula absorbancia (por ejemplo, muestreo a 254 nm, referencia a 320 nm). Seleccione una longitud de onda de referencia lo más cercana posible al rango UV. 	 deriva de la línea base como consecuencia de efectos del índice de refracción 		

Tabla 13 Descripción de la optimización

Descripción de la optimización

Tabla 13 Descripción de la optimización

Pará	metro	Impacto				
5 Aju	5 Ajuste de la anchura de rendija (solo para G4212A)					
 U U b; el U 	tilice una rendija de 4 nm para las aplicaciones normales. tilice una rendija estrecha (por ejemplo, 1 nm) si los analitos tienen andas de absorbancia estrechas y en el caso de concentraciones levadas. tilice una rendija ancha (por ejemplo, 8 nm) para detectar opcentraciones muy bajas	 resolución espectral, sensibilidad y linealidad 				
• 0 • S	ptimización de la adquisición espectral (solo para detectores de diodos) eleccione el modo de adquisición espectral que necesite (consulte Ajustes de espectro" en la página 109).					
• Fi	ije el rango de longitud de onda espectral (para muestras incoloras, 90400 nm es suficiente).					
• Fi ai e:	ije un paso de 4 nm para la utilización normal; fije un paso pequeño (y una nchura de rendija estrecha) si desea espectros de alta resolución con structuras finas.					

Elección de la celda de flujo

La Celda de cartucho Max-Light ((G4212-60008) abarca una amplia gama de aplicaciones:

- columnas de todos los diámetros, con diámetros de hasta al menos 2,1 mm ID o incluso inferiores
- aplicaciones con una dispersión de pico (anchura de pico x flujo) de ~2 μ L [ejemplo: una anchura de pico = 0,04 min a un flujo = 0,1 mL/min ofrece una dispersión de pico de 0,04 min x 0,1 mL/min = 0,004 mL = 4 μ L]

Si se necesita una sensibilidad superior, se puede utilizar la Celda de cartucho Max-Light ((G4212-60007) . Esta celda mejora el rendimiento del detector al reducir el límite de detección (LOD) por un factor aproximadamente igual tres (según la aplicación).

Tabla 14	Especificaciones de las celdas de flujo de cartucho Max-Light
Celdas de cartucho	 Celda de cartucho Max-Light ((G4212-60008) Celda de cartucho Max-Light bioinerte ((G5615-60018) Celda de cartucho Max-Light ((G4212-60007) Celda de cartucho Max-Light bioinerte ((G5615-60017) Celda de cartucho Max-Light HDR ((G4212-60032) Celda de cartucho Max-Light ULD ((G4212-60038) Celda de test de cartucho Max-Light (G4212-60011)
Presión máxima	60 bar (870 psi)
Rango de pH	1,0-12,5 (en función del disolvente)

La celda de cartucho Max-Light ULD se puede utilizar con el detector de diodos G4212A/B. La celda es un requisito concreto de la solución del kit de dispersión ultrabaja que actualmente existe como Kit de capilares de dispersión ultrabaja (5062-5189). La celda debe formar parte de la solución de dispersión ultrabaja.

La celda de cartucho Max-Light HDR se puede utilizar con el detector de diodos G4212A/B. La celda es un requisito concreto de la solución del rango dinámico elevado (HDR) que se presentará en marzo o en abril de 2013.

NOTA

Para proteger la celda de flujo frente a la sobrepresión (p. ej. en sistemas con LC/MS), instale Kit de válvulas de liberación de presión en línea (G4212-68001); consulte "Kit de válvulas de liberación de presión en línea (G4212-68001)" en la página 131.

Descripción de la optimización

Recomendaciones

Para G4212-60007 y G4212-60008

No se recomienda el uso de capilares de PEEK o de sílice fundida. Junto con la conexión de volumen muerto cero de acero inoxidable (p. ej. en la entrada), el capilar se podría romper y las partículas de vidrio podrían bloquear o dañar la celda de flujo.

Kit de válvulas de liberación de presión en línea (G4212-68001)

Cuando se instalan varios detectores en un sistema, se deben seleccionar cuidadosamente los capilares de conexión y las conexiones entre los detectores con el fin de mantener al mínimo la influencia cromatográfica sobre la forma de los picos. Por otro lado, los capilares de conexión de diámetro estrecho generan un caída significativa de la presión en función de la velocidad de flujo y las propiedades del disolvente.

La válvula de liberación de presión está diseñada para proteger la celda de flujo de un detector de diodos Agilent Serie 1200 Infinity (G4212A/B). Agilent recomienda encarecidamente la instalación de la válvula de liberación de presión en la salida del detector tan pronto como se haya instalado un segundo detector, como ocurre en el caso de las aplicaciones LC/MS.

La válvula de liberación de presión incluye una válvula de comprobación del volumen interno bajo. El volumen muerto es inferior al volumen de retardo de 100 nL (de la entrada a la salida). La bola de la válvula de comprobación tiene un resorte que está ajustado para abrirse normalmente a 100 bar. En caso de sobrepresión (normalmente, alrededor de 100 bar), se libera la presión a los residuos.

Información sobre aplicaciones

En el caso del análisis y la caracterización de las proteínas y las grandes biomoléculas mediante aplicaciones de SEC, AEX y RP, añada 100 mM de sal a la fase móvil o un 10 % de materia orgánica para evitar una interacción secundaria.

En el caso de la cromatografía de intercambio catiónico, se recomienda encarecidamente el uso de un detector de diodos Agilent G1315C/D con su respectiva celda de flujo bioinerte para evitar una interacción no específica de la proteína con la celda de flujo.

En el caso de las aplicaciones con fases móviles con un pH superior a 12,5, utilice un detector de diodos Agilent G1315C/D y su respectiva celda de flujo bioinerte.

Información especial sobre la celda de flujo de cartucho de 60 mm

Información sobre aplicaciones

El volumen geométrico de la celda de 60 mm es 6 veces superior al de la celda de 10 mm. Sin embargo, el volumen de dispersión relevante cromatográfico, es decir, las raíces cuadradas de las varianzas, que representan la forma específica del volumen geométrico de la celda y el patrón de flujo fluídico, se ha determinado como $\sigma V = 4 \mu L y \sigma V = 1 \mu L$ para la celda de 10 mm.

Debido al mayor volumen de dispersión, la celda de 60 mm se ha diseñado principalmente para las aplicaciones con columnas de 4,6 mm con el fin de lograr la mayor sensibilidad sin ningún ensanchamiento adicional de los picos. No obstante, si la sensibilidad es importante, la celda de 60 mm también ofrecerá ventajas en el caso de columnas más pequeñas (3 mm, 2,1 mm). Sin embargo, en función del sistema cromatográfico y del método, se podría producir un ensanchamiento adicional de los picos.

Límite superior de la concentración

Se debe tener cuidado con los métodos en los que haya una absorción de fondo elevada de disolventes o modificadores. Cuando se utilice la celda de 60 mm, el detector medirá 6 veces la absorción de fondo, como en el caso de la celda de 10 mm, lo que reducirá el rango de absorbancia dinámico restante correspondiente a los picos de la muestra. Además, estos modificadores de la absorción UV podrían comprometer la ganancia de sensibilidad (señal/ruido) de la celda de 60 mm.

El límite de linealidad del detector se encuentra alrededor de 2 AU para las celdas de flujo de cartucho Max-Light de 10 mm y de 60 mm. Si se utiliza la revisión de firmware B.06.25 o inferior, el límite de linealidad de la celda de cartucho Max-Light de 60 mm sería de 333 mAU/cm.

Firmware requerido del detector

Para utilizar la celda de flujo de cartucho Max-Light de 60 mm, es necesario el firmware del detector B.06.26 (presentado en diciembre de 2009) o posterior.

NOTA

Si se utiliza la celda de flujo de cartucho Max-Light de 60 mm con el firmware del detector B.06.25 o inferior, la salida del detector (digital y analógica) se normaliza en 1 cm. Esto significa que la altura de pico sería la misma que con la celda de flujo de cartucho de 10 mm, que el ruido se reduciría por un factor de 6 y que el límite de linealidad sería de 333 mAU/cm.

Software LabAdvisor (Utility)

En el momento de la introducción del software Agilent LabAdvisor (Utility) B.01.03, presentado en 2009 con los sistemas LC Agilent 1290 Infinity, los límites de ciertos tests no eran finales para la celda de flujo de cartucho de 60 mm.

NOTA

Al inicio de la distribución (marzo de 2010), no se había establecido la especificación final de la celda de cartucho Max-Light de 60 mm. La especificación correspondiente al ruido habitual es de +/- 0,6 μ AU/cm, medido a 254/360 nm con una rendija de 4 nm y RT=4 s (TC=2 s).

Condiciones de referencia:

- Longitud de onda: 254 nm/4 nm con longitud de onda de referencia de 360 nm/100 nm, anchura de rendija de 4 nm, TC de 2 s (o con RT = 2,2 * TC), ASTM
- Celda de cartucho Max-Light (60 mm, σ V = 4 µL) con flujo de 0,5 mL/min de agua de calidad LC o celda de cartucho Max-Light de prueba

Información especial sobre las celdas de flujo de cartucho bioinertes

Información especial sobre las celdas de flujo de cartucho bioinertes

En el caso de las aplicaciones bioinertes, utilice únicamente la celda de flujo de cartucho Max-Light BIO que se especifica; consulte

Ambas celdas de flujo de cartucho bioinertes Max-Light incluyen:

- Tubos PEEK de 1/16" (0890-1763) y
- Conexión de apriete manual larga (5062-8541)

Recomendaciones

Asegúrese de lo siguiente:

- · Los extremos de los capilares se cortan en ángulo recto.
- No se utilizan alicates ni llaves para colocar las conexiones de PEEK en la celda de flujo.
- No se utilizan férulas de metal en las uniones de las celdas para evitar las contaminaciones y los daños.
- La celda de flujo se omite cuando se utilizan procedimientos de lavado con un pH > 12,5.

Información sobre aplicaciones

En el caso del análisis y la caracterización de las proteínas y las grandes biomoléculas mediante aplicaciones de SEC, AEX y RP, añada 100 mM de sal a la fase móvil o un 10 % de materia orgánica para evitar una interacción secundaria.

En el caso de la cromatografía de intercambio catiónico, se recomienda encarecidamente el uso de un detector de diodos Agilent 1260 Infinity G1315C/D con su respectiva celda de flujo bioinerte para evitar una interacción no específica de la proteína con la celda de flujo.

En el caso de las aplicaciones con fases móviles con un pH superior a 12,5, utilice un detector de diodos Agilent 1260 Infinity G1315C/D y su respectiva celda de flujo bioinerte.

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Longitud de paso de la celda de flujo

La ley de Lambert-Beer muestra una relación lineal entre la longitud de paso de la celda de flujo y la absorbancia.

Absorbance =
$$-\log T = \log \frac{l_0}{l} = \varepsilon \times C \times d$$

donde

T es la transmisión, definida como el cociente entre la intensidad de la luz emitida (I) dividida por la intensidad de la luz incidente (I_0);

 ε es el coeficiente de extinción, que se trata de una característica de una sustancia dada según unas condiciones claramente determinadas de longitud de onda, disolvente, temperatura y otros parámetros;

C [mol/L] es la concentración de las especies absorbentes; y

d [cm] es la longitud de paso de la celda utilizada para la medida.

El detector puede ahora generar la señal de salida de dos formas:

1 En unidades de absorbancia, se divide por la longitud de paso UA/cm, que es similar a [$\epsilon \ge C$]. Ventaja: las muestras con la misma concentración tienen la misma altura de pico en el caso de celdas con diferentes longitudes de paso.

Límite superior de la concentración: el límite de linealidad del detector se encuentra alrededor de 2 AU/path length; por lo tanto, en el caso de la celda de cartucho Max-Light de 6 cm, el límite de linealidad es de 333 mAU/cm.

2 En unidades de UA, equivale a ε x C x d, igual que anteriormente: ahora, para volver a calcular la concentración C, es necesario considerar la longitud de paso.

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Por tanto, las celdas de flujo con longitudes de paso más largas dan lugar a señales mayores. Aunque el ruido aumenta normalmente poco al aumentar la longitud de paso, hay cierta ganancia en la relación señal-ruido.

Al aumentar la longitud de paso, el volumen de la celda podría aumentar. Según el volumen del pico, esto podría originar una mayor dispersión del pico.

Como regla general, el volumen de la celda de flujo debe ser aproximadamente 1/3 del volumen del pico a media altura. Para determinar el volumen de los picos, considere la anchura de pico obtenida a partir de los resultados de integración, multiplíquela por la velocidad de flujo y divídala por 3.

NOTA

Esto puede causar problemas cuando la anchura de pico configurada sea grande y todos los picos se filtren en consecuencia.

Tradicionalmente, los análisis de LC con detectores de luz ultravioleta se basan en la comparación de las medidas con patrones internos o externos. Para comprobar la precisión fotométrica del detector Agilent, es necesario disponer de información más precisa sobre las longitudes de paso de las celdas de flujo del detector.

Número de referencia	Longitud de paso	Volumen de la celda (σ)	
G4213-60008/G5615-60018	1,0 cm	1,0 µL	
G4213-60007/G5615-60017	6,0 cm	4,0 μL	

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Anchura de pico (tiempo de respuesta)

El tiempo de respuesta describe la velocidad de reacción de la señal del detector ante un cambio de absorbancia repentino en la celda de flujo. El detector emplea filtros digitales para adaptar el tiempo de respuesta a la anchura de los picos del cromatograma. Estos filtros no afectan al área ni a la simetría de los picos. Cuando se configuran correctamente, estos filtros reducen significativamente el ruido de la línea base (Figura 42 en la página 137), pero reducen también ligeramente la altura de los picos. Además, reducen la velocidad de muestreo para permitir una integración y una visualización óptimas de los picos y minimizar el espacio requerido en el disco para almacenar los cromatogramas y los espectros.

Figura 42 Influencia del tiempo de respuesta sobre la señal y el ruido

En la Tabla 15 en la página 138 se enumeran las opciones correspondientes a los filtros del detector. Para obtener unos resultados óptimos, fije la anchura de pico a un valor lo más cercano posible a uno de los picos estrechos de interés del cromatograma. El tiempo de respuesta será aproximadamente 1/3 de la anchura de pico, lo que dará lugar a una reducción de la altura del pico de menos del 5% y a una dispersión adicional del pico de menos del 5%. La disminución del ajuste de la anchura de pico del detector dará lugar a una altura del pico con una ganancia inferior al 5%, pero el ruido de la línea base se incrementará por un factor de 1,4 y

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

el tiempo de respuesta se reducirá por un factor de 2. El aumento de la anchura de pico (tiempo de respuesta) por un factor de 2 con respecto a la configuración recomendada (sobrefiltrado) reducirá la altura del pico en aproximadamente un 20%; asimismo, el ruido de la línea base disminuirá por un factor de 1,4. De esta forma, se conseguirá la mejor relación señal-ruido posible, pero la resolución de los picos se verá afectada.

Anchura de pico a media altura [min] ¹	Respuesta [s]	Velocidad de muestreo de la señal [Hz]	Velocidad de muestreo del barrido [Hz] ≤126 pts/scan	Velocidad de muestreo del barrido [Hz] ≤251 pts/scan	Velocidad de muestreo del barrido [Hz] ≤501 pts/scan	Velocidad de muestreo del barrido [Hz] >501 pts/scan
< 0,0016	0,016	160 ²	160 ²	80	40	20
> 0,0016	0,03	160 ²	160 ²	80	40	20
> 0,003	0,062	80	80	80	80	40
> 0,006	0,12	40	40	40	40	40
> 0,012	0,25	20	20	20	20	20
> 0,025	0,5	10	10	10	10	10
> 0,05	1,0	5	5	5	5	5
> 0,10	2,0	2,5	2,5	2,5	2,5	2,5
> 0,20	4,0	1,25	1,25	1,25	1,25	1,25
> 0,40	8,0	0,625	0,62	0,625	0,625	0,625
> 0,85	16,0	0,3125	0,31	0,3125	0,3125	0,3125

 Tabla 15
 Anchura de pico, tiempo de respuesta y velocidad de muestreo

¹ Es posible redondear los valores de la interfaz de usuario.

² Solo para G4212A

NOTA

La velocidad de barrido máxima de los espectros depende de los puntos de datos por barrido; consulte Tabla 15 en la página 138. Si se ejecuta a 160 Hz, la velocidad de muestreo de barrido de los espectros se reduce automáticamente si es superior a 251 puntos/barrido.

Longitud de onda y anchura de banda de muestra y de referencia

El detector mide la absorbancia simultáneamente a longitudes de onda desde 190 a 640 nm. Una lámpara UV proporciona buena sensibilidad en el rango completo de longitudes de onda.

Si se tiene poco conocimiento sobre los analitos de la muestra, almacene todos los espectros de todas las longitudes de onda. Esta estrategia proporciona información completa, pero el disco se llena rápidamente. Es posible utilizar los espectros para comprobar la pureza e identidad de un pico. La información espectral también es útil para optimizar la longitud de onda de la señal cromatográfica.

El detector puede calcular y almacenar durante el análisis hasta 8 señales con estas propiedades:

- longitud de onda de muestra, el centro de la banda de longitudes de onda con la anchura de banda de muestra (BW), y opcionalmente
- la longitud de onda de referencia, el centro de la banda de longitudes de onda con la anchura de banda de referencia.

Las señales comprenden una serie de puntos datos en el tiempo, con la absorbancia media en la banda de longitud de onda de muestra menos la absorbancia media de la banda de longitud de onda de referencia.

La señal A del método establecido de forma predeterminada para el detector se fija en 254,0/4 de muestra, 360,0/100 de referencia, es decir, la absorbancia promedio desde 252 a 256 nm menos la absorbancia promedio desde 310 hasta 410 nm. Como todos los analitos muestran mayor absorbancia a entre 252 y 256 nm que de 310 a 410 nm, esta señal mostrará, prácticamente, todos los compuestos que pueden detectarse por absorbancia UV.

Muchos compuestos muestran bandas de absorbancia en el espectro. Figura 43 en la página 140 muestra el espectro de ácido anísico, como ejemplo. Para optimizar y poder detectar las concentraciones más bajas posibles del ácido anísico, fije la longitud de onda al pico de la banda de absorbancia (es decir, 252 nm) y la anchura de banda de la muestra a la anchura de bandad de la absorbancia (es decir, 30 nm). Una referencia de 360, 100 es adecuada. El ácido anísico no absorbe en este rango.

Si se trabaja con concentraciones elevadas, es posible obtener mejor linealidad por encima de 1,5 UA seleccionando una longitud de onda de muestra en un valle del espectro, como 225 nm para el ácido anísico.

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Figura 43 Optimización del valor de longitud de onda

Una anchura de banda amplia presenta la ventaja de generar menor ruido al promediarse sobre un rango de longitudes de onda. Frente a una anchura de banda de 4 nm, el ruido de la línea de base se reduce por un factor aproximado de 2,5, mientras que la señal es aproximadamente el 75 % de una banda amplia de 4 nm. La relación señal/ruido para una anchura de banda de 30 nm es dos veces la de 4 nm en nuestro ejemplo.

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Figura 44 Influencia de la anchura de banda sobre la señal y el ruido

Debido a que el detector promedia los valores de absorbancia calculados para cada longitud de onda, la utilización de una anchura de banda amplia no afecta negativamente a la linealidad.

Es recomendable la utilización de una longitud de onda de referencia para reducir aún más la deriva y desviaciones de la línea base debidas a fluctuaciones de temperatura o cambios del índice de refracción durante un gradiente.

En Figura 45 en la página 142 se muestra un ejemplo de reducción de derivas de línea de base para aminoácidos PTH. Sin una longitud de onda de referencia, el cromatograma deriva hacia abajo debido a cambios en el índice de refracción inducidos por el gradiente. Esto se elimina casi por completo usando una longitud de onda de referencia. Con esta técnica, los aminoácidos PTH pueden cuantificarse en el rango de picomoles bajos, incluso en un análisis con gradiente.

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Figura 45 Análisis de gradiente de aminoácidos PTH (1 pmol), con y sin referencia

Anchura de rendija (G4212A)

El detector de diodos 1290 Infinity (G4212A) incluye una rendija variable en la entrada del espectrógrafo. Se trata de una herramienta eficaz para adaptar el detector a la cambiante demanda de los distintos problemas analíticos.

Una rendija estrecha proporciona resolución espectral en el caso de los analitos con estructuras muy finas en el espectro de absorbancia. Un ejemplo de estos espectros es el del benceno. Las cinco bandas de absorbancia principales (dedos) tienen una anchura de solo 2,5 nm y están separadas una de la otra por apenas 6 nm.

Figura 46 Benceno a anchura de rendija de 1 y 4 nm (principio)

Una rendija ancha utiliza una fracción mayor de la luz que atraviesa la celda de flujo. Esto disminuye el ruido inferior de la línea base, como se muestra en la Figura 47 en la página 144.

6

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Figura 47 Influencia de la anchura de rendija sobre el ruido de la línea de base

Sin embargo, con una rendija más ancha, la resolución óptica del espectrógrafo (es decir, su capacidad para distinguir entre diferentes longitudes de onda) disminuye. Los fotodiodos reciben luz correspondiente a un rango de longitud de onda determinado por la anchura de rendija. Esto explica por qué la estructura espectral fina del benceno desaparece cuando se utiliza una anchura de rendija de 8 nm.

Además, en el caso de longitudes de onda que se encuentran en una pendiente acusada del espectro de un compuesto, la absorbancia no es estrictamente lineal con respecto a la concentración.

Las sustancias con estructuras finas y pendientes acusadas, como el benceno, son muy raras.

En la mayoría de los casos, la anchura de las bandas de absorbancia del espectro es de unos 30 nm, como es el caso del ácido anísico (Figura 43 en la página 140).

Por regla general, una anchura de rendija de 4 nm dará los mejores resultados.
Optimización del detector Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Utilice una rendija estrecha (de 1 o 2 nm) si desea identificar compuestos con estructuras espectrales finas o si necesita cuantificar concentraciones elevadas (> 1000 mAU) con una longitud de onda que se encuentra en la pendiente del espectro. Es posible utilizar señales con una anchura de banda ancha para reducir el ruido de la línea base. Como la anchura de banda (digital) se calcula como un promedio de la absorbancia, no influye en la linealidad.

Utilice una rendija ancha (8 nm) cuando la muestra incluya concentraciones muy pequeñas. Utilice siempre señales con una anchura de banda al menos tan ancha como la anchura de rendija.

6

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Optimización de la adquisición espectral

Almacenar todos los espectros consume mucho espacio en el disco. Es muy útil tener todos los espectros disponibles durante la optimización de un método o cuando se analizan muestras únicas. Sin embargo, cuando se analizan muchas muestras del mismo tipo, el gran tamaño de los archivos de datos con todos los espectros puede ocasionar problemas. El detector proporciona funciones para reducir la cantidad de datos y conservar la información espectral relevante.

Para obtener información sobre las opciones correspondientes a los espectros, consulte "Ajustes de espectro" en la página 109.

Rango

Solo el rango de longitud de onda en el que los compuestos de la muestra absorben contiene información útil para comprobar la pureza y realizar búsquedas en la librería. Reducir el rango espectral que se almacena ahorra espacio en el disco.

Paso

Muchas de las sustancias tienen bandas de absorbancia anchas. La visualización de los espectros, la pureza de los picos y las búsquedas en las librerías funcionan mejor si un espectro contiene entre 5 y 10 puntos de datos por anchura de las bandas de absorbancia. En el caso del ácido anísico (el ejemplo utilizado anteriormente), un paso de 4 nm sería suficiente. Sin embargo, un paso de 2 nm proporciona una mejor visualización del espectro.

Umbral

Permite configurar el detector de picos. Solo los espectros procedentes de picos superiores al umbral se almacenarán cuando se seleccione un modo de almacenamiento controlado por picos.

Optimización de la sensibilidad, la selectividad, la linealidad y la dispersión

Margen para la absorbancia negativa

El detector ajusta su ganancia durante el *equilibrado* de manera que es posible que la línea de base registre una ligera deriva negativa (aproximadamente de -100 m UA). En algún caso especial, por ejemplo, cuando se utiliza un gradiente con disolventes absorbentes, es posible que la línea de base registre una mayor deriva a valores negativos.

Sólo en tales casos se ha de aumentar el margen de absorbancia negativa para evitar la saturación del convertidor analógico a digital.

Optimización de la selectividad

Cuantificación de picos que eluyen simultáneamente mediante la supresión de picos

En cromatografía, a menudo dos compuestos eluyen juntos. Un detector de doble señal convencional sólo puede detectar y cuantificar ambos compuestos independientemente, si sus espectros no se solapan. Sin embargo, en la mayoría de los casos es altamente improbable.

Con un detector de doble canal basado en tecnología de diodos, es posible cuantificar dos compuestos, incluso cuando ambos absorben en el rango completo de longitud de onda. El procedimiento se denomina supresión de picos o sustracción de señal. Como ejemplo, se describe el análisis de la hidroclorotiazida en presencia de cafeína. Si se analiza la hidroclorotiazida en muestras biológicas, siempre hay un riesgo de que la cafeína esté presente, lo que podría interferir cromatográficamente. Como muestran los espectros en la Figura 48 en la página 149, la hidroclorotiazida se detecta mejor a 222 nm, donde la cafeína registra también una absorbancia significativa. Sería, por lo tanto, imposible con un detector de longitud de onda variable convencional detectar cuantitativamente la hidroclorotiazida en presencia de cafeína.

Figura 48 Selección de la longitud de onda para supresión de picos

Con un detector de UV visibles basado en tecnología de diodos y la selección de una longitud de onda de referencia correcta, es posible la detección cuantitativa. Para suprimir la cafeína, la longitud de onda de referencia debe fijarse a 282 nm. En esta longitud de onda, la cafeína muestra exactamente la misma absorbancia que en 222 nm. Cuando los valores de absorbancia se restan uno a otro, se elimina cualquier indicio de la presencia de cafeína. De la misma forma, puede suprimirse la hidroclorotiazida si necesita cuantificarse la cafeína. En este caso, la longitud de onda se fija a 204 nm y la de referencia a 260 nm. En la Figura 49 en la página 150 se muestran los resultados cromatográficos de la técnica de supresión de picos.

La desventaja de este procedimiento es una pérdida de sensibilidad. La señal de la muestra disminuye por la absorbancia en la longitud de onda de referencia, en relación con la longitud de onda de la señal. La sensibilidad puede disminuir de un 10 a un 30%.

6 Optimización del detector

Optimización de la selectividad

Figura 49 Supresión de picos utilizando la longitud de onda de referencia

Calificadores de relación para la detección selectiva de clases de compuestos

Pueden utilizarse calificadores de relación cuando, en una muestra compleja, solo es necesario analizar una clase particular de compuesto, por ejemplo, un fármaco precursor y sus metabolitos en una muestra biológica. Otro ejemplo es el análisis selectivo de derivados después de una derivatización de columna anterior o posterior. Especificar una relación de señal típica para la clase de muestra es una forma de representar selectivamente solamente los picos de interés. La salida de señal permanece en cero mientras la relación esté fuera del rango especificado por el usuario. Cuando la relación está dentro del rango, la salida de señal corresponde a la absorbancia normal y proporciona picos simples y limpios sobre una línea base plana. En la Figura 50 en la página 151 y en la Figura 51 en la página 152 se muestra un ejemplo.

Figura 50 Selección de la longitud de onda para cualificadores de relación

6 Optimización del detector

Optimización de la selectividad

Figura 51 Selectividad por cualificadores de relación

En una mezcla de cuatro componentes, solo se ha registrado el bifenilo. Los otros tres picos se suprimieron debido a que no cumplían el criterio del cualificado de relación y, por lo tanto, la salida se estableció en cero. Las longitudes de onda características 249 nm (λ_1) y 224 nm (λ_2) se encontraron en los espectros mostrados en la Figura 50 en la página 151. El rango de la relación se fijó entre 2 y 2,4 (2,2 ± 10%). Solamente se representó la señal cuando la relación entre 249 y 224 nm se encontraba dentro de este rango. De los cuatro picos, solo el tercero cumplía el criterio (Figura 51 en la página 152). Los demás no se representaron.

Volumen de retardo y volumen extracolumna

El *volumen de retardo* se define como el volumen del sistema entre el punto de mezcla en la bomba y la parte superior de la columna.

El *volumen extracolumna* se define como el volumen entre el punto de inyección y el punto de detección, excluyendo el volumen en la columna.

Volumen extracolumna

El volumen extracolumna es una fuente de dispersión de picos que reducirá la resolución de la separación y, por lo tanto, debería minimizarse. Las columnas con diámetro más reducido requieren volúmenes extracolumna proporcionalmente más pequeños para mantener al mínimo la dispersión de picos.

En un cromatógrafo de líquidos, el volumen extracolumna dependerá de los tubos que conecten el inyector automático, la columna y el detector, así como del volumen de la celda de flujo del detector. El volumen extracolumna se ha minimizado con el sistema LC Agilent 1290 Infinity y Agilent 1260 Infinity gracias a los tubos de diámetro estrecho (0,12 mm de diámetro interno), a los intercambiadores de calor de volumen bajo del compartimento de columna y a la celda de cartucho Max-Light del detector.

Cómo configurar el volumen de retardo óptimo

Para mantener la resolución de los detectores de diodos Agilent 1290 Infinity y Agilent 1260 Infinity, la celda de cartucho Max-Light de 10 mm posee un volumen de dispersión baja (σ volumen de 1,0 µL) y no se necesita ninguna optimización adicional del volumen. Cuando se utilice la celda de sensibilidad alta Max-Light alternativa de 60 mm para obtener un sensibilidad más elevada, el volumen de la celda se optimizará de forma que pueda usarse con columnas de 3 mm y 4,6 mm de diámetro interno.

Cómo conseguir una sensibilidad más elevada

El detector dispone de varios parámetros que se utilizan para optimizar su rendimiento. Los siguientes apartados describen cómo afectan los parámetros del detector a las características de rendimiento:

- · La celda de flujo afecta a la sensibilidad.
- La longitud de onda y la anchura de banda afectan a la sensibilidad, a la selectividad y a la linealidad.
- La anchura de rendija afecta a la sensibilidad, a la resolución espectral y a la linealidad.
- · La anchura de pico afecta a la sensibilidad y a la resolución.

Celda de flujo

La celda de flujo de cartucho Max-Light tiene una longitud de paso estándar de 10 mm y está optimizada para un volumen y una dispersión mínimos (volumen σ de 1,0 µL). Tiene un transmisión de luz elevada que reduce el ruido generado por las guías de onda optofluídicas. Puede utilizarse con una amplia variedad de columnas analíticas, desde columnas cortas de diámetro estrecho a columnas largas estándar (4,6 mm). Generalmente, el volumen de dispersión de los picos (calculado a partir de la anchura de pico x la velocidad de flujo) debería ser superior a aproximadamente 2 µL en el caso de esta celda (por ejemplo, 0,02 min x 200 µL/min = 4 µL).

La celda de sensibilidad elevada Max-Light tiene una longitud de paso de 60 mm, con lo que se genera un aumento de entre tres y cinco veces de los valores de señal/ruido en función de las condiciones de la aplicación. El volumen de dispersión se incrementa fraccionadamente en comparación con la celda estándar.

Longitud de onda y anchura de banda

El detector mide simultáneamente la absorbancia a longitudes de onda desde 190 nm a 640 nm. Para ello, utiliza la detección de diodos. Una lámpara UV proporciona una buena sensibilidad en el rango completo de longitudes de onda. El detector de diodos (DAD) puede calcular y enviar simultáneamente al sistema de datos hasta ocho señales cromatográficas, así como los espectros de rango completo en todos los puntos de tiempo.

6

Una señal o un cromatograma UV es una representación de datos de la absorbancia con respecto al tiempo y se define por su longitud de onda y su anchura de banda.

- · La longitud de onda indica el centro de la banda de detección.
- La anchura de banda define el rango de longitud de onda sobre el que se promedian los valores de absorbancia para generar el resultado en cada punto de tiempo.

Por ejemplo, una señal a una longitud de onda de 250 nm y con una anchura de banda de 16 nm tendrá una absorbancia media de 242 nm a 258 nm. Además, se puede definir una longitud de onda y una anchura de banda de referencia para cada señal. La absorbancia media de la anchura de banda de referencia, centrada en la longitud de onda de referencia, se restará de su valor equivalente en la longitud de onda de la señal para generar el cromatograma de salida.

Es posible seleccionar la anchura de banda y la longitud de onda de la señal de forma que estén optimizadas para:

- · la detección universal de banda ancha,
- · la detección selectiva de banda estrecha,
- · la sensibilidad para un analito específico.

La detección universal o de banda ancha funciona con una anchura de banda amplia para detectar cualquier especie con absorbancia en dicho rango. Por ejemplo, para detectar todas las moléculas absorbentes entre 200 nm y 300 nm, fije una señal a 250 nm con una anchura de banda de 100 nm. La desventaja es que la sensibilidad no será óptima para ninguna de estas moléculas. La detección selectiva o de banda estrecha se utiliza con mucha más frecuencia. Se examina el espectro UV correspondiente a una molécula concreta y se selecciona un máximo de absorbancia adecuado. Si es posible, se debe evitar el rango en el que los disolventes absorban de forma acusada (por debajo de 220 nm en el caso del metanol y por debajo de 210 nm en el caso del acetonitrilo). Por ejemplo, en la Figura 52 en la página 157, el ácido anísico tiene un máximo de absorbancia adecuado a 252 nm. Una anchura de banda estrecha de entre 4 nm y 12 nm ofrece generalmente una buena sensibilidad y es específica para la absorbancia en un rango estrecho.

En el caso de una molécula concreta, es posible optimizar la banda estrecha en términos de la sensibilidad. Al aumentar la anchura de banda, no solo se reduce la señal, sino también el ruido, con lo existirá un punto óptimo para alcanzar la mejor señal/ruido. Como guía aproximada, este punto óptimo suele situarse cerca de la anchura de banda natural a media altura de la banda de absorción en el espectro UV. En el ejemplo del ácido anísico, es 30 nm.

La longitud de onda analítica suele fijarse generalmente en un máximo de la longitud de onda para aumentar la sensibilidad correspondiente a dicha molécula. El detector es lineal hasta 2 AU y más allá en el caso de muchas aplicaciones. Esto ofrece un rango lineal amplio para la concentración. En los análisis de concentración elevada, el rango de concentración lineal puede ampliarse si se fija una longitud de onda con una baja absorbancia como un mínimo de la longitud de onda o se utiliza una anchura de banda más amplia, lo que generalmente incluye valores de absorbancia más bajos. La utilización de mínimos y máximos de la longitud de onda para la cuantificación se remonta a los detectores UV convencionales, los cuales necesitaban evitar pendientes acusadas en el espectro debido a las tolerancias mecánicas que se generaban al mover las redes de difracción. Los detectores basados en diodos no presentan esta limitación. Sin embargo, por convención, se escogen los máximos y mínimos con preferencia a otras partes del espectro.

La anchura de banda de referencia se suele establecer en una región del espectro UV en la que el analito no tenga absorbancia. Esto se ilustra en el espectro del ácido anísico que se muestra en la Figura 52 en la página 157. Este espectro es típico de muchas moléculas pequeñas que contienen un cromóforo UV. Para obtener los mejores resultados, se ha fijado la referencia en una banda amplia lo más próxima posible a la longitud de onda de la señal, pero en una región con absorbancia cero. Se suelen utilizar anchuras de banda de referencia de entre 60 nm y 100 nm. La referencia predeterminada es 360 nm con una anchura de banda de 100 nm. Se utiliza una anchura de banda amplia porque se reduce el ruido de la señal de referencia (según la teoría estadística, el error, es decir, el ruido en este caso, se reduce por la raíz cuadrada del número de determinaciones). Es importante que la anchura de banda de referencia no se amplíe a una parte del espectro que tenga absorbancia, ya que entonces se reduciría la señal resultante, así como la sensibilidad. La utilización de una longitud de onda de referencia puede ayudar a reducir la deriva o la desviación en el cromatograma que se originan como consecuencia de los cambios en el índice de refracción. Estos cambios se deben a la fluctuación de la temperatura ambiente o a la operación de gradiente. Es posible probar fácilmente el efecto de una señal de referencia. Para ello, es necesario configurar dos señales idénticas, una con una señal de referencia y otra sin una señal

de referencia. Si ninguna parte del espectro presenta absorbancia cero, convendría apagar la señal de referencia.

Figura 52 Espectro del ácido anísico

Anchura de pico, tiempo de respuesta, velocidad de recopilación de datos

El ajuste de la anchura de pico, el tiempo de respuesta y la velocidad de muestreo del detector están vinculados. Los ajustes disponibles se muestran en la Tabla 16 en la página 159. Es importante fijar estos parámetros correctamente para optimizar la sensibilidad y preservar la resolución alcanzada en la separación.

El detector adquiere internamente los puntos de datos más rápidamente de lo que necesita un cromatógrafo y los procesa para generar la señal vista por el sistema de datos. Parte del procesamiento reduce los datos a una velocidad de muestreo adecuada que permite dibujar con precisión los picos cromatográficos. Como ocurre con la mayor parte de las determinaciones analíticas, los grupos de lecturas se promedian eficazmente para reducir los errores en el resultado. El detector agrupa los puntos de datos iniciales y genera los datos de la señal de salida a la velocidad de recopilación de datos requerida mediante un proceso de filtrado electrónico. Si la velocidad de muestreo resultante es demasiado lenta (sobre el filtrado), las alturas de los picos se reducirán, así como la resolución entre ellos; si es demasiado rápida, los datos registrarán más ruido del necesario para generar picos estrechos con precisión.

El ajuste de la anchura de pico del detector permite al usuario fijar correctamente estos parámetros con solo observar los resultados de integración del cromatograma y comprobar la anchura de los picos. El ajuste de la anchura de pico debería fijase en la anchura de pico más estrecha observada en el cromatograma. Si se asigna un valor demasiado ancho, se generarán picos más bajos y anchos (y, posiblemente, con menos resolución); en cambio, si se asigna un valor demasiado estrecho, se aumentará innecesariamente el ruido de la línea base. En esencia, el software utiliza este valor para fijar la velocidad de reco*pilación de datos* que le permita recopilar suficientes puntos de datos sobre los picos más estrechos. Su objetivo es de entre 15 y 25 puntos a través del pico. Si fuera necesario, el detector de diodos 1290 Infinity podría recopilar datos a una velocidad máxima de 160 Hz, lo que permitiría recopilar suficientes puntos de datos sobre un pico con una anchura de tan solo 0,1 s. El ajuste del tiempo de respuesta es otra forma de indicar cómo se configura este filtro. Se mide en segundos y es, aproximadamente, un tercio del valor de la anchura de pico (que se mide en minutos). Muestra eficazmente la rapidez con la que la señal trazada responde a un cambio de paso en la señal de entrada.

NOTA

El espectro completo no está disponible en todas las condiciones.

La velocidad de muestreo del barrido se reduce en función de los puntos de datos; consulte Tabla 16 en la página 159.

Optimización del detector **6**

Optimización del detector en relación con el sistema

Anchura de pico a media altura [min] ¹	Respuesta [s]	Velocidad de muestreo de la señal [Hz]	Velocidad de muestreo del barrido [Hz] ≤126 pts∕scan	Velocidad de muestreo del barrido [Hz] ≤251 pts∕scan	Velocidad de muestreo del barrido [Hz] ≤501 pts∕scan	Velocidad de muestreo del barrido [Hz] >501 pts/scan
< 0,0016	0,016	160 ²	160 ²	80	40	20
> 0,0016	0,03	160 ²	160 ²	80	40	20
> 0,003	0,062	80	80	80	80	40
> 0,006	0,12	40	40	40	40	40
> 0,012	0,25	20	20	20	20	20
> 0,025	0,5	10	10	10	10	10
> 0,05	1,0	5	5	5	5	5
> 0,10	2,0	2,5	2,5	2,5	2,5	2,5
> 0,20	4,0	1,25	1,25	1,25	1,25	1,25
> 0,40	8,0	0,625	0,62	0,625	0,625	0,625
> 0,85	16,0	0,3125	0,31	0,3125	0,3125	0,3125

 Tabla 16
 Anchura de pico, tiempo de respuesta y velocidad de muestreo

¹ Es posible redondear los valores de la interfaz de usuario.

² Solo para G4212A

NOTA

La velocidad de barrido máxima de los espectros depende de los puntos de datos por barrido; consulte Tabla 16 en la página 159. Si se ejecuta a 160 Hz, la velocidad de muestreo de barrido de los espectros se reduce automáticamente si es superior a 251 puntos/barrido.

Calentamiento del detector

Espere a que la unidad óptica se caliente y estabilice convenientemente (más de 60 minutos). El detector se controla térmicamente. Tras su encendido, el detector atraviesa un ciclo de diferentes estados:
• De 0 a 0,5 minutos, el control del calentador está en apagado y el elemento del calentador funciona a un ciclo de trabajo del 0 %.
• De 0,5 a 1 minuto, el control del calentador está en apagado y el elemento del calentador funciona a un ciclo de trabajo del 66%. El primer minuto se utiliza para autocomprobar la funcionalidad del calentador.
• De 1 a 30 minutos, el control del calentador está en apagado y el elemento del calentador funciona a un ciclo de trabajo del 40%.
• Transcurridos 30 minutos, el control del calentador pasa a estar encendido y opera con parámetros optimizados para situar a la unidad óptica en el rango de temperaturas estables óptimas.
Este ciclo se inicia
• cuando el detector se apaga/enciende
• cuando la lámpara se apaga/enciende
para garantizar que el control de temperatura opera en el rango de control definido.
Los tiempos para estabilizar la línea de base pueden variar en función de los instrumentos y dependen del entorno. El siguiente ejemplo se llevó a cabo en condiciones ambientales

estables.

Las siguientes figuras muestran las dos primeras horas de una fase de calentamiento del detector. La lámpara se encendió inmediatamente después de encenderse el detector.

NOTA

Figura 53 Calentamiento del detector, primera hora

Figura 54 Calentamiento del detector, segunda hora

6 Optimización del detector

Calentamiento del detector

7

Diagnóstico y resolución de problemas

Descripción de los indicadores del módulo y las funciones de test 164 Indicadores de estado 165 Indicador de la fuente de alimentación 165 Indicador de estado del módulo 166 Tests disponibles frente a interfases de usuario 167 Software Agilent Lab Advisor 168 Problemas intermitentes 169 Cable óptico suelto 169 El tipo de tarjeta no coincide al sustituir la tarjeta principal 170

Se ofrece una visión general de las funciones de diagnóstico y de resolución de problemas.

Descripción de los indicadores del módulo y las funciones de test

Indicadores de estado

El módulo se suministra con dos indicadores de estado que informan del estado operativo (preanálisis, análisis y error). Los indicadores de estado proporcionan un control visual rápido del funcionamiento del módulo.

Mensajes de Error

En el caso de producirse un fallo electrónico, mecánico o hidráulico, el módulo genera un mensaje de error en la interfase de usuario. Para cada mensaje, se presenta una breve descripción del fallo, una lista de probables causas del problema y una serie de sugerencias para resolver el problema (consulte el capítulo Información de errores).

Funciones de test

Existe una serie de funciones de test para la resolución de problemas y la verificación operativa tras el cambio de componentes internos (consultar Tests y calibraciones).

Señales de diagnóstico

El módulo dispone de varias señales (temperaturas internas, voltajes y corrientes de las lámparas) para diagnosticar los problemas de la línea de base. Se pueden añadir como señales normales en el software de la ChemStation de Agilent.

Para obtener más información, consulte "Curvas de instrumento" en la página 114.

Indicadores de estado

Hay dos indicadores de estado ubicados en la parte frontal del módulo. El indicador situado en la parte inferior izquierda muestra el estado de la fuente de alimentación y el situado en la parte superior derecha muestra el estado del módulo.

Indicador de la fuente de alimentación

Indicador de la fuente de alimentación

El indicador de la fuente de alimentación está integrado en el interruptor principal de encendido. Cuando el indicador está iluminado (*verde*) el equipo está encendido *ENCENDIDO*.

Indicador de estado del módulo

El indicador de estado del módulo muestra una de las seis posibles condiciones del módulo:

- Cuando el indicador de estado está *APAGADO* (y la luz del interruptor principal está encendida), el módulo se encuentra en condición de *preanálisis* y está preparado para comenzar el análisis.
- Un indicador de estado *verde* indica que el módulo está realizando un análisis (modo de *análisis*).
- Un indicador de estado *amarillo* informa de una condición de *no preparado*. El módulo se encuentra en estado de no preparado cuando está esperando alcanzar o completar una determinada condición (por ejemplo, inmediatamente después de cambiar un valor) o mientras se está ejecutando un procedimiento de autotest.
- Una condición de *error* se indica con el indicador de estado *rojo*. Una condición de error indica que el módulo ha detectado un problema interno que afecta a su correcto funcionamiento. Normalmente, una condición de error requiere la atención del usuario (por ejemplo, una fuga, un componente interno defectuoso). Una condición de error siempre interrumpe el análisis.

Si el error se produce durante el análisis, se propaga dentro del sistema LC; por ejemplo, un LED rojo puede indicar un problema en un módulo diferente. Utilice el indicador de estado de la interfaz de usuario para encontrar la raíz o el módulo del error.

- Un indicador que *parpadea* indica que el módulo está en modo residente (por ejemplo, durante la actualización del firmware principal).
- Un indicador que *parpadea rápidamente* indica que el módulo está en un modo de error de nivel bajo. En estos casos, intente reiniciar el módulo o lleve a cabo un arranque en frío (consulte "Ajustes especiales" en la página 288). A continuación, intente actualizar el firmware (consulte "Sustitución del firmware del módulo" en la página 251). Si esto no ayuda, debe sustituir una placa base.

Tests disponibles frente a interfases de usuario

- En función de la interfaz de usuario que se utilice, es posible que los tests y las pantallas o informes disponibles varíen (consulte el capítulo *"Funciones de test y calibraciones"*).
- La herramienta preferida debería ser el software Agilent Lab Advisor; consulte "Software Agilent Lab Advisor" en la página 168.
- Es posible que la ChemStation B.04.02 de Agilent no incluya funciones de mantenimiento y de test.
- Las capturas de pantalla utilizadas en estos procedimientos proceden del software Agilent Lab Advisor.

7 Diagnóstico y resolución de problemas Software Agilent Lab Advisor

Software Agilent Lab Advisor

El software Agilent Lab Advisor es un producto independiente que se puede utilizar con o sin un sistema de datos. El software Agilent Lab Advisor es una ayuda en la administración de los laboratorios para obtener resultados cromatográficos de gran calidad y puede supervisar en tiempo real un único LC de Agilent o todos los GC y LC de Agilent que se hayan configurado en la intranet del laboratorio.

El software Agilent Lab Advisor ofrece capacidades de diagnóstico para todos los módulos de las series Agilent 1200 Infinity. Esto incluye capacidades de diagnóstico, procedimientos de calibración y rutinas de mantenimiento en todas las rutinas de mantenimiento.

Asimismo, el software Agilent Lab Advisor permite a los usuarios controlar el estado de sus instrumentos LC. La función Mantenimiento preventivo asistido (EMF) ayuda a realizar mantenimientos preventivos. Además, los usuarios pueden generar un informe de estado para cada instrumento LC por separado. Estas funciones de prueba y diagnóstico, tal como las ofrece el software Agilent Lab Advisor, pueden ser distintas a las descripciones de este manual. Para obtener información detallada, consulte los ficheros de ayuda del software Agilent Lab Advisor.

El Instruments Utilities es una versión básica de Lab Advisor con las funcionalidades limitadas requeridas para la instalación, el uso y el mantenimiento. No se incluyen las funcionalidades avanzadas de reparación, resolución de problemas y control.

Problemas intermitentes

Cable óptico suelto

Se pueden producir los siguientes problemas intermitentes:

- Línea base (deriva o ruido)
- Falta de picos
- · Error del test de intensidad de la lámpara
- · Error en la verificación WL
- · Otros efectos relacionados con la óptica

En estos casos, compruebe la conexión del cable entre la unidad óptica (debajo de la cubierta; consulte la Figura 56 en la página 169) y la tarjeta principal. Si está suelta, se pueden detectar efectos intermitentes o constantes.

NOTA

No realice ninguna sustitución (de la tarjeta óptica o principal) antes de haber realizado las comprobaciones anteriores.

Figura 56 Ubicación de la cubierta en la unidad óptica

El tipo de tarjeta no coincide al sustituir la tarjeta principal

El tipo de tarjeta no coincide al sustituir la tarjeta principal

Al sustituir una tarjeta principal (G4212-65820 para G4212A/B) del detector de diodos, puede que indique que es del tipo incorrecto. En este caso, quiere decir que otra persona la ha utilizado anteriormente en otro detector de diodos.

El detector de diodos G4212B arranca como si fuera el modelo G4212A

Si la tarjeta principal se ha utilizado anteriormente en un detector de diodos G4212A

- El módulo permanece en el modo residente (G4212A-R) y se enciende el LED de error ROJO.
- Utilice la versión más reciente de Agilent Lab Advisor.
- · Conéctelo con el detector de diodos.
- Abra Service & Diagnostics.
- Ejecute Board Check and Change.
- · Cambie el tipo a G4212B (tal como se escribe en la etiqueta del módulo).
- Introduzca el número de serie correcto (tal como se escribe en la etiqueta del módulo).
- Aplique los cambios.
- · Reinicie el detector de diodos (si no se lleva a cabo de forma automática).

El detector de diodos G4212A arranca como si fuera el modelo G4212B

Si la tarjeta principal se ha utilizado anteriormente en un detector de diodos G4212B

- El detector arrancará como un detector de diodos G4212B (sin error).
- El detector de diodos tiene la funcionalidad del modelo G4212B.
- Introduzca el número de serie correcto (tal como se escribe en la etiqueta del módulo).
- El detector de diodos se puede revertir al modelo G4212A con la opción **Board Check and Change** de Lab Advisor.
- · Reinicie el detector de diodos (si no se lleva a cabo de forma automática).

Procedimiento habitual

El procedimiento habitual es el siguiente:

- La tarjeta principal no tiene ningún tipo de información.
- Durante el arranque del detector de diodos, se recupera el tipo de módulo (G4212A o G4212B) de la unidad óptica instalada y se mantiene.
- Añada el número de serie mediante la opción Board Check and Change.
- · Reinicie el detector de diodos (si no se lleva a cabo de forma automática).

7 Diagnóstico y resolución de problemas

El tipo de tarjeta no coincide al sustituir la tarjeta principal

Información sobre errores

8

Cuáles son los mensajes de error 174 Mensajes de error generales 175 Timeout 175 Shutdown 176 Remote Timeout 177 Lost CAN Partner 178 Leak Sensor Short 179 Leak Sensor Open 180 **Compensation Sensor Open** 181 Compensation Sensor Short 181 Fan Failed 182 Leak 183 Open Cover 183 Cover Violation 184 Mensajes de error del detector 185 Diode Current Leakage 185 UV Lamp Current 186 UV Lamp Voltage 187 UV Ignition Failed 188 UV Heater Current 189 Calibration Values Invalid 190 Wavelength Recalibration Lost 191 Illegal Temperature Value from Sensor on Main Board 191 Illegal Temperature Value from Sensor at Fan Assembly 192 Heater at fan assembly failed 193 Heater Power At Limit 193

En este capítulo se describe el significado de los mensajes de error y se proporciona información sobre sus posibles causas. Asimismo, se sugieren las acciones que hay que seguir para corregir dichas condiciones de error.

Cuáles son los mensajes de error

Cuáles son los mensajes de error

Los mensajes de error aparecen en la interfase de usuario cuando tiene lugar algún fallo electrónico, mecánico o hidráulico (paso de flujo) que es necesario atender antes de poder continuar el análisis (por ejemplo, cuando es necesaria una reparación o un cambio de un fungible). En el caso de un fallo de este tipo, se enciende el indicador de estado rojo de la parte frontal del módulo y se registra una entrada en el libro de registro del módulo.

Mensajes de error generales

Los mensajes de error generales son comunes a todos los módulos Agilent series HPLC y puede mostrarse también en otros módulos.

Timeout

Error ID: 0062

Tiempo de espera

Se ha superado el valor del tiempo de espera máximo predeterminado.

Causa probable

- El análisis finalizó satisfactoriamente y la función de tiempo de espera desconectó el módulo según lo requerido.
- 2 Se ha producido una situación de estado "no preparado" durante la secuencia o análisis de inyección múltiple durante un periodo de tiempo superior al umbral establecido para el tiempo de espera.

Acciones recomendadas

Compruebe en el logbook el momento y la causa de dicha condición de "no preparado". Reinicie el análisis donde sea necesario.

Compruebe en el logbook el momento y la causa de dicha condición de "no preparado". Reinicie el análisis donde sea necesario. Mensajes de error generales

Shutdown

Error ID: 0063

Desconexión

Un instrumento externo ha generado una señal de desconexión en la línea remota.

El módulo monitoriza continuamente las señales de estado en los conectores de entrada remota. Una entrada de señal BAJA en la clavija 4 del conector remoto genera el mensaje de error.

Ca	ausa probable	Acciones recomendadas	
1	Fuga detectada en un instrumento externo con una conexión CAN al sistema.	Repare la fuga en el instrumento externo antes de reiniciar el módulo.	
2	Fuga detectada en un instrumento externo, con una conexión remota al sistema.	Repare la fuga en el instrumento externo antes de reiniciar el módulo.	
3	Desconexión de un instrumento externo, con una conexión remota al sistema.	Compruebe la condición de apagado en los instrumentos externos.	

Remote Timeout

Error ID: 0070

Tiempo de espera remoto

Sigue habiendo una condición "no preparado" en la entrada remota. Al iniciar un análisis, el sistema espera que todas las condiciones de estado "no preparado" (por ejemplo, durante el equilibrado del detector) cambien a condiciones de análisis durante el minuto siguiente. Si al cabo de un minuto la condición de "no preparado" sigue presente en la línea remota, se genera el mensaje de error.

Causa probableAcciones recomendadas1Condición de "no preparado" en uno de los
instrumentos conectados a la línea remota.Asegúrese de que el instrumento que muestra
la condición de "no preparado" esté instalado
correctamente y configurado adecuadamente
para el análisis.2Cable remoto defectuoso.Cambie el cable remoto.3Componentes defectuosos en el instrumento
que muestran la condición de "no preparado".Compruebe si el instrumento presenta defectos
(consulte la documentación que acompaña a
este).

Lost CAN Partner

Error ID: 0071

Proveedor CAN perdido

Durante un análisis, ha fallado la sincronización interna o la comunicación entre uno o más módulos del sistema.

Los procesadores del sistema controlan continuamente la configuración del sistema. Si uno o más módulos no se reconocen como conectados al sistema, se genera el mensaje de error.

Causa probable		Acciones recomendadas		
1	Cable CAN desconectado.	 Asegúrese de que todos los cables CAN estén correctamente conectados. 		
		 Asegúrese de que todos los cables CAN estén correctamente instalados. 		
2	Cable CAN defectuoso.	Cambie el cable CAN.		
3	Tarjeta principal defectuosa en otro módulo.	Apague el sistema. Reinicie el sistema y determine qué módulo o módulos reconoce el sistema.		

Leak Sensor Short

Error ID: 0082

Fallo en el sensor de fugas

El sensor de fugas del módulo ha fallado (cortocircuito).

La corriente que atraviesa el sensor de fugas depende de la temperatura. La fuga se detecta cuando el disolvente enfría el sensor de fugas, provocando que la corriente del sensor varíe dentro de unos límites definidos. Si la corriente se eleva por encima del límite superior, se genera el mensaje de error.

Ca	ausa probable	Acciones recomendadas		
1	Sensor de fugas defectuoso.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.		
2	Sensor de fugas mal colocado, presionado por un componente metálico.	 Póngase en contacto con un representante del departamento de servicio técnico de Agilent. 		
		Corrija la colocación del cable.		
		Si el cable es defectuoso, cambie el sensor		

de fugas.

Mensajes de error generales

Leak Sensor Open

Error ID: 0083

Sensor de fugas abierto

Ha fallado el sensor de fugas del módulo (circuito abierto).

La corriente que atraviesa el sensor de fugas depende de la temperatura. La fuga se detecta cuando el disolvente enfría el sensor de fugas, provocando que la corriente del sensor varíe dentro de unos límites definidos. Si la corriente cae por debajo del límite inferior, se genera el mensaje de error.

Causa probable		Acciones recomendadas	
1	Sensor de fugas no conectado a la placa base.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.	
2	Sensor de fugas defectuoso.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.	
3	Sensor de fugas mal colocado, presionado por un componente metálico.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.	
Compensation Sensor Open

Error ID: 0081

Sensor de compensación abierto

El sensor de compensación ambiental (NTC) de la placa base del módulo ha fallado (circuito abierto).

La resistencia del sensor de compensación de temperatura (NTC) en la placa base depende de la temperatura ambiente. El cambio de la resistencia se utiliza para medir la temperatura ambiental y compensar los cambios producidos en la misma. Si la resistencia a lo largo del sensor aumenta por encima del límite superior, se genera el mensaje de error.

Causa probable	Acciones recomendadas

1 Placa base defectuosa.

Compensation Sensor Short

Error ID: 0080

Fallo en el sensor de compensación

El sensor de compensación ambiental (NTC) de la placa base del módulo ha fallado (cortocircuito).

La resistencia del sensor de compensación de temperatura (NTC) en la placa base depende de la temperatura ambiente. El cambio de la resistencia se utiliza para medir la temperatura ambiental y compensar los cambios producidos en la misma. Si la resistencia a lo largo del sensor está por debajo del límite inferior, se genera el mensaje de error.

Causa probable

Acciones recomendadas

Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

1 Placa base defectuosa.

Fan Failed

Error ID: 0068

Fallos en el ventilador

Ha fallado el ventilador de refrigeración del modulo.

La placa base utiliza el sensor del eje del ventilador para controlar la velocidad del ventilador. Si ésta desciende por debajo de un determinado límite durante un cierto período de tiempo, se genera el mensaje de error.

En función del módulo, se apagan los dispositivos (por ejemplo, la lámpara del detector) para asegurar que el módulo no tenga un sobrecalentamiento.

Causa probable		Acciones recomendadas
1	Cable del ventilador desconectado.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
2	Ventilador defectuoso.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
3	Placa base defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Leak

Error ID: 0064

Fuga

Se detectó una fuga en el módulo.

El algoritmo de fugas utiliza las señales de los dos sensores de temperatura (sensor de fugas y sensor de compensación de temperatura montado en la placa) para determinar si existe una fuga. Cuando tiene lugar alguna fuga, el sensor se enfría con el disolvente. Esto cambia la resistencia del sensor y el circuito de la placa base detecta el cambio.

Causa probable		Acciones recomendadas
1	Conexiones flojas.	Asegúrese de que todas las conexiones están bien apretadas.
2	Capilar roto.	Cambie los capilares defectuosos.

Open Cover

Error ID: 0205

Cubierta abierta

Se ha retirado la espuma protectora superior.

Causa probable		Acciones recomendadas
1	La espuma no consigue activar el sensor.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
2	Sensor sucio o defectuoso.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Cover Violation

Error ID: 7461

Infracción de la cubierta

Se ha retirado la espuma protectora superior.

El sensor de la placa base detecta el momento en que se coloca la espuma protectora superior. Si se ha retirado la espuma protectora con las lámparas encendidas (o si, por ejemplo, se han intentando cambiar las lámparas sin la espuma protectora), las lámparas se apagan y se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	Se ha retirado la espuma superior durante la operación.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.
2	La espuma no consigue activar el sensor.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.

Mensajes de error del detector

Estos mensajes de error son específicos del detector.

Diode Current Leakage

Error ID: 1041

Fuga de corriente de los diodos

Cuando el detector está encendido, el procesador comprueba la corriente de fuga de cada uno de los diodos ópticos. Si la corriente de fuga supera el límite superior, se genera el mensaje de error.

Causa probable		Acciones recomendadas	
1	PDA/unidad óptica defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.	
2	Conector o cable defectuoso.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.	

8 Información sobre errores

Mensajes de error del detector

UV Lamp Current

Error ID: 7450

Corriente de la lámpara UV

Falta la corriente de la lámpara UV.

El procesador controla continuamente la corriente anódica que la lámpara consume durante el funcionamiento. Si la corriente anódica cae por debajo del límite de corriente inferior, se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	Lámpara desconectada.	Asegúrese de que el conector de la lámpara UV está correctamente colocado.
2	Lámpara UV defectuosa o lámpara no Agilent.	Cambie la lámpara UV.
3	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
4	Fuente de alimentación defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

UV Lamp Voltage

Error ID: 7451

Voltaje de la lámpara UV

Falta el voltaje anódico de la lámpara UV.

El procesador controla continuamente el voltaje anódico a través de la lámpara durante el funcionamiento. Si el voltaje anódico cae por debajo del límite inferior, se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	Lámpara UV defectuosa o lámpara no Agilent.	Cambie la lámpara UV.
2	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
3	Fuente de alimentación defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Mensajes de error del detector

UV Ignition Failed

Error ID: 7452

Fallo en el encendido de la lámpara UV

La lámpara UV no se ha encendido.

El procesador controla la corriente de la lámpara UV durante el ciclo de encendido. Si la corriente de la lámpara no supera el límite inferior en un plazo de entre 2 y 5 segundos, se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	Lámpara demasiado caliente. Es posible que las lámparas de descarga de gas caliente no se enciendan tan fácilmente como las lámparas frías.	Apague la lámpara y deje que se enfríe 15 minutos como mínimo.
2	Lámpara desconectada.	Asegúrese de que la lámpara está conectada.
3	Lámpara UV defectuosa o lámpara no Agilent.	Cambie la lámpara UV.
4	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
5	Fuente de alimentación defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

UV Heater Current

Error ID: 7453

Corriente del calentador de la lámpara UV

Falta la corriente del calentador de la lámpara UV.

Durante el encendido de la lámpara UV, el procesador controla la corriente del calentador. Si la corriente no supera el límite inferior en un plazo de un segundo, se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	Lámpara desconectada.	Asegúrese de que la lámpara UV está conectada.
2	El encendido se inició sin la colocación de la espuma protectora.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
3	Lámpara UV defectuosa o lámpara no Agilent.	Cambie la lámpara UV.
4	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
5	Fuente de alimentación defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Calibration Values Invalid

Error ID: 1036

Valores de calibración no válidos

Los valores de calibración leídos desde la memoria ROM del espectrómetro no son válidos.

Tras la recalibración, los valores de calibración se almacenan en la memoria ROM. El procesador comprueba periódicamente si los datos de calibración son válidos. Si los datos no son válidos o no se pueden leer desde la memoria ROM del espectrómetro, se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	Conector o cable defectuoso.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.
2	PDA/unidad óptica defectuosa.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Wavelength Recalibration Lost

Error ID: 1037

Se ha perdido la recalibración de la longitud de onda

La información de calibración necesaria para que el detector funcione correctamente se ha perdido.

Durante la calibración del detector, los valores de calibración se almacenan en la memoria ROM. Si la memoria ROM del espectrómetro no contiene ningún dato, se genera el mensaje de error.

Causa probable		Acciones recomendadas
1	El detector es nuevo.	Recalibrar el detector.
2	El detector ha sido reparado.	Póngase en contacto con un representante del departamento de servicio técnico de Agilent.

Illegal Temperature Value from Sensor on Main Board

Error ID: 1071

Valor de temperatura ilegal desde el sensor de la tarjeta principal

Este sensor de temperatura (situado en la tarjeta principal del detector) ha registrado un valor fuera del rango permitido. El parámetro de este evento equivale a la temperatura medida en 1/100 centígrados. Consecuentemente, el control de temperatura se apaga.

Causa probable		Acciones recomendadas	
1	El sensor o la tarjeta principal son defectuosos.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	
2	El detector está expuesto a condiciones ambientales indebidas.	Compruebe que las condiciones ambientales se encuentren dentro del rango permitido.	

Illegal Temperature Value from Sensor at Fan Assembly

Error ID: 1072

Valor de temperatura ilegal desde el sensor del dispositivo del ventilador

Este sensor de temperatura (situado cerca del ventilador) ha registrado un valor fuera del rango permitido. El parámetro de este evento equivale a la temperatura medida en 1/100 centígrados. Consecuentemente, el control de temperatura se apaga.

Ca	ausa probable	Acciones recomendadas		
1	El sensor de temperatura es defectuoso.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.		
2	Tarjeta principal defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.		
3	El detector está expuesto a condiciones ambientales indebidas.	Compruebe que las condiciones ambientales se encuentren en el rango permitido.		

Heater at fan assembly failed

Error ID: 1073

Fallos en el calentador del dispositivo del ventilador

Cada vez que la lámpara de deuterio o de tungsteno (sólo en el caso de los detectores de diodos) se enciende o se apaga, se lleva a cabo un proceso de autotest del calentador. Si el test falla, se genera un evento de error. Consecuentemente, el control de temperatura se apaga.

Causa probable		Acciones recomendadas	
1	Conector o cable defectuoso.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	
2	Calentador defectuoso.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	

Heater Power At Limit

Error ID: 1074

Potencia del calentador al límite

La potencia disponible del calentador ha alcanzado el límite superior o inferior. Este evento sólo se envía una vez por análisis. El parámetro determina el límite que se ha alcanzado.

0 indica que se ha alcanzado el límite superior (caída excesiva de la temperatura ambiente).

1 indica que se ha alcanzado el límite inferior (aumento excesivo de la temperatura ambiente).

Causa probable

Acciones recomendadas

1 Cambio excesivo en la temperatura ambiente.

Espere hasta que el control de temperatura se equilibre.

8 Información sobre errores

Mensajes de error del detector

9 Funciones de test y de calibración

Introducción 196 Utilización de la celda de cartucho Max-Light de prueba 198 Condiciones del detector 200 Fallo de un test 201 Autotest 202 Test de intensidad 204 Test Failed 206 Test de celda 207 Test Failed (low ratio value) 209 Test de ruido rápido 210 Test Failed 212 Test de deriva y ruido de la ASTM 213 Test Failed 215 Test de rendija 216 Test de rendija (G4212A) 216 Test Failed 218 Test de rendija (G4212B) 218 Test de verificación de la longitud de onda 219 Calibración de la longitud de onda 221 Wavelength Recalibration Fails 223 Test del convertidor D/A (DAC) 224 Test Failed 226 Test de corriente oscura 227 Test Failed 229

En este capítulo se describen los tests del módulo.

9 Funciones de test y de calibración Introducción

Introducción

Todos los tests descritos se basan en el software Agilent Lab Advisor B.01.03. Es posible que otras interfaces de usuario no suministren ningún test o solo unos pocos.

Interfaz	Comentario	Función disponible	
Utilidades del instrumento de Agilent	Tests de mantenimiento disponibles	 Intensidad Celda Calibración WL 	
Agilent Lab Advisor	Todos los tests disponibles	 Autotest Intensidad Ruido rápido Deriva y ruido ASTM Celda Corriente oscura Convertidor D/A Rendija (solo G4212A) Verificación WL Calibración WL Cromatógrafo de prueba (herramientas) Barrido de espectros (herramientas) Información de módulos (herramientas) Diagnóstico (herramientas) 	

Tabla 17 Interfaces y funciones de test disponibles

Interfaz	Comentario	Función disponible	
ChemStation de Agilent	Sin tests disponibles Es posible añadir señales de temperatura/lámpara a las señales cromatográficas	 Tarjeta principal de temperatura Unidad óptica de temperatura Voltaje del ánodo de la lámpara 	
Agilent Instant Pilot	Algunos tests disponibles	 Intensidad Calibración WL Celda 	

 Tabla 17
 Interfaces y funciones de test disponibles

Para obtener más información sobre la utilización de la interfaz, consulte la documentación correspondiente.

9 Funciones de test y de calibración

Utilización de la celda de cartucho Max-Light de prueba

Utilización de la celda de cartucho Max-Light de prueba

Se recomienda utilizar la celda de cartucho Max-Light de prueba para los distintos tests en vez de la celda de cartucho Max-Light (10 mm, V(σ) = 1 µL) o la celda de cartucho Max-Light (60 mm, V(σ) = 4 µL), ya que permite ejecutar los tests sin la influencia del resto del sistema (desgasificador, bomba, inyector y otros).

Los resultados de la celda de prueba son comparables a los de la celda de cartucho Max-Light (10 mm, V (σ) = 1 µL) llena de agua, por ejemplo, el perfil de intensidad. Sólo el valor de absorbancia es superior en la celda de cartucho Max-Light.

Si el perfil de la celda de cartucho Max-Light difiere en el rango UV inferior, quiere decir que la celda contiene disolventes absorbentes que deberían ser evacuados. Consulte también "Limpieza de la celda de cartucho Max-Light" en la página 246.

NOTA

Al utilizar la celda de cartucho Max-Light para los tests y las calibraciones, debería aplicarse un flujo constante de 0,5 mL/min con agua. De esta forma, se garantiza que la trayectoria de la luz esté siempre limpia.

La siguiente tabla ofrece una idea de la variación de altura de la señal de las celdas de cartucho Max-Light en comparación con la celda de cartucho Max-Light de prueba.

 Tabla 18
 Comparación de las celdas de cartucho Max-Light y la celda de cartucho Max-Light de prueba

Número de referencia	Descripción	Altura de la señal (típica)
G4212-60011	Celda de cartucho Max-Light de prueba	100 %
G4212-60008	Celda de cartucho Max-Light de 10 mmV($\sigma)$ = 1 μL	~ 100 %
G4212-60007	Celda de cartucho Max-Light de 60 mmV($\sigma)$ = 4 μL	~ 100 %
G5615-60018	Celda de cartucho Max-Light bioinerte de 10 mmV($\sigma)$ = 1 μL	~ 100 %
G5615-60017	Celda de cartucho Max-Light bioinerte de 60 mmV($\sigma)$ = 4 μL	~ 100 %

Utilización de la celda de cartucho Max-Light de prueba

Tabla 18	Comparación de las celdas de cartucho Max-Light y la celda de cartucho
	Max-Light de prueba

Número de referencia	Descripción	Altura de la señal (típica)
G4212-60032	Celda de cartucho Max-Light HDR (3,7 mm, V(σ) 0,4 μL	100 %
G4212-60017	Celda de cartucho Max-Light ULD (10 mm, V(σ) 0,6 $\mu L)$	100 %

9 Funciones de test y de calibración Condiciones del detector

Condiciones del detector

El test debería realizarse generalmente con un detector encendido al menos durante una hora para que el sistema de regulación de la temperatura de la unidad óptica (inactivo durante los primeros 30 minutos tras el encendido) funcione. Si el detector está encendido, los tests se pueden realizar generalmente 10 minutos después de que la lámpara UV se haya encendido.

Fallo de un test

Si falla un test con la celda de cartucho Max-Light, repítalo con la celda de test de cartucho Max-Light y compare. Si también falla, aplique las acciones propuestas que se mencionan en la información relativa a los tests.

9 Funciones de test y de calibración Autotest

Autotest

El autotest ejecuta una serie de tests individuales (descritos en las siguientes
páginas) y evalúa los resultados automáticamente. Se ejecutan los siguientes
tests:

- Test de rendija
- Test de corriente oscura
- Test de intensidad
- · Test de verificación de la longitud de onda
- Test de ruido ASTM, una versión simplificada del test de deriva y ruido ASTM (sin comprobar la deriva)

Cuándo	Para una comprobación completa del detector.			
Piezas necesarias	Número	ero Descripción		
	1	Celda de cartucho Max-Light (llena de agua) o		
	1	Celda de cartucho Max-Light de prueba		
Preparaciones • La lámpara debe estar encendida al menos 10 minut		para debe estar encendida al menos 10 minutos.		
 Es posible que se necesite más tiem 		ible que se necesite más tiempo de calentamiento para el test de ruido (> 2 hours).		
	 La utili 	zación de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 mL/min		
	con ag	ua.		

1 Ejecute el **Self-Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Tes	t Na	me	Self Test	Description	The test performs a self test.	
Module			G4212A:PR00100015			
Sta	tus		Passed			
Sta	rt Ti	me	7/9/2009 2:21:51 PM			
Sto	p Ti	ne	7/9/2009 2:43:51 PM			
Test	Proc	edure —		Resu	lt	
					Name	Value
/	1.	Check F	rerequisites	Cell P	roduct Number	G4212-60011
/	2.	Insert su	pported Cell or Test Cell.	Cell N	lame	Max-Light Test Cell
1	3.	Perform	Slit Test	Cell T	уре	10 mm/0 µl
1	4.	Perform	Dark Current Test	Lamp	Туре	Automatic Mode
1	5	Perform	Intensity Test	Slit Te	est Result	0.84
2	J.	r enoim	Intensity rest	Dark	Current Minimum	7699 Counts
	Б.	Perform	Wavelength Calibration Test	Dark	Current Maximum	7763 Counts
/	7.	Perform	Spectral Flatness Test	Lowe	st Intensity in Range 190 - 220 nm	30257 Counts
1	8.	Perform ASTM Noise Test (20 min. at 254 nm)		Lowe	st Intensity in Range 221 - 350 nm	35216 Counts
1	9.	Evaluate Data		Lowe	st Intensity in Range 351 - 500 nm	8219 Counts
				Lowe	st Intensity in Range 501 - 640 nm	2202 Counts
				Highe	est Intensity in Range 190 - 350 nm	151632 Counts
				Highe	est Intensity in Range 351 - 500 nm	38283 Counts
				Highe	est Intensity in Range 501 - 640 nm	38703 Counts
				D2 A	pha Line Deviation	0.000 nm
				D2 Be	eta Line Deviation	0.000 nm
				D2 A	pha Line	656.100 nm
				D2 Be	eta Line	486.000 nm
				Spect	tral Flatness	0.0001 AU
				Accu	mulated UV Lamp Burn Time	84.00 h
				UV La	amp On-Time	4.84 h
				Signa	I Noise value at 254 nm (UV)	0.007 mAU

Figura 57 Autotest – Resultados

9 Funciones de test y de calibración Test de intensidad

Test de intensidad

El test de intensidad mide la intensidad de la lámpara UV en todo el rango de
longitud de onda (190 - 640 nm). Se utilizan cuatro rangos espectrales para
evaluar el espectro de intensidad. El test se utiliza para determinar el rendi-
miento de la lámpara y la óptica (consulte también "Test de celda" en la
página 207). Cuando se inicia el test, la rendija de 1 nm se coloca automátic-
amente en la trayectoria de la luz (G4212A). Para eliminar los efectos debidos
a los disolventes absorbentes, el test debería realizarse con agua en la celda de
cartucho Max-Light o con la celda de cartucho Max-Light de prueba. La forma
del espectro de intensidad depende principalmente de las características de la
lámpara, de la red de difracción y de la matriz de diodos. Por lo tanto, los
espectros de intensidad diferirán ligeramente según los instrumentos.

Cuándo	En caso d	En caso de problemas con la lámpara UV (deriva, ruido).		
Piezas necesarias	Número	Descripción		
	1	Celda de cartucho Max-Light (llena de agua) o		
	1	Celda de cartucho Max-Light de prueba		
Preparaciones	La lámpara debe estar encendida al menos 10 minutos.			

1 Ejecute el **Intensity-Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Test Name Module Status Start Time Stop Time	Intensity Test G4212A:PR00100015 Passed 7/9/2009 2:14:09 PM 7/9/2009 2:14:30 PM	Description	The test scans the Intensity spectrum Lamp.	generated by the UV
Test Procedure		Result		
 1. Check P 2. Insert su 3. Scan Int 4. Evaluate 	rerequisites pported Cell or Test Cell. ensity Spectrum Data	Cell Pri Cell Na Cell Ty Lamp 1 Lowes Lowes Lowes Highes Highes Spectr	Name oduct Number me pe tintensity in Range 190 - 220 nm tintensity in Range 221 - 350 nm tintensity in Range 351 - 500 nm tintensity in Range 501 - 640 nm tintensity in Range 190 - 350 nm tintensity in Range 351 - 500 nm tintensity in Range 351 - 500 nm tintensity in Range 351 - 640 nm um Integral enral (190 - 349 nm)	Value G4212-60011 Max-Light Test Cell 10 mm/0 µl Automatic Mode 30261 Counts 35197 Counts 8211 Counts 2201 Counts 151611 Counts 38272 Counts 38291 Counts 38691 Counts 38691 Counts 16465136 12108449

Figura 59 Test de intensidad – Señales

Test Failed

Fallos del test

Evaluación del test de intensidad

Ca	usa probable	Acciones recomendadas		
1	Disolvente absorbente o burbuja de aire en la celda de flujo.	 Asegúrese de que la celda de flujo esté llena de agua y que no tenga burbujas de aire. 		
		 Repita el test con la celda de cartucho Max-Light de prueba y compare los resultados. 		
2	Calibración incorrecta	Recalibre y repita el test.		
3	Celda de flujo sucia o contaminada.	Ejecute el test de celda. Si el test falla, limpie la celda de flujo. Consulte también "Limpieza de la celda de cartucho Max-Light" en la página 246.		
4	Componentes ópticos sucios o contaminados.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.		
5	Lámpara UV antigua.	Cambie la lámpara UV.		
6	Cambie la unidad óptica.	Si el test falla con la celda de cartucho Max-Light de prueba y con la nueva lámpara UV, póngase en contacto con el representante del departamento de asistencia técnica de Agilent.		

ΝΟΤΑ

Si solo falla un rango y la aplicación no lo necesita, puede que no sea necesario cambiar la lámpara.

Test de celda

	El test d tud de o Max-Lig de inten celda de si las ver cia el tes luz (solo 4 nm.	e celda mide la intensidad de la lámpara UV en todo el rango de longi- nda (190 - 690 nm). Se realiza una vez con la celda de cartucho at y una vez con la celda de cartucho Max-Light de prueba. La relación sidades resultante es una medida de la cantidad de luz que absorbe la flujo de cartucho Max-Light. El test puede utilizarse para comprobar ntanas de la celda de flujo están sucias o contaminadas. Cuando se ini- st, la rendija de 1 nm se coloca automáticamente en la trayectoria de la G4212A). En el caso del modelo G4212B, se utiliza la rendija fija de
	Este test vos. Los riormen	debe realizarse inicialmente con una celda de flujo y un detector nue- valores deben mantenerse como referencia y para compararlos poste- te.
Cuándo	En caso de	e baja intensidad o ruido y problemas de deriva.
Piezas necesarias	Número	Descripción
	1	Celda de cartucho Max-Light (llena de agua)
	1	Celda de cartucho Max-Light de prueba
Preparaciones	 La lám La utili con ag 	para debe estar encendida al menos 10 minutos. zación de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 mL/min ua.

Test de celda

1 Ejecute el **Cell-Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Test N Modul Status	Nar Ie s	ne Cell Test G4212A:PR00100018 Passed	Description	The test compares the lamp inte the Max-Light Test Cell. The int the amount of light absorbed by	ensity the Max-Light Cell and ensity ratio is an indicator of 7 the flow cell.
Start	Тіп	e 7/14/2009 1:40:44 PM			
Stop 1	Tim	e 7/14/2009 1:41:46 PM			
	П				
Test Pr	oce	dure	Resul	t	
		Charle Devenision		Name	Value
		Lheck Prerequisites	Cell P	roduct Number	G4212-60008
2	2.	Insert Test Cell.	Cell N	lame	Max-Light Cell
/ 3	3.	Scan Intensity Spectrum	Cell T	уре	10 mm/1 µl
4	ŀ.	Insert supported Cell.	Lamp	Туре	Automatic Mode
A 5		Coon Intensity Crocky m	Inten	sity Integral with Test Cell	13,337,028
7 3	λ.	ocari mensiy opecirum	Inten	sity Integral with Flow Cell	15,661,215

Figura 61 Test de celda – Señales

Test Failed (low ratio value)

Fallos del test (valor de relación bajo)

Evaluación del test de la celda

Ca	usa probable	Acciones recomendadas	
1	Disolvente absorbente o burbuja de aire en la celda de flujo.	Asegúrese de que la celda de flujo está llena de agua y no tiene burbujas.	
2	Celda de flujo sucia o contaminada.	Limpie la celda de flujo como se describe en "Limpieza de la celda de cartucho Max-Light" en la página 246.	

9 Funciones de test y de calibración Test de ruido rápido

Test de ruido rápido

El test de ruido rápido mide el ruido del detector, con la celda de cartucho Max-Light o con la celda de cartucho Max-Light de prueba, en intervalos de un minuto a lo largo de 5 minutos.

El ruido del detector se calcula a partir de la amplitud máxima de todas las variaciones aleatorias de la señal del detector con frecuencias superiores a un ciclo por hora. El ruido se determina en cinco intervalos de un minuto y se basa en el ruido acumulado pico a pico de los intervalos. Se utilizan al menos siete puntos de datos por ciclo. En la determinación del ruido, los ciclos no se solapan.

Si el test se realiza con la celda de cartucho Max-Light de prueba, los resultados no se verán afectados por los efectos del disolvente o de la bomba.

Cuándo	En caso d	e problema de ruido o deriva.
Piezas necesarias	Número	Descripción
	1	Celda de cartucho Max-Light (llena de agua) o
	1	Celda de cartucho Max-Light de prueba
Preparaciones	 El dete Es pos de est La util con aç 	ector y la lámpara UV deben estar encendidos un mínimo de dos horas. sible que las medidas ASTM basadas en las especificaciones necesiten mayores tiempos abilización. ización de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 mL/min gua.

1 Ejecute el **Quick Noise Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Tes	t Na	me	Quick Noise Test	Descripti	on	The test performs a quick Noise Evalua	tion without reference.
Mod	lule		G4212A:PR00100015				
Sta	tus		Passed				
Sta	rt Tir	me	7/9/2009 2:03:53 PM				
Sto	p Tin	ne	7/9/2009 2:09:10 PM				
-Tech	Proc	oduro —			-Decult		
1030	1100	caare			Result		
		Charle D				Name	Value
.	1.	LNECK F	rerequisites		Cell Pro	duct Number	G4212-60011
\$	2.	Insert su	pported Cell or Test Cell.		Cell Na	me	Max-Light Test Cell
V	З.	Measure	Noise		Cell Ty	be	10 mm/0 µl
V	4.	Evaluate	Data		Lamp T	уре	Automatic Mode
					Accumu	Ilated UV Lamp Burn Time	83.68 h
					UV Lam	p On-Time	4.51 h
					Signal I	Voise value at 254 nm (UV)	0.008 mAU

Figura 62 Test de ruido rápido – Resultados

Figura 63 Test de ruido rápido – Señales

Test Failed

Fallos del test

Evaluación del test de ruido rápido

Causa probable

- 1 Tiempo insuficiente de calentamiento de la lámpara.
- 2 Disolvente absorbente o burbuja de aire en la celda de flujo.
- 3 Celda de flujo sucia o contaminada.

Acciones recomendadas

El detector y la lámpara UV deben estar encendidos un mínimo de dos horas.

Asegúrese de que la celda de flujo está llena de agua y no tiene burbujas.

- · Lave la celda de flujo.
- Limpie la celda de flujo como se describe en "Limpieza de la celda de cartucho Max-Light" en la página 246.
- 4 Lámpara UV antigua. Cambie la lámpara UV.

Test de deriva y ruido de la ASTM

	El test de ruido de la ASTM determina el ruido del detector a lo lar periodo de 20 minutes. El test se realiza con la celda de cartucho M con la celda de cartucho Max-Light de prueba.				
	t no comprueba la deriva. También forma parte del "autotest" (sin bación de la deriva).				
	Si el tes dos no s	t se realiza con la celda de cartucho Max-Light de prueba, los resulta- se verán afectados por los efectos del disolvente o de la bomba.			
Cuándo	En caso d	e problema de ruido o deriva.			
Piezas necesarias	Número	Descripción			
	1	Celda de cartucho Max-Light (llena de agua) o			
	1	Celda de cartucho Max-Light de prueba			
Preparaciones	 El detector y la lámpara UV deben estar encendidos un mínimo de 2 hours. Es posible que las medidas ASTM basadas en las especificaciones necesiten mayores tiempos de estabilización. La utilización de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 mL/min con agua. 				

Test de deriva y ruido de la ASTM

1 Ejecute el **ASTM Drift and Noise Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Test Mod Stat Star	t Name Iule us t Time	ASTM Drift and Noise Test G4212A:PR00100015 Passed 7/9/2009 3:52:03 PM	Description	The test performs ASTM Drift ar reference.	nd Noise evaluation without
Stop	o Time	7/9/2009 4:12:26 PM			
Test	Procedure		Re	sult	
	1 0	1.0		Name	Value
	I. Uned	ck Prerequisites	Cel	Product Number	G4212-60011
V	2. Inser	t supported Cell or Test Cell.	Cel	Name	Max-Light Test Cell
1	3. Mea	sure Noise	Cel	Туре	10 mm/0 µl
1	4. Eval	uate Data	Lar	пр Туре	Automatic Mode
			Acc	umulated UV Lamp Burn Time	85.48 h
			UV	Lamp On-Time	6.31 h
			Sig	nal Drift value at 254 nm (UV)	-0.109 mAU/h
			Sig	nal Noise value at 254 nm (UV)	0.007 mAU

Figura 64 Test de deriva y ruido ASTM – Resultados

Figura 65 Test de deriva y ruido ASTM – Señales

Test Failed

Fallos del test

Evaluación del test de ruido ASTM

Ca	usa probable	Acciones recomendadas		
1	Tiempo insuficiente de calentamiento de la lámpara.	El detector y la lámpara UV deben estar encendidos un mínimo de dos horas.		
2	Disolvente absorbente o burbuja de aire en la celda de flujo.	Asegúrese de que la celda de flujo esté llena de agua y que no tenga burbujas de aire.		
3	Celda de flujo sucia o contaminada.	 Lave la celda de flujo. Limpie la celda de flujo como se describe en "Limpieza de la celda de cartucho Max-Light" en la página 246. 		
4	Lámpara UV antigua.	Cambie la lámpara UV.		
5	El entorno no cumple las especificaciones.	Mejore el entorno.		

Manual de usuario del detector de diodos Agilent Serie 1200 Infinity

Test de rendija

Test de rendija (G4212A)

El test de rendija comprueba el correcto funcionamiento de la rendija micromecánica.

Durante el test, la rendija se mueva a través de todas sus posibles posiciones mientras el detector controla el cambio de intensidad de la lámpara. Cuando la posición de la rendija se modifica, la caída de intensidad (movimiento hacia una rendija más pequeña) o el aumento de intensidad (movimiento hacia una rendija más grande) deben encontrarse dentro de un rango definido.

Si los cambios de intensidad están fuera del rango esperado, el test falla.

Cuándo	En caso de problema.		
Piezas necesarias	Número	Descripción	
	1	Celda de cartucho Max-Light (llena de agua) o	
	1	Celda de cartucho Max-Light de prueba	
Preparaciones	 La lámpara debe estar encendida al menos 10 minutos. La utilización de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 m con agua. 		

1 Ejecute el **Slit Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).
Funciones de test y de calibración 9 Test de rendija

Test Name	Slit Test Des	cription	The test performs a slit test	
Module	G4212A:PR00100015			
Status	Passed			
Start Time	7/9/2009 2:19:17 PM			
Stop Time	7/9/2009 2:19:56 PM			
Test Procedure			t	
			Namo	Value
1. Check F	trereauisites		Name	value
1.		Cell P	roduct Number	G4212-60011
🕼 2. Insert su	pported Cell or Test Cell.	Cell N	ame	Max-Light Test Cell
💋 3. Perform	Slit Test	Cell T	уре	10 mm/0 µl
💋 4. Evaluate	Data	Lamp	Туре	Automatic Mode
		Slit T	est Result	0.84

Figura 66 Test de rendija – Resultados

Figura 67 Test de rendija – Señales

Test Failed

Fallos del test

Evaluación del test de rendija

Ca	usa probable	Acciones recomendadas	
1	Burbuja de aire en la celda de cartucho Max-Light.	Limpie la celda de flujo o utilice la celda de cartucho Max-Light de prueba.	
2	Lámpara antigua.	Ejecute el "test de intensidad". Cambie la lámpara si es antigua o defectuosa.	
3	Unidad de rendija defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	
4	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	
5	Unidad óptica defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	

Test de rendija (G4212B)

No hay ningún test de rendija especializado para el detector de diodos G4212B. Para verificar el funcionamiento adecuado, lleve a cabo los siguientes tests:

- Test de intensidad (comprueba la posición normal)
- Test de corriente oscura (comprueba la posición oscura)

Test de verificación de la longitud de onda

	El detector utiliza las líneas de emisión alfa (656,1 nm) y beta (486 nm) de la lámpara UV para la calibración de la longitud de onda. Estas líneas de emisión estrechas permiten una calibración precisa. Cuando se inicia la verificación, la rendija de 1 nm se coloca automáticamente en la trayectoria de la luz. El test se ejecuta con la celda de cartucho Max-Light o con la celda de cartucho Max-Light de prueba.
	Si el test se realiza con la celda de cartucho Max-Light de prueba, los resulta- dos no se verán afectados por los efectos del disolvente o de la bomba.
Cuándo	 El detector se calibra en fábrica y en condiciones normales de funcionamiento no debería requerir recalibración. Sin embargo, es aconsejable recalibrarlo: tras la reparación de componentes de la unidad óptica, tras cambiar la unidad óptica o la placa base, tras sustituir la celda de cartucho Max-Light o la lámpara UV, tras cambios significativos en las condiciones ambientales (temperatura, humedad), a un intervalo regular, al menos una vez al año (por ejemplo, antes del procedimiento de cualificación operacional/verificación del rendimiento), y cuando los resultados cromatográficos indiquen que el detector necesita recalibración.
Piezas necesarias	Número Descripción
	1 Celda de cartucho Max-Light de prueba o
	1 Celda de cartucho Max-Light
Preparaciones	 La lámpara debe estar encendida al menos 10 minutos. La utilización de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 mL/min con agua.

9 Funciones de test y de calibración

Test de verificación de la longitud de onda

1 Ejecute el test de verificación de longitud de ondas con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Test Name	Wavelength Verification Test	Description	The test performs a Wavelength V	erification.
Module	G4212A:DEBAF00917 (1290 DAD)			
Status	Passed			
Start Time	6/26/2012 10:41:15 AM			
Stop Time	6/26/2012 10:41:39 AM			
Test Procedure		Resu	lt	
Test Procedure		Resu	lt Name	Value
Test Procedure 1. Chec	k Prerequisites	Resu	lt Name Mulated UV Lamp Burn Time	Value 1154.62 h
Test Procedure 1. Chec 2. Insert	k Prerequisites Test Cell.	Accur	lt Name mulated UV Lamp Burn Time amp On-Time	Value 1154.62 h 25.37 h
Test Procedure 1. Chec 2. Insert 3. Wave	k Prerequisites Test Cell. slength Verfication	Resu Accur UV La Mir	It Name mulated UV Lamp Burn Time amp On-Time nimum Lamp On-Time	Value 1154.62 h 25.37 h 0.17 h
Test Procedure 1. Chec 2. Insert 3. Wave	k Prerequisites Test Cell. elength Verfication	Accui UV La Mir Cell F	It Name mulated UV Lamp Burn Time amp On-Time nimum Lamp On-Time Product Number	Value 1154.62 h 25.37 h 0.17 h G4212-60011
Fest Procedure 1. Chec 2. Insert 3. Wave 4. Evalu	k Prerequisites Test Cell. alength Verfication jate Data	Accur UV La Mir Cell F D2 Al	It Name mulated UV Lamp Burn Time amp On-Time nimum Lamp On-Time Product Number pha Line Deviation	Value 1154.62 h 25.37 h 0.17 h G4212-60011 -0.194 nm
Test Procedure 1. Chec 2. Insert 3. Wave 4. Evalu	k Prerequisites Test Cell. elength Verification iate Data	Accuu UV La Mir Cell F D 2A J W/L	It Name mulated UV Lamp Burn Time amp On-Time nimum Lamp On-Time Product Number pha Line Deviation . Calibration Limit for Alpha Line	Value 1154.62 h 25.37 h 0.17 h G4212-60011 -0.194 nm -0.5 0.5 nm
Test Procedure 1. Chec 2. Insert 3. Wave 4. Evalu	k Prerequistes Test Cell. elength Verification iate Data	Accuu UV La Min Cell F D 2 Ai VUL D 2 Re	It Name mulated UV Lamp Burn Time amp On-Time nimum Lamp On-Time Product Number pha Line Deviation Calibration Limit for Alpha Line eta Line Deviation	Value 1154.62 h 25.37 h 0.17 h G4212-60011 -0.194 nm -0.50.5 nm -0.179 nm

Figura 68 Verificación de la longitud de onda: resultados

Calibración de la longitud de onda

El detector utiliza las líneas de emisión alfa (656,1 nm) y beta (486 nm) de la lámpara de deuterio para la calibración de la longitud de onda. Estas líneas de emisión estrechas permiten una calibración más precisa de la que se obtendría con el óxido de holmio. Cuando se inicia la recalibración, la rendija de 1 nm se coloca automáticamente en la trayectoria de la luz (G4212A). La ganancia se establece en cero.
Al completar el barrido, se mostrarán las desviaciones de las líneas alfa y beta (en nm). Estos valores indican la desviación de la calibración del detector con respecto a las posiciones reales de las líneas de emisión alfa y beta. Tras la calibración, la desviación es cero.
Para eliminar los efectos debidos a los disolventes absorbentes, instale la celda de cartucho Max-Light de prueba antes de iniciar el test.
Mejora del algoritmo de calibración de la longitud de onda
En el caso del modelo G4212A/B, el algoritmo de calibración de la longitud de onda se ha cambiado para obtener una mayor precisión en el rango de longitud de onda UV con el firmware B.06.33.
Se ha descubierto que, tras una recalibración de la longitud de onda (con Agi- lent LabAdvisor o Instant Pilot), la longitud de onda medida en el rango UV inferior puede estar fuera del rango especificado de +1/-1 nm.
Ejemplo: al usar cafeína y realizar la medición a 205 nm.
El rango de longitud de onda superior no se ve afectado.
 El detector se calibra en fábrica y en condiciones normales de funcionamiento no debería requerir recalibración. Sin embargo, es aconsejable recalibrarlo: después de los mantenimientos (celda de flujo o lámpara UV), tras la reparación de componentes de la unidad óptica, tras cambiar la unidad óptica o la placa base. tras cambios significativos en las condiciones ambientales (temperatura, humedad), a un intervalo regular, al menos una vez al año (por ejemplo, antes del procedimiento de cualificación operacional/verificación del rendimiento), y cuando los resultados cromatográficos indiguen que el detector necesita recalibración.

Cuándo

9 Funciones de test y de calibración

Calibración de la longitud de onda

Piezas necesarias	Número	Descripción
	1	Celda de cartucho Max-Light de prueba o
	1	Celda de cartucho Max-Light
Preparaciones	 El dete La util con aç 	ector y la lámpara deben estar encendido durante más de 1 hour. ización de una celda de cartucho Max-Light requiere una velocidad de flujo de 0,5 mL/min gua.
NOTA	Si se utili test final	za el detector en un entorno de laboratorio que difiera en su media del entorno del (25 °C), el detector debería recalibrarse con respecto a esta temperatura.
NOTA	Si el dete	ctor ha sido reparado (cubiertas abiertas), la calibración de la longitud de onda se

puede realizar 10 minutes después de encender la lámpara. Tras completarse el calentamiento del detector, se debería repetir la calibración final de la longitud de onda.

1 Ejecute la Wavelength Calibration con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Test Name Module Status Start Time Stop Time	Wavelength Calibration G4212A:DEBAF00917 (1290 DAD) Done 6/26/2012 10:42:44 AM 6/26/2012 10:43:13 AM	Description	The wavelength calibration procedure - calibration of the diode array in the det Calibration means adjusting the assign wavelengths, and is done using the two 486.0 nm and 656.1 nm.	enables you to check the ctor. ent of diodes to specific o deuterium emission lines at
Test Procedur	8	Result		N I
🖌 1. Che	eck Prerequisites	Accun	nulated UV Lamp Burn Time	1154.64 h
🖌 2. Insi	ert Test Cell.	UV La	mp On-Time	25.40 h
🖌 3. Wa	3. Wavelength Verification		imum Lamp On-Time	0.17 h
🖌 / Cal			roduct Number	G4212-60011
🖝 4. Cal	Diale Delector	D2 Alp	ha Line Deviation	-0.199 nm
		D2 Be	ta Line Deviation	-0.183 nm

Figura 69 Calibración de la longitud de onda: resultados

Wavelength Recalibration Fails

Fallos en la recalibración de la longitud de onda

Causa probable

contaminada.

 Disolvente absorbente o burbuja de aire en la celda de cartucho Max-Light.
 Celda de cartucho Max-Light sucia o
 Asegúrese de que la celda de cartucho

Acciones recomendadas

Recalibre.

Max-Light está llena de agua.

3 Lámpara UV antigua.
4 Componentes ópticos sucios o contaminados.
4 Componentes ópticos sucios o contaminados.
5 Ejecute el test de celda. Si el test falla, limpie la celda de flujo. Consulte también "Limpieza de la celda de cartucho Max-Light" en la página 246.

•

NOTA

Si falla el test con la celda de test del cartucho Max-Light y la nueva lámpara UV, se deberá sustituir la unidad óptica.

9 Funciones de test y de calibración Test del convertidor D/A (DAC)

Test del convertidor D/A (DAC)

	El detector suministra una salida analógica de señales cromatográficas que puede utilizarse con integradores, registradores de gráficos o sistemas de datos. La señal analógica se convierte desde el formato digital con el converti- dor digital-analógico (DAC).
	El test de convertidor D/A se utiliza para comprobar el correcto funciona- miento del convertidor digital-analógico mediante la aplicación de una señal de test digital en el convertidor D/A.
	El convertidor D/A produce una señal analógica de aproximadamente 50 mV (si la compensación cero de la salida analógica se establece en el valor predeterminado de 5 %) que puede representarse en un integrador. Se aplica a la señal una onda cuadrada continua con una amplitud de 10 μ V y una frecuencia de aproximadamente 1 cycle/24 seconds.
	La amplitud de la onda cuadrada y el ruido pico a pico se utilizan para evaluar el test de convertidor D/A.
Cuándo	Si la señal del detector analógica es ruidosa o no está presente.
Preparaciones	La lámpara debe esta encendida al menos 10 minutos. Conecte el integrador, el registrador de gráficos o el sistema de datos a la salida analógica del detector.

Ejecución del test con Agilent Lab Advisor

1 Ejecute el proceso **D/A Converter (DAC) Test** (para obtener más información, consulte la ayuda en línea de la interfaz de usuario).

Test Name D/A Converter Test Description The test switches a test signal to the analog output be measured using an integrator or strip-chart record Module G4212A:PR00100015 The test switches a test signal to the analog output be measured using an integrator or strip-chart record	t, that can Irder.
Status Passed	
Start Time 7/9/2009 3:06:30 PM	
Stop Time 7/9/2009 3:06:53 PM	

Test Procedure	
💋 1. Check Prerequisites	
💅 2. Switch on Analog Output	
2. Switch off Analog Output	

Figura 71 Test de convertidor A/D (DAC) – Ejemplo de representación de gráfico de integrador

Ejecución del test con Instant Pilot

El test se puede iniciar en la línea de comandos.

1 Para iniciar el test TEST: DAC 1

Respuesta: RA 00000 TEST:DAC 1

2 Para detener el test TEST:DAC 0

Respuesta: RA 00000 TEST:DAC 0

9 Funciones de test y de calibración

Test del convertidor D/A (DAC)

Test Failed

Fallos del test

Evaluación del test de convertidor A/D (DAC)

El ruido en el paso debería ser inferior a $3 \mu V$.

Ca	ausa probable	Acciones recomendadas
1	Mala conexión o problema de tierra entre el detector y el dispositivo externo.	Compruebe o sustituya el cable.
2	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.

Test de corriente oscura

El test de corriente oscura mide la corriente de fuga desde cada diodo. El test se utiliza para comprobar los diodos con fuga que pueden estar generando falta linealidad en longitudes de onda específicas. Durante el test, la unidad de rendija se mueve a la posición oscura, bloqueando la incidencia de toda luz sobre el diodo. Seguidamente, se mide la corriente de fuga de cada diodo y se muestra gráficamente. La corriente de fuga (representada en unidades) para cada diodo debería situarse entre los límites.

Cuándo

En caso de problema.

1 Ejecute el **Dark Current Test** con la interfase de usuario recomendada (para más información, consulte la Ayuda de la interfase de usuario online).

Test Name	Dark Current Test	Description	The test measures the dark cu	urrent from the detector optic.
Module	G4212A:PR00100015			
Status	Passed			
Start Time	7/9/2009 3:04:21 PM			
Stop Time	7/9/2009 3:04:41 PM			
Test Procedure -		Result		
			Name	Value
V 1. Check	< Prerequisites	Cell Pr	oduct Number	G4212-60011
🖌 2. Perfor	m Dark Current Test	Cell Na	ime	Max-Light Test Cell
💋 3. Evalu	ate Data	Cell Ty	pe	10 mm/0 µl
		Lamp	Гуре	Automatic Mode
		Dark C	urrent Minimum	7698 Counts
		Dark C	urrent Average	7726 Counts
		Dark C	urrent Maximum	7763 Counts

Figura 72 Test de corriente oscura – Resultados

9 Funciones de test y de calibración

Test de corriente oscura

Figura 73 Test de corriente oscura – Señales

Test Failed

Fallo del test

Ca	ausa probable	Acciones recomendadas	
1	Unidad de rendija defectuosa (luz dispersa).	Ejecute los pasos descritos en "Test de rendija (G4212A)" en la página 216 (parte del apartado "Autotest" en la página 202).	
2	Placa base del detector defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	
3	PDA/unidad óptica defectuosa.	Póngase en contacto con un representante del departamento de asistencia técnica de Agilent.	

9 Funciones de test y de calibración

Test de corriente oscura

Avisos y precauciones 232 Introducción al mantenimiento 234 Descripción del mantenimiento 235 Limpieza del módulo 236 Cambio de la lámpara de deuterio 237 Cambio de la celda de cartucho Max-Light 241 Limpieza de la celda de cartucho Max-Light 246 Almacenamiento de la celda de cartucho Max-Light 247 Secado del sensor de fugas 248 Cambio de las piezas del sistema para el tratamiento de fugas 249 Sustitución del firmware del módulo 251 Información sobre las unidades del módulo 253

En este capítulo se describen las tareas de mantenimiento del módulo.

Avisos y precauciones

Avisos y precauciones

ADVERTENCIA

Disolventes, muestras y reactivos tóxicos, inflamables y peligrosos La manipulación de disolventes, muestras y reactivos puede suponer riesgos para la salud y la seguridad.

- → Cuando se trabaje con esas sustancias, se deben observar los procedimientos de seguridad (por ejemplo, llevar gafas, guantes y ropa protectora) descritos en la información sobre tratamiento de material y datos de seguridad, suministrada por el vendedor y se debe seguir una buena práctica de laboratorio.
- → El volumen de sustancias se debe reducir al mínimo requerido para el análisis.
- → No manipule el instrumento en un ambiente explosivo.

ADVERTENCIA Daños oculares ocasionados por la luz del detector

Pueden producirse daños oculares al mirar directamente la luz UV producida por la lámpara del sistema óptico que utiliza este equipo.

→ Apague siempre la lámpara del sistema óptico antes de extraerla.

ADVERTENCIA

Descarga eléctrica

Los trabajos de reparación del módulo entrañan riesgos de daños personales, por ejemplo, descargas, si la cubierta está abierta.

- → No extraiga la cubierta del módulo.
- Sólo el personal certificado está autorizado a realizar reparaciones dentro del módulo.

ADVERTENCIA

Daños personales o daños en el producto

Agilent no se responsabiliza de ningún daño, total o parcial, resultante de la utilización inadecuada de los productos, alteraciones no autorizadas, ajustes o modificaciones en los productos, incumplimiento del seguimiento de procedimientos contenidos en las guías de usuario de productos de Agilent o utilización de productos en contravención de leyes, normas y normativas aplicables.

→ Utilice los productos Agilent sólo en la manera descrita en las guías de productos Agilent.

PRECAUCIÓN

Estándares de seguridad para equipos externos

Si conecta el equipo externo al instrumento, asegúrese de utilizar únicamente accesorios testados y aprobados de conformidad con los estándares de seguridad adecuados para el tipo de equipo externo. Introducción al mantenimiento

Introducción al mantenimiento

El módulo está diseñado para facilitar el mantenimiento. El mantenimiento se puede llevar a cabo desde la parte frontal con el módulo colocado en la torre de módulos del sistema.

NOTA No contiene piezas reparables. No abra el módulo.

Descripción del mantenimiento

En las siguientes páginas se describe el mantenimiento (reparaciones simples) del detector que puede llevarse a cabo sin abrir la cubierta principal.

Procedimiento	Frecuencia típica	Notas
Limpieza del módulo	Si fuera necesario	
Cambio de la lámpara de deuterio	Si el ruido o deriva exceden los límites de la aplicación o la lámpara no se enciende.	Debe realizarse un test de calibración de longitud de onda y un test de intensidad después del cambio.
Cambio de la celda de flujo	Si hay fugas o caídas de intensidad debidas a la contaminación de la celda de flujo.	Debe realizarse un test de calibración de la longitud de onda después del cambio.
Secado del sensor fugas	Si hay una fuga.	Compruebe si hay fugas.
Cambio del sistema tratamiento de fugas	Si está roto o corroído.	Compruebe si hay fugas.

 Tabla 19
 Descripción del mantenimiento

10 Mantenimiento Limpieza del módulo

Limpieza del módulo

Para mantener limpia la caja del módulo, utilice un paño suave ligeramente humedecido con agua o una disolución de agua y un detergente suave.

ADVERTENCIA

El goteo de líquido en el compartimento electrónico del módulo supone un riesgo de descarga y puede dañar el módulo.

- → No utilice paños demasiado húmedos cuando limpie el módulo.
- → Vacíe todas las líneas de disolvente antes de abrir las conexiones del paso de flujo.

Cuándo	Si el ruido o deriva exceden los límites de aplicación o la lámpara no se enciende.				
Herramientas necesarias	Descripción				
	Destornilla	Destornillador POZI 1 PT3			
Piezas necesarias	Número	Referencia	Descripción		
	1	5190-0917	Lámpara de deuterio (8 clavijas) de larga duración con etiqueta RFID		
Preparaciones	Apague la lámpara.				
ADVERTENCIA	Daños al tocar la lámpara caliente				
	Si el detector ha estado utilizándose, la lámpara puede estar caliente. → En ese caso, espere a que la lámpara se enfríe.				

Cambio de la celda de cartucho Max-Light

ſ	BIO	
Γ	inert	

Utilice únicamente piezas bioinertes en los módulos bioinertes.

Cuándo	Si hay fugas o caídas de intensidad debidas a la contaminación de la celda de flujo.			
Herramientas necesarias		Descripción Llave hexagonal		
Piezas necesarias	Número	Referencia	Descripción	
	1	G4212-60008	Celda de cartucho Max-Light (10 mm, V(σ) 1,0 μ L)	
	1	G4212-60007	Celda de cartucho Max-Light (60 mm, V(σ) 4,0 μ L)	
	1	G4212-60011	Celda de test de cartucho Max-Light	
	1	G5615-60018	Celda de cartucho Max-Light bioinerte (10 mm, V(σ) 1,0 μL) incluye capilar PEEK de 1,5 m de diámetro interno 0,18 mm (0890-1763) y conexiones PEEK, 10/paquete (5063-6591)	
	1	G5615-60017	Celda de cartucho Max-Light bioinerte (60 mm, V(σ) 4,0 μL) incluye capilar PEEK de 1,5 m de diámetro interno 0,18 mm (0890-1763) y conexiones PEEK, 10/paquete (5063-6591)	
	1	G4212-60032	Celda de cartucho Max-Light HDR (3,7 mm, V(σ) 0,4 μ L)	
	1	G4212-60038	Celda de cartucho Max-Light ULD (10 mm, V(σ) 0,6 µL)	
Preparaciones	Apague la bomba.			
PRECAUCIÓN	Degrada	ción de la mues	stra y contaminación del instrumento	
	Las piezas metálicas del paso de flujo pueden interactuar con las moléculas biológicas de la muestra y provocar la degradación y la contaminación de la muestra.			
	 → En el caso de las aplicaciones bioinertes, utilice siempre piezas bioinertes especiales que se puedan identificar mediante el símbolo de bioinerte o mediante otros marcadores descritos en este manual. → En un sistema bioinerte, no mezcle módulos ni piezas bioinertes con los que no sean inertes. 			
ΝΟΤΑ	La celda de flujo se envía con un relleno de isopropanol. Esto se hace para evitar roturas en caso de condiciones inferiores a las ambientales. Si la celda de flujo no se ha utilizado durante cierto tiempo (almacenada), lávela con isopropanol.			

Limpieza de la celda de cartucho Max-Light

Limpieza de la celda de cartucho Max-Light

Cuándo	El test de intensidad o el test de celda devuelven unidades bajas (fallos en los tests)				
Herramientas necesarias	Referencia Descripción				
		Alcohol (isopropanol o etanol)			
		Pañuelo para lentes o Q-tips $^{\textcircled{R}}$			
	5062-8529	Líquido de limpieza para celdas, 1 L			
	1 Lave la cel	da de flujo con alcohol durante cierto tiempo.			
	2 Extraiga la cartucho M	raiga la celda del soporte de cartucho (consulte "Cambio de la celda de ucho Max-Light" en la página 241).			
	3 Limpie cui	dadosamente la entrada y la salida de luz de la celda con un			
	pañuelo para lentes o Q-tips [®] con alcohol.				
NOTA	Si utiliza Q-tips	[®] , asegúrese de que no deja pelusas de algodón en la entrada o en la salida.			
NOTA	No toque la ent capa de contan	rada ni la salida de luz de la celda con los dedos. Si lo hace, se agregará una ninación a la ventana y se reducirá la cantidad de luz.			
	4 Lave la cel celda.	da de flujo con agua y repita el test de intensidad y/o el test de			
	5 Si el test v table, conv	uelve a fallar y el rendimiento cromatográfico no resultara acep- vendría cambiar la celda de flujo.			
NOTA	Si la limpieza co limpieza para co	on alcohol no ha producido ninguna mejora, puede utilizar Líquido de eldas, (5062-8529).			

Almacenamiento de la celda de cartucho Max-Light

- 1 Lave la celda de flujo de cartucho Max-Light con isopranol o metanol e inserte los conectores en la entrada y salida de la celda (consulte "Cambio de la celda de cartucho Max-Light" en la página 241).
- 2 Retire la celda de cartucho Max-Light del soporte de cartucho del detector.
- **3** Coloque los tapones negros que garantizan la entrada y salida de la luz de la celda.
- **4** Almacénela en la caja de plástico proporcionada con la celda de flujo de cartucho Max-Light.

Secado del sensor de fugas

Secado del sensor de fugas

Cuándo Si hay una fuga.

Herramientas necesarias Descripción Pañuelo de papel

Preparaciones Apague la bomba.

Cambio de las piezas del sistema para el tratamiento de fugas

Cambio de las piezas del sistema para el tratamiento de fugas

Cuándo	Si las piezas están corroídas o rotas.			
Herramientas necesarias	Descripc	Descripción		
	Pañuelo c	le papel		
Piezas necesarias	Número	Referencia	Descripción	
	1	5061-3388	Embudo para fugas	
	1	5041-8389	Soporte del embudo para fugas	
	1	5062-2463	Tubos ondulados, PP, 6,5 mm de d.i., 5 m	
	1	G4212-40027	Tubo de descarga de fugas	
Preparaciones	Apague la	a bomba.		
1 Retire la cubierta	ı frontal.		2 Localice el área de la interfase de fugas.	
	/	Ĩ		

.

đ

Manual de usuario del detector de diodos Agilent Serie 1200 Infinity

Cambio de las piezas del sistema para el tratamiento de fugas

3 Extraiga el embudo para fugas de su soporte y deslice Inserte los componentes del sistema de la interfase de 4 hacia arriba el tubo de descarga para su extracción. fugas. Asegúrese de que el tubo se ajusta correctamente en la parte inferior. **5** Cierre la tapa delantera.

Sustitución del firmware del módulo

Cuándo	Es posible que sea necesario instalar un firmware más reciente • si la versión más reciente resuelve los problemas de las versiones anteriores o • para mantener todos los sistemas en la misma revisión (validada).			
	Es posible que sea necesario instalar un firmware más antiguo • para mantener todos los sistemas en la misma revisión (validada), • si se incorpora un módulo nuevo con un firmware más reciente a un sistema o • si el software de control de un tercero requiere una versión especial.			
Herramientas necesarias	Descripción			
	Herramienta de actualización del firmware LAN/RS-232			
0	Software Agilent Lab Advisor			
0	Instant Pilot G4208A			
Piezas necesarias	Número Descripción			
	1 Firmware, herramientas y documentación del sitio web de Agilent			
Preparaciones	Lea la documentación de la herramienta de actualización del firmware			
	Para actualizar el firmware del módulo (o volver a una versión anterior del mismo), lleve a cabo los siguientes pasos:			
	1 Descargue el firmware necesario del módulo, la última herramienta de actualización del firmware LAN/RS-232 y la documentación del sitio web de Agilent.			
	 http://www.chem.agilent.com/_layouts/agilent/downloadFirm- ware.aspx?whid=69761 			
	2 Para cargar el firmware en el módulo, siga las instrucciones indicadas en la documentación.			

Sustitución del firmware del módulo

Tabla 20 Información específica sobre el módulo (G4212A/B)

	G4212A: detector de diodos 1290	G4212B: detector de diodos 1260	
Firmware inicial (principal y residente)	B.06.23	B.06.30	
Compatibilidad con módulos de las series 1100/1200/1260/1290	Cuando utilice el modelo G4212A en un sistema, los demás módulos deben disponer de la revisión de firmware A.06.1x, B.06.1x o superior (principal y residente). Si no es así, la comunicación no funcionará.	Cuando utilice el modelo G4212B en un sistema, los demás módulos deben disponer de la revisión de firmware A.06.3x, B.06.3x o superior (principal y residente). Si no es así, la comunicación no funcionará.	
Compatibilidad con la unidad óptica VSA	Presentado en julio de 2012; firmware B.06.51, B.06.43, B.06.26 o superior (depende del conjunto de firmware utilizado). Las revisiones anteriores no son compatibles con la unidad óptica VSA. Estas revisiones son las versiones necesarias para la nueva unidad óptica VSA y las tarjetas principales.		
Conversión a / emulación	N/D	N/D	
Información sobre las unidades del módulo

Etiqueta RFID de la lámpara y la celda de flujo

El detector está equipado con un sistema de identificación destinado a la celda de flujo y a lámpara UV que utiliza etiquetas RFID (identificación por radiofrecuencia). Estas etiquetas se colocan en las unidades y en los lectores de etiquetas RFID de la unidad óptica. En la siguiente tabla se enumeran todos los parámetros almacenados en la etiqueta RFID.

Información sobre la lámpara		Información sobre la celda de flujo		
•	número de producto	•	número de producto	
•	número de serie	•	número de serie	
•	fecha de fabricación	•	fecha de fabricación	
•	luz UV acumulada en tiempo (en horas)	•	longitud de paso nominal de la celda (en mm)	
•	lámpara UV real en tiempo (en horas)	•	volumen de la celda (σ) en μL	
•	número de encendidos	•	presión máxima (en bares)	
•	fecha del último test de intensidad	•	fecha del último test de celda	

 Tabla 21
 Datos de la etiqueta RFID

NOTA

El valor de la presión se muestra siempre en la barra, incluso si la interfaz de usuario utiliza otras unidades, por ejemplo, "psi".

Número de serie y revisión de firmware

La interfase de usuario suministra información específica de módulo almacenada en la placa base. Por ejemplo, el número de serie y la revisión de firmware.

10 Mantenimiento

Información sobre las unidades del módulo

11

Piezas y materiales para mantenimiento

Descripción de las piezas para mantenimiento 256 Kits 258 Kit de accesorios 258 Kit de válvulas de liberación de presión en línea (G4212-68001) 258

En este capítulo se ofrece información sobre las piezas para mantenimiento.

11 Piezas y materiales para mantenimiento

Descripción de las piezas para mantenimiento

Descripción de las piezas para mantenimiento

BI0 inert Utilice únicamente piezas bioinertes en los módulos bioinertes.

Elemento	Referencia	Descripción
1	5190-0917	Lámpara de deuterio (8 clavijas) de larga duración con etiqueta RFID
2	G4212-60008	Celda de cartucho Max-Light (10 mm, V(σ) 1,0 μ L)
2	G5615-60018	Celda de cartucho Max-Light bioinerte (10 mm, V(σ) 1,0 μL) incluye capilar PEEK de 1,5 m de diámetro interno 0,18 mm (0890-1763) y conexiones PEEK, 10/paquete (5063-6591)
3	G4212-60007	Celda de cartucho Max-Light (60 mm, V(σ) 4,0 μL)
3	G5615-60017	Celda de cartucho Max-Light bioinerte (60 mm, V(σ) 4,0 μL) incluye capilar PEEK de 1,5 m de diámetro interno 0,18 mm (0890-1763) y conexiones PEEK, 10/paquete (5063-6591)
3	G4212-60032	Celda de cartucho Max-Light HDR (3,7 mm, V(σ) 0,4 $\mu L)$
3	G4212-60038	Celda de cartucho Max-Light ULD (10 mm, V(σ) 0,6 μL)
4	G4212-60011	Celda de test de cartucho Max-Light
5	5067-4660	Capilar de entrada SST 0,12 mm de d.i., 220 mm de longitud
6	5062-2462	Tubo flexible de PTFE, 0,8 mm de diámetro interno, 1,6 mm de diámetro externo, 2 m, repetición de pedido de 5 m (de la celda de flujo a los residuos)
7	5067-4691	Panel frontal del detector de diodos/de longitud de onda variable/de fluorescencia (1260/1290)
8	5041-8388	Embudo para fugas
9	5041-8389	Soporte del embudo para fugas
10	5063-6527	Conjunto de tubos, de 6 mm de d.i., 9 mmde d.e., 1,2 m (a residuos)
11	G4212-40027	Tubo de descarga de fugas
12	G4208A	Instant Pilot

NOTA

Instant Pilot G4208A (necesita firmware B.02.11 o superior)

Piezas y materiales para mantenimiento 11

Descripción de las piezas para mantenimiento

Para obtener información sobre los cables, consulte "Visión general de los cables" en la página 260.

11 Piezas y materiales para mantenimiento Kits

Kits

Kit de accesorios

Kit de accesorios (G4212-68755) incluye accesorios y materiales específicos que son necesarios para la instalación del detector.

Referencia	Descripción
5062-2462	Tubo flexible de PTFE, 0,8 mm de diámetro interno, 1,6 mm de diámetro externo, 2 m, repetición de pedido de 5 m (de la celda de flujo a los residuos)
5063-6527	Conjunto de tubos, de 6 mm de d.i., 9 mmde d.e., 1,2 m (a residuos)
5042-9967	Pinza de los tubos (juego de 5 pinzas)
0100-1516	Conexión macho PEEK, 2/paq.
5067-4660	Capilar de entrada SST 0,12 mm de d.i., 220 mm de longitud
5181-1516	Cable CAN

Kit de válvulas de liberación de presión en línea (G4212-68001)

NOTA

Para proteger la celda de flujo frente a la sobrepresión, consulte "Kit de válvulas de liberación de presión en línea (G4212-68001)" en la página 131.

Manual de usuario del detector de diodos Agilent Serie 1200 Infinity

12 Identificación de cables

Visión general de los cables 260 Cables analógicos 262 Cables remotos 264 Cables BCD 267 Cables CAN/LAN 269 Cables RS-232 270

En este capítulo se ofrece información acerca de los cables utilizados con los módulos LC Agilent 1260 Infinity y 1290 Infinity.

12 Identificación de cables

Visión general de los cables

Visión general de los cables

NOTA

No utilice nunca cables que no sean los suministrados por Agilent Technologies, con el fin de asegurar una correcta funcionalidad y el cumplimiento de los reglamentos de seguridad o de compatibilidad electromagnética.

Cables analógicos

Referencia	Descripción
35900-60750	Módulo Agilent para integradores 3394/6
35900-60750	Convertidor A/D Agilent 35900A
01046-60105	Cable analógico (BNC para uso general con terminales planos)

Cables remotos

Referencia	Descripción
03394-60600	Módulo Agilent a integradores 3396A Serie I
	Integrador 3396 Serie II/3395A, consulte la información detallada en la sección "Cables remotos" en la página 264
03396-61010	Módulo Agilent para integradores 3396 Serie III / 3395B
5061-3378	Cable remoto
01046-60201	Módulo Agilent para uso general

Cables BCD

Referencia	Descripción		
03396-60560	Módulo Agilent a integradores 3396		
G1351-81600	Módulo Agilent para uso general		

Cables CAN

Referencia	Descripción
5181-1516	Cable CAN
5181-1519	Cable CAN, módulo a módulo Agilent, 1 m

Cables de LAN

Referencia	Descripción
5023-0203	Cable cruzado de red, blindado, 3 m (para conexiones punto a punto)
5023-0202	Cable de red de par trenzado, blindado, 7 m (para conexiones punto a punto)

Cables RS-232

Referencia	Descripción
G1530-60600	Cable RS-232, 2 m
RS232-61601	Cable RS-232, 2,5 m Del instrumento al ordenador, de 9 a 9 contactos (hembra). Este cable dispone de una salida de contactos especial y no es compatible con la conexión a impresoras y plóteres. También se denomina "cable de módem nulo" con establecimiento de comunicación completo en el que la conexión se establece entre los contactos 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7 y 9-9.
5181-1561	Cable RS-232, 8 m

12 Identificación de cables Cables analógicos

Cables analógicos

Un extremo de estos cables dispone de un conector BNC para su conexión a los módulos de Agilent. El otro extremo depende del instrumento al que se va a conectar.

Módulo Agilent para integradores 3394/6

Referencia 35900-60750	Clavija 3394/6	Clavija del módulo Agilent	Nombre de la señal
	1		No conectado
	2	Blindaje	Analógico -
	3	Centro	Analógico +

Módulo Agilent a conector BNC

Referencia 8120-1840	Clavija BNC	Clavija del módulo Agilent	Nombre de la señal
2 HIG	Blindaje	Blindaje	Analógico -
	Centro	Centro	Analógico +

Referencia 01046-60105	Clavija	Clavija del módulo Agilent	Nombre de la señal
	1		No conectado
TE T	2	Negro	Analógico -
	3	Rojo	Analógico +

Módulo Agilent para fines generales

Cables remotos

Un extremo de estos cables dispone de un conector remoto de Agilent Technologies APG (Analytical Products Group) para conectarlo a los módulos de Agilent. El otro extremo depende del instrumento al que se va a conectar.

Módulo Agilent a integradores 3396A

Referencia 03394-60600	Clavija 3396A	Clavija del módulo Agilent	Nombre de la señal	Activo-TTL
	9	1 - Blanco	A tierra digital	
80 15	NC	2 - Marrón	Preparar análisis	Baja
	3	3 - Gris	Iniciar	Baja
	NC	4 - Azul	Apagado	Baja
	NC	5 - Rosa	No conectado	
	NC	6 - Amarillo	Encendido	Alta
	5,14	7 - Rojo	Preparado	Alta
	1	8 - Verde	Parar	Baja
	NC	9 - Negro	Petición de inicio	Baja
	13, 15		No conectado	

Módulo Agilent a integradores 3396 Serie II / 3395A

Utilice el cable Módulo Agilent a integradores 3396A Serie I (03394-60600) y corte la patilla N.º 5 del lateral del integrador. De lo contrario, el integrador imprime Iniciar; no preparado.

Referencia 03396-61010	Clavija 33XX	Clavija del módulo Agilent	Nombre de la señal	Activo-TTL
	9	1 - Blanco	Tierra digital	
80 15	NC	2 - Marrón	Preparar análisis	Baja
	3	3 - Gris	Iniciar	Baja
	NC	4 - Azul	Apagado	Baja
	NC	5 - Rosa	No conectado	
	NC	6 - Amarillo	Encendido	Alta
	14	7 - Rojo	Preparado	Alta
	4	8 - Verde	Parar	Baja
	NC	9 - Negro	Petición de inicio	Baja
	13, 15		No conectado	

Módulo Agilent para integradores 3396 Serie III / 3395B

Cables remotos

Referencia 5061-3378	Clavija 35900 A/D	Clavija del módulo Agilent	Nombre de la señal	Activo-TTL
	1 - Blanco	1 - Blanco	Tierra digital	
\bigcirc	2 - Marrón	2 - Marrón	Preparar análisis	Baja
	3 - Gris	3 - Gris	Iniciar	Baja
	4 - Azul	4 - Azul	Apagado	Baja
	5 - Rosa	5 - Rosa	No conectado	
	6 - Amarillo	6 - Amarillo	Encendido	Alta
L	7 - Rojo	7 - Rojo	Preparado	Alta
	8 - Verde	8 - Verde	Parar	Baja
	9 - Negro	9 - Negro	Petición de inicio	Baja

Módulo Agilent a convertidores A/D Agilent 35900

Módulo Agilent para fines generales

Referencia 01046-60201	Color del cable	Clavija del módulo Agilent	Nombre de la señal	Activo-TTL
	Blanco	1	A tierra digital	
	Marrón	2	Preparar análisis	Baja
	Gris	3	Iniciar	Baja
	Azul	4	Apagado	Baja
	Rosa	5	No conectado	
s 0 15	Amarillo	6	Encendido	Alta
	Rojo	7	Preparado	Alta
	Verde	8	Parar	Baja
	Negro	9	Petición de inicio	Baja

Cables BCD

Un extremo de estos cables dispone de un conector BCD de 15 patillas que se conecta a los módulos Agilent. El otro extremo depende del instrumento al que se vaya a conectar

Módulo Agilent para uso general

Referencia G1351-81600	Color del cable	Clavija del módulo Agilent	Nombre de la señal	Dígito BCD
	Verde	1	BCD 5	20
	Violeta	2	BCD 7	80
	Azul	3	BCD 6	40
	Amarillo	4	BCD 4	10
	Negro	5	BCD 0	1
	Naranja	6	BCD 3	8
	Rojo	7	BCD 2	4
	Marrón	8	BCD 1	2
	Gris	9	Tierra digital	Gris
	Gris/rosa	10	BCD 11	800
	Rojo/azul	11	BCD 10	400
	Blanco/verde	12	BCD 9	200
	Marrón/verde	13	BCD 8	100
	No conectada	14		
	No conectada	15	+ 5 V	Baja

Cables BCD

Referencia 03396-60560	Clavija 3396	Clavija del módulo Agilent	Nombre de la señal	Dígito BCD
	1	1	BCD 5	20
	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Tierra digital	
	NC	15	+ 5 V	Baja

Módulo Agilent a integradores 3396

Cables CAN/LAN

Ambos extremos de este cable disponen de una clavija modular que se conecta a los conectores CAN o LAN de los módulos Agilent.

Cables CAN

Referencia	Descripción
5181-1516	Cable CAN
5181-1519	Cable CAN, módulo a módulo Agilent, 1 m

Cables de LAN

Referencia	Descripción
5023-0203	Cable cruzado de red, blindado, 3 m (para conexiones punto a punto)
5023-0202	Cable de red de par trenzado, blindado, 7 m (para conexiones punto a punto)

12 Identificación de cables Cables RS-232

Cables RS-232

Referencia	Descripción
G1530-60600	Cable RS-232, 2 m
RS232-61601	Cable RS-232, 2,5 m Del instrumento al ordenador, de 9 a 9 contactos (hembra). Este cable dispone de una salida de contactos especial y no es compatible con la conexión a impresoras y plóteres. También se denomina "cable de módem nulo" con establecimiento de comunicación completo en el que la conexión se establece entre los contactos 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7 y 9-9.
5181-1561	Cable RS-232. 8 m

Descripción del firmware 272 Conexiones eléctricas 275 Vista posterior del módulo 276 Información sobre el número de serie del instrumento 277 Interfaces 278 Visión general de las interfaces 281 Ajuste del interruptor de configuración de 8 bits 285 Ajustes especiales 288

En este capítulo se describe el detector con información detallada sobre el hardware y los componentes electrónicos.

Descripción del firmware

El firmware del instrumente se compone de dos secciones independientes:

- · una sección no específica del instrumento denominada sistema residente
- · una sección específica del instrumento denominada sistema principal

Sistema residente

Esta sección residente del firmware es idéntica para todos los módulos de las series 1100/1200/1220/1260/1290 de Agilent. Sus propiedades son:

- capacidades de comunicación completas (CAN, LAN y RS-232C)
- gestión de la memoria
- capacidad de actualizar el firmware del "sistema principal"

Sistema principal

Sus propiedades son:

- capacidades de comunicación completas (CAN, LAN y RS-232C)
- gestión de la memoria
- capacidad de actualizar el firmware del "sistema residente"

Además, el sistema principal incluye funciones del instrumento que se dividen en funciones comunes como

- · sincronización de análisis a través del APG remoto
- gestión de errores
- · funciones de diagnóstico
- · o en funciones específicas del módulo como
 - eventos internos como el control de la lámpara o los movimientos del filtro
 - recopilación de datos sin procesar y conversión a absorbancia.

Actualizaciones del firmware

Las actualizaciones del firmware se pueden llevar a cabo con la interfaz de usuario:

- Herramienta de actualización del ordenador y del firmware con archivos locales en el disco duro
- Instant Pilot (G4208A) con archivos de una memoria Flash USB
- Software Agilent Lab Advisor de la versión B.01.03 o superior

Las convenciones de designación de los ficheros son:

PPPP_RVVV_XXX.dlb, donde

PPPP es el número del producto, por ejemplo, 1315AB para el detector de diodos G1315A/B;

R es la revisión del firmware, por ejemplo, A para el detector de diodos G1315B o B para el detector de diodos G1315C;

VVV es el número de revisión, por ejemplo, 102 es la revisión 1.02;

XXX es el número de la versión de compilación del firmware.

Para obtener instrucciones acerca de las actualizaciones del firmware, consulte el apartado *Sustitución del firmware* en el capítulo *"Mantenimiento"* o utilice la documentación suministrada con las *herramientas de actualización del firmware*.

NOTA

La actualización del sistema principal solo se pueda llevar a cabo desde el sistema residente. La actualización del sistema residente solo se pueda llevar a cabo desde el sistema principal.

El firmware de los sistemas principal y residente debe pertenecer al mismo conjunto.

Descripción del firmware

Figura 74 Mecanismo de actualización del firmware

NOTA

Algunos módulos están limitados a la hora de volver a la versión anterior debido a la versión de la tarjeta principal o a la revisión del firmware inicial. Por ejemplo, un detector de diodos SL G1315C no permite volver a una revisión del firmware inferior a B.01.02 o a una versión A.xx.xx.

Se puede cambiar el nombre de algunos módulos (por ejemplo, de G1314C a G1314B) para permitir el funcionamiento en entornos específicos de software de control. En este caso, se utiliza el conjunto de características del destino y se pierde el conjunto de características del original. Después de cambiar el nombre (por ejemplo, de G1314B a G1314C), el conjunto de características del original se encuentra de nuevo disponible.

Toda esta información específica se describe en la documentación suministrada con las herramientas de actualización del firmware.

Las herramientas de actualización del firmware, el firmware y la documentación se encuentran disponibles en el sitio web de Agilent.

 http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761

Conexiones eléctricas

- El bus CAN es un bus de serie con transferencia de datos de alta velocidad. Los dos conectores del bus CAN se utilizan para la transferencia y la sincronización de los datos internos del módulo.
- Una salida analógica proporciona señales para los integradores o los sistemas de procesamiento de datos.
- El conector REMOTO puede utilizarse en combinación con otros instrumentos analíticos de Agilent Technologies si se desean utilizar funciones de encendido, parada, apagado común, preparación, etc.
- Con el software apropiado, el conector RS-232C puede utilizarse para controlar el módulo desde un ordenador a través de una conexión RS-232C. Este conector se activa y se puede configurar con el interruptor de configuración.
- El enchufe de corriente de entrada acepta una línea de voltaje de 100 240 VAC ± 10 % con una frecuencia de línea de 50 o 60 Hz. El consumo máximo de electricidad varía en función del módulo. El módulo no integra ningún selector de voltaje, ya que la fuente de alimentación cuenta con una capacidad de rango amplio. No hay fusibles accesibles externamente, ya que la fuente de alimentación incorpora fusibles electrónicos automáticos.

NOTA

Con el fin de garantizar una correcta funcionalidad y el cumplimiento de los reglamentos de seguridad o de compatibilidad electromagnética, no utilice nunca cables distintos de los suministrados por Agilent Technologies.

Conexiones eléctricas

Vista posterior del módulo

Figura 75 Vista posterior del detector: conexiones eléctricas y etiqueta

NOTA

La ranura de la tarjeta CompactFlash no está activa todavía. Se puede utilizar para futuras mejoras.

Información sobre el número de serie del instrumento

Información del número de serie de los sistemas 1290 Infinity y de las series 1200

La información del número de serie que se encuentra en las etiquetas del instrumento proporcionan la siguiente información:

CCYWWSSSSS	Formato
CC	País de fabricación • DE = Alemania • JP = Japón • CN = China
YWW	Año y semana del último cambio de fabricación importante, por ejemplo, 820 podría corresponder a la semana 20 de 1998 o 2008
SSSSS	Número de serie auténtico

Información del número de serie de los sistemas 1260 Infinity

La información del número de serie que se encuentra en las etiquetas del instrumento proporcionan la siguiente información:

CCXZZ00000	Formato
СС	País de fabricación • DE = Alemania • JP = Japón • CN = China
х	Carácter alfabético A-Z (utilizado por la fabricación)
ZZ	Código alfanumérico 0-9, A-Z, donde cada combinación denomina de modo inequívoco un módulo (puede existir más de un código para el mismo módulo)
00000	Número de serie

Interfaces

Los módulos de la serie Agilent 1200 Infinity proporcionan las siguientes interfases:

Iabla 22 Interfaces de la serie Agriefit 1200 Infili	Tabla 22	Interfaces de l	a serie Agilent	1200 Infini
---	----------	-----------------	-----------------	-------------

Módulo	CAN	LAN/BCD (opcional)	LAN (integrada)	RS-232	Analógico	APG remoto	Especial
Pumps							
Bomba isocrática G1310B Bomba cuaternaria G1311B Bomba cuaternaria VL G1311C Bomba binaria G1312B Bomba binaria VL G1312C Bomba capilar 1376A Bomba nano G2226A Bomba cuaternaria bioinerte G5611A	2	Si	No	Sí	1	Sí	
Bomba binaria G4220A/B Bomba cuaternaria G4204A	2	No	Sí	Sí	No	Sí	CAN-DC-OUT para esclavos CAN
Bomba preparativa G1361A	2	Si	No	Sí	No	Sí	CAN-DC-OUT para esclavos CAN
Samplers							
Inyector automático de líquidos G1329B Inyector automático de líquidos preparativo G2260A	2	Sí	No	Si	No	Sí	TERMOSTATO para G1330B

Módulo	CAN	LAN/BCD (opcional)	LAN (integrada)	RS-232	Analógico	APG remoto	Especial
FC-PS G1364B FC-AS G1364C FC-μS G1364D Inyector automático de líquidos HiP G1367E Microinyector automático de líquidos HiP G1377A Inyector automático de líquidos DL G2258A FC-AS bioinerte G5664A Inyector automático bioinerte G5667A	2	Sí	No	Sí	No	Sí	TERMOSTATO para G1330B CAN-DC-OUT para esclavos CAN
Inyector automático de líquidos G4226A	2	Sí	No	Sí	No	Sí	
Detectors							
Detector de longitud de onda variable VL G1314B Detector de longitud de onda variable VL+ G1314C	2	Sí	No	Sí	1	Si	
Detector de longitud de onda variable G1314E/F	2	No	Sí	Sí	1	Sí	
Detector de diodos G4212A/B	2	No	Sí	Sí	1	Sí	
Detector de diodos VL+ G1315C Detector de longitud de onda múltiple G1365C Detector de diodos VL G1315D Detector de longitud de onda múltiple VL G1365D	2	No	Sí	Sí	2	Sí	
Detector de fluorescencia G1321B Detector de índice de refracción G1362A	2	Sí	No	Sí	1	Si	

Tabla 22 Interfaces de la serie Agilent 1200 Infinity

Interfaces

Módulo	CAN	LAN/BCD (opcional)	LAN (integrada)	RS-232	Analógico	APG remoto	Especial
Detector evaporativo de dispersión de luz G4280A	No	No	No	Sí	Sí	Sí	Contacto EXT AUTOCERO
Others							
Accionamiento de válvula G1170A	2	No	No	No	No	No	1
Compartimento de columna termostatizado G1316A/C	2	No	No	Sí	No	Sí	
Desgasificador G1322A	No	No	No	No	No	Sí	AUX
Desgasificador G1379B	No	No	No	Sí	No	Sí	
Desgasificador G4225A	No	No	No	Sí	No	Sí	
Cubo flexible G4227A	2	No	No	No	No	No	1
CUBO CHIP G4240A	2	Si	No	Si	No	Sí	CAN-DC-OUT para esclavos CAN TERMOSTATO para G1330A/B (NO UTILIZADO)

Tabla 22 Interfaces de la serie Agilent 1200 Infinity

Requiere un módulo HOST con una tarjeta LAN integrada (por ejemplo, G4212A o G4220A con firmware mínimo B.06.40 o C.06.40) o con una tarjeta LAN G1369C adicional.

NOTA

El detector (de diodos/de longitud de onda múltiple/de fluorescencia/de longitud de onda variable/de índice de refracción) es el punto de acceso aconsejado para el control mediante LAN. La comunicación entre módulos se realiza a través de CAN:

- · Conectores CAN como interfase a otros módulos
- Conector LAN como interfase al software de control
- · RS-232C como interfase para un ordenador
- Conector REMOTO como interfase para otros productos Agilent
- · Conector(es) de salida analógica para la salida de la señal

Visión general de las interfaces

CAN

CAN es una interfase de comunicación entre módulos. Es un sistema de bus serie de 2 cables que admite comunicación de datos a alta velocidad y en tiempo real.

LAN

Los módulos incorporan una ranura de interfaz para una tarjeta LAN (por ejemplo, la interfaz LAN Agilent G1369B/C) o una interfaz LAN integrada (por ejemplo, el detector de diodos G1315C/D y el detector de longitud de onda múltiple G1365C/D). Esta interfaz permite controlar el módulo o el sistema a través de un ordenador con el software de control adecuado. Algunos módulos no incorporan ni la interfaz LAN integrada ni una ranura de interfaz para una tarjeta LAN (p. ej. el accionamiento de válvula G1170A o el cubo flexible G4227A). Se trata de módulos alojados que requieren un módulo host con firmware B.06.40 o superior o una tarjeta LAN G1369C adicional.

NOTA

Si el sistema consta de un detector de Agilent (de diodos, de longitud de onda múltiple, de fluorescencia, de longitud de onda variable o de índice de refracción), la interfaz LAN debería conectarse al detector de diodos, de longitud de onda múltiple, de fluorescencia, de longitud de onda variable o de índice de refracción (debido a la mayor carga de datos). Si el sistema no consta de un detector de Agilent, la interfaz LAN debería instalarse en la bomba o en el inyector automático.

RS-232C (Serie)

El conector RS-232C se utiliza para controlar el módulo desde un ordenador a través de una conexión RS-232C, con el software adecuado. Este conector necesita ser configurado con el módulo del interruptor de configuración en la parte posterior del módulo. Consulte *Parámetros de comunicación para RS-232C*.

NOTA

No existe configuración posible en las placas base con LAN integrada. Éstas están preconfiguradas para

- 19200 baudios,
- 8 bits de datos sin paridad y
- siempre se utilizan un bit de inicio y uno de parada (no seleccionables).

El RS-232C está diseñado como DCE (equipo de comunicación de datos) con un conector tipo SUB-D de 9 clavijas macho. Las clavijas se definen como:

Clavija	Dirección	Función
1	Entrada	DCD
2	Entrada	RxD
3	Salida	TxD
4	Salida	DTR
5		Tierra
6	Entrada	DSR
7	Salida	RTS
8	Entrada	CTS
9	Entrada	RI

Tabla 23 Tabla de conexión RS-232C

Figura 76 Cable RS-232

Salida de señal analógica

La salida de la señal analógica se puede distribuir a un registrador. Para obtener información consulte la descripción de la placa base del módulo.

APG remoto

El conector APG remoto puede utilizarse en combinación con otros instrumentos analíticos de Agilent Technologies si se desean utilizar funciones como el apagado común, la preparación, etc.

El control remoto permite realizar una conexión sencilla entre los instrumentos o los sistemas individuales y garantiza un análisis coordinado con requisitos sencillos de acoplamiento.

Se utiliza el conector D subminiatura. El módulo proporciona un conector remoto de entrada/salida (con cable o técnico).

Para garantizar la máxima seguridad en un sistema de análisis distribuido, una línea se dedica a **SHUT DOWN** las partes críticas del sistema en caso de que un módulo detecte un problema grave. Para detectar si todos los módulos participantes están encendidos o adecuadamente enchufados, se define una línea para resumir el estado **POWER ON** de todos los módulos conectados. El control del análisis se mantiene con la señal **READY** para el siguiente análisis, seguido por **START** del análisis y **STOP** opcional del análisis activado en las líneas respectivas. Además, es posible emitir las señales **PREPARE** y **START REQUEST**. Los niveles de la señal se definen como:

- los niveles TTL estándares (0 V es verdad, + 5,0 V es falso),
- la cargabilidad de salida es 10,
- la carga de entrada es 2,2 kOhm en comparación con + 5,0 V,
- · la salida es del tipo de colector abierto, entradas/salidas (cable o técnica).

NOTA Todos los circuitos TTL funcionan con una fuente de alimentación de 5 V. Una señal TTL se define como "baja" o L cuando se encuentra entre 0 V y 0,8 V y "alta" o H cuando se encuentra entre 2,0 V y 5,0 V (con respecto al terminal de tierra).

Interfaces

Clavija	Señal	Descripción
1	DGND	Tierra digital
2	PREPARAR	(L) Petición de preparación para el análisis (por ejemplo, calibración, lámpara del detector encendida). El receptor es cualquier módulo que realice actividades de preanálisis.
3	INICIAR	(L) Petición de inicio de análisis/tabla de tiempos. El receptor es un módulo que realiza actividades controladas en función del tiempo.
4	APAGAR	(L) El sistema tiene un problema (por ejemplo, fuga: la bomba se para). El receptor es cualquier módulo capaz de reducir riesgos.
5		No utilizado
6	ENCENDER	(H) Todos los módulos conectados al sistema están encendidos. El receptor es un módulo que depende del funcionamiento de otros.
7	PREPARADO	(H) El sistema está preparado para el siguiente análisis. El receptor es cualquier controlador de secuencia.
8	PARAR	(L) Petición para que el sistema se prepare lo antes posible (por ejemplo, parar análisis, abortar o terminar y parar la inyección). El receptor es un módulo que realiza actividades controladas en función del tiempo.
9	PETICIÓN DE INICIO	(L) Petición de inicio del ciclo de inyección (por ejemplo, mediante la tecla de inicio de cualquier módulo). El receptor es el inyector automático.

Tabla 24 Distribución de la señal remota

Interfaces especiales

Este módulo no dispone de ninguna interfaz especial.

Ajuste del interruptor de configuración de 8 bits

El interruptor de configuración de 8 bits está situado en la parte posterior del módulo. Los ajustes del interruptor proporcionan los parámetros de configuración relativos a la LAN, el protocolo de comunicación en serie y los procedimientos de inicialización específicos del instrumento.

Todos los módulos con LAN integrada, por ejemplo, G1315/65C/D, G1314D/E/F, G4212A/B, G4220A/B:

- De forma predeterminada, TODOS los interruptores están hacia ABAJO (mejores ajustes).
 - Modo BootP para LAN y
 - * 19200 baudios, 8 bits de datos / 1 bit de parada sin paridad para RS-232
- Para modos LAN específicos, los interruptores del 3 al 8 deben fijarse de la forma requerida.
- Para modos de arranque/test, los interruptores 1+2 deben estar hacia ARRIBA, además del modo requerido.

NOTA Para el funcionamiento normal, utilice los (mejores) ajustes predeterminados.

Ajuste del interruptor de configuración de 8 bits

Figura 77 Localización del interruptor de configuración (el ejemplo muestra un detector de diodos G4212A)

NOTA

Para llevar a cabo la configuración LAN, coloque los interruptores SW1 y SW2 en la posición de apagado (OFF). Para obtener más detalles sobre los ajustes/configuración LAN, consulte el capítulo "Configuración LAN".

Ajuste del interruptor de configuración de 8 bits

	Modo		Función					
	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8
LAN	0	0	Configuración de enlaces Selección del modo de inicialización					
Autoneg	ociación		0	х	x	х	х	
10 Mbits, m	edio dúplex		1	0	0	х	x	
10 Mbits, dúp	lex complet	0	1	0	1	x	x	
100 Mbits, n	100 Mbits, medio dúplex			1	0	х	x	х
100 Mbits, dú	100 Mbits, dúplex completo			1	1	x	x	x
BootP			х	x	x	0	0	0
BootP y a	lmacenar		х	x	x	0	1	
Utilizar aln	nacenados		х	x	x	0 1 0		
DH	СР		х	х	x	1	0	0
Utilizar predeterminados			х	x	x	0	1	1
TEST	1	1	Sistema					NVRAM
Sistema resider	Sistema residente de arranque		1					x
Volver a datos predeterminados (inicio en frío)			x	x	x			1

 Tabla 25
 Interruptor de configuración de 8 bits (con LAN integrada)

Leyenda:

0 (interruptor hacia abajo), 1 (interruptor hacia arriba), x (cualquier posición)

NOTA

Al seleccionar el modo TEST, los ajustes LAN son: Autonegociación y Utilizar almacenados.

ΝΟΤΑ

Para obtener una explicación acerca del sistema residente de arranque y sobre cómo volver a los datos predeterminados (inicio en frío), consulte "Ajustes especiales" en la página 288.

Ajuste del interruptor de configuración de 8 bits

Ajustes especiales

Los ajustes especiales se utilizan para acciones específicas (normalmente, las tareas de mantenimiento).

NOTA

Las tablas incluyen ambos ajustes para los módulos: con LAN o sin LAN integrada. Se identifican como "LAN" y "no LAN".

Sistema residente de arranque

Los procedimientos de actualización del firmware pueden requerir este modo en caso de que se produzcan errores de carga del firmware (parte principal del firmware).

Si se utilizan los siguientes ajustes de los interruptores y se enciende el instrumento de nuevo, el firmware del instrumento se mantendrá en el modo residente. No funciona como un módulo. Tan sólo utiliza funciones básicas del sistema operativo, por ejemplo, para las tareas de comunicación. En este modo, es posible cargar el firmware principal (mediante las herramientas de actualización).

 Tabla 26
 Ajustes del sistema residente de arranque (LAN integrada)

Selección de modo	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/ARRANQUE	1	1	1	0	0	0	0	0

Inicio en frío forzado

Pérdida de datos

Es posible utilizar un inicio en frío forzado para configurar el módulo en un modo definido con ajustes de parámetro predeterminados.

PRECAUCIÓN

Un inicio en frío forzado borra todos los métodos y datos almacenados en la memoria no volátil. Las excepciones son los ajustes de calibración, los registros de diagnóstico y reparación que no se borran.

→ Guarde sus métodos y datos antes de ejecutar un inicio en frío forzado.

Si se utilizan los siguientes ajustes de los interruptores y se enciende el instrumento de nuevo, se completará un inicio en frío forzado.
Información sobre el hardware 13

Ajuste del interruptor de configuración de 8 bits

Selección de modo	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/ARRANQUE	1	1	0	0	0	0	0	1

Tabla 27 Ajustes del inicio en frío forzado (LAN integrada)

13 Información sobre el hardware

Ajuste del interruptor de configuración de 8 bits

Manual de usuario del detector de diodos Agilent Serie 1200 Infinity

14 Apéndice

Seguridad 292 Directiva sobre residuos de aparatos eléctricos y electrónicos 295 Interferencia de radio 296 Emisión de sonido 297 Información sobre disolventes 298 Agilent Technologies en Internet 300

En este capítulo se ofrece información adicional acerca de la seguridad, los aspectos legales e Internet.

Seguridad

Símbolos de seguridad

Símbolo	Descripción					
\wedge	El aparato incluye este símbolo cuando el usuario debe consultar el manual de instrucciones para evitar cualquier riesgo de lesión al operario y proteger al aparato de los daños.					
\$	Indica voltajes peligrosos.					
	Indica un terminal de conexión a tierra protegido.					
	Pueden producirse daños oculares al mirar directamente la luz de la lámpara de deuterio utilizada en este equipo.					
Â	El aparato incluye este símbolo cuando el usuario está expuesto a superficies calientes que no deben tocarse cuando estén a gran temperatura.					

Tabla 28Símbolos de seguridad

ADVERTENCIA

Un AVISO

advierte de situaciones que podrían causar daños personales o la muerte.

→ No continuar tras un aviso, hasta haber entendido y cumplido totalmente las condiciones indicadas.

PRECAUCIÓN Una PRECAUCIÓN

advierte de situaciones que podrían causar una pérdida de datos o dañar el equipo.

No continuar tras un mensaje de este tipo hasta haber comprendido y cumplido totalmente las condiciones indicadas.

Información de seguridad

Las siguientes precauciones generales deben aplicarse durante el funcionamiento, mantenimiento o reparación de este instrumento. Si no se cumplen estas normas o los avisos específicos que aparecen en diversas partes de este manual, se invalidan los estándares de seguridad de diseño, fabricación y utilización de este instrumento. Agilent Technologies no se responsabiliza del incumplimiento de estos requisitos por parte del usuario.

ADVERTENCIA

Asegurarse de que el equipo se utiliza correctamente.

La protección proporcionada por este equipo puede verse perjudicada.

El operario de este instrumento tiene que utilizar el equipo tal y como se describe en este manual.

Estándares de seguridad

Éste es un instrumento de seguridad de Primera Clase (dotado de un terminal de toma de tierra) y ha sido fabricado y comprobado de acuerdo con las normas internacionales de seguridad.

Funcionamiento

Antes de conectar el instrumento a la red, siga atentamente las instrucciones de la sección de instalación. Además, debe tener en cuenta lo siguiente.

No retire las cubiertas del instrumento mientras esté funcionando. Antes de encender el instrumento, todos los terminales protegidos con toma a tierra, los alargadores, los autotransformadores y los dispositivos conectados a él se deben conectar a un enchufe con toma a tierra. Cualquier interrupción de la toma a tierra de protección supondrá un riesgo potencial de descarga que puede provocar lesiones personales graves. Siempre que exista la posibilidad de que la protección no funcione, se debe apagar el instrumento y evitar cualquier funcionamiento previsto.

Asegúrese de utilizar como recambio solo fusibles con la corriente nominal necesaria y del tipo especificado (fusión normal, fusión retardada, etc.). Se debe evitar el uso de fusibles reparados y de portafusibles con cortocircuitos.

Algunos de los ajustes descritos en este manual deben hacerse con el instrumento conectado a la red y con alguna de las cubiertas de protección abierta. El alto voltaje existente en algunos puntos puede producir daños personales si llegan a tocarse estos puntos.

Siempre que sea posible, debe evitarse cualquier ajuste, mantenimiento o reparación del instrumento abierto y conectado a la red. Si no lo es, debe realizarlo el personal especializado consciente del riesgo existente. No intente llevar a cabo este tipo de trabajo si no está presente otra persona capaz de proporcionarle primeros auxilios, en caso necesario. No cambie ningún componente con el cable de red conectado.

No ponga en marcha el instrumento en presencia de gases o vapores inflamables. El encendido de cualquier instrumento eléctrico en estas circunstancias, constituye un riesgo para la seguridad.

No instale componentes que no correspondan al instrumento, ni realice modificaciones no autorizadas.

Los condensadores que contiene el aparato pueden mantener su carga aunque el equipo haya sido desconectado de la red. El instrumento posee voltajes peligrosos, capaces de producir daños personales. Extreme las precauciones cuando proceda al ajuste, comprobación o manejo de este equipo.

Cuando se trabaje con disolventes, se deben observar los procedimientos de seguridad (por ejemplo, gafas, guantes y ropa protectora) descritos en la información sobre tratamiento de material y datos de seguridad, suministrada por el vendedor de disolventes, especialmente cuando se utilicen productos tóxicos o peligrosos.

Directiva sobre residuos de aparatos eléctricos y electrónicos

Resumen

La directiva sobre residuos de aparatos eléctricos y electrónicos (RAEE) (2002/96/CE), adoptada por la Comisión Europea el 13 de febrero de 2003 regula la responsabilidad del fabricante sobre los aparatos eléctricos y electrónicos desde el 13 de agosto de 2005.

Este producto cumple los requisitos de etiquetado establecidos por la Directiva RAEE (2002/96/CE). La etiqueta indica que no se debe desechar el producto eléctrico o electrónico junto con los residuos domésticos.

Categoría de producto:

Según la clasificación de los tipos de equipos del Anexo I de la Directiva RAEE, este producto está clasificado como un "Instrumento de monitorización y control".

NOTA

NOTA

No lo deseche junto con los residuos domésticos

Para devolver productos que no desee, póngase en contacto con su distribuidor oficial de Agilent o consulte www.agilent.com si desea más información.

14 Apéndice Interferencia de radio

Interferencia de radio

Los cables proporcionados por Agilent Technologies se apantallan para proporcionar una protección optimizada contra interferencias de radio. Todos los cables cumplen las normas de seguridad o de compatibilidad electromagnética.

Prueba y medida

Si los equipos de prueba y medida operan mediante cables no apantallados o se utilizan para medidas en configuraciones abiertas, el usuario debe asegurarse de que bajo las condiciones operativas, los límites de interferencia de radio están dentro de los márgenes permitidos.

Emisión de sonido

Declaración del fabricante

Se incluye esta declaración para cumplir con los requisitos de la Directiva Alemana de Emisión Sonora del 18 de enero de 1991.

El nivel de presión acústica de este producto (en el puesto del operario) es inferior a 70 dB.

- Nivel de presión acústica < 70 dB (A)
- En la posición del operador
- Operación normal
- De acuerdo con la norma ISO 7779:1988/EN 27779/1991 (Prueba tipo)

Información sobre disolventes

Información sobre disolventes

Celda de flujo

Para proteger la funcionalidad óptima de su celda de flujo:

- El intervalo pH recomendado de esta celda es entre 1,0 y 12,5 (en función del disolvente).
- Si la celda de flujo se transporta a temperaturas inferiores a 5 °C, debe asegurarse de que está llena de alcohol.
- Los disolventes acuosos pueden provocar la acumulación de algas en la celda de flujo. Por consiguiente, es aconsejable no dejar este tipo de disolventes en la celda de flujo. Añada un pequeño % de disolventes orgánicos (por ejemplo, acetonitrilo o metanol $^{5}5$ %).

Uso de disolventes

Siga las siguientes recomendaciones sobre el uso de los disolventes.

- El vidrio ámbar puede evitar el crecimiento de algas.
- Evite el uso de los siguientes disolventes corrosivos del acero:
 - Disoluciones de haluros alcalinos y sus ácidos respectivos (por ejemplo, ioduro de litio, cloruro potásico, etc.),
 - Altas concentraciones de ácidos inorgánicos como ácido sulfúrico y ácido nítrico, especialmente a temperaturas elevadas (si el método cromatográfico lo permite, sustitúyalos por ácido fosfórico o tampón fosfato, que son menos corrosivos frente al acero inoxidable),
 - Disolventes halogenados o mezclas que formen radicales y/o ácidos, por ejemplo:

2CHCl₃ + O₂ \rightarrow 2COCl₂ + 2HCl

Esta reacción, en la que el acero inoxidable probablemente actúa como catalizador, ocurre rápidamente con cloroformo seco, si el proceso de secado elimina el alcohol estabilizante,

- Éteres de calidad cromatográfica, que puedan contener peróxidos (por ejemplo, THF, dioxano, diisopropiléter). Estos éteres deben filtrarse con óxido de aluminio seco, que adsorbe los peróxidos,
- Disoluciones que contengan fuertes agentes complejos (por ejemplo, EDTA),
- Mezclas de tetracloruro de carbono con 2-propanol o THF.

14 Apéndice

Agilent Technologies en Internet

Agilent Technologies en Internet

Para conocer las novedades más recientes sobre nuestros productos y servicios, visite nuestro sitio web en la dirección de Internet:

http://www.agilent.com

Glosario UI

Glosario UI

A

bbA Agregar Add BootP Entry Añadir entrada de BootP Add... Agregar... Advanced Avanzados Agilent BootP Service Setup Instalación de Agilent BootP Service Agilent BootP Service Setup Wizard Asistente de instalación para Agilent BootP Alternative Configuration Configuración alternativa Analog Output Range Rango de salida analógica ASTM Drift and Noise Test test de deriva y ruido ASTM At Power On En el arrangue Auto Configuration Configuración automática Automatic Turn On Encendido automático

B

Board Check and Change Comprobación y cambio de la tarjeta Bootp & Store BootP y almacenar BootP Settings Ajustes Bootp Browse Examinar

C

Cancel Cancelar Cell-Test test de celda Close Cerrar Computer Mi PC Configuration Configuración Configure Configurar **Configure - Instruments** Configurar - Instrumentos Configure - Path Configurar – Ruta **Connection Settings** Ajustes de conexión

D

D/A Converter (DAC) Test Test de convertidor D/A (DAC) DAD Detector de diodos Dark Current Test test de corriente oscura Default Settings Ajustes predeterminados Delete Eliminar Destination Folder Carpeta de destino Details Detailes Detectors Detectores Device name Nombre del dispositivo Diagnose Diagnóstico Do you want to log BootP requests? ¿Desea registrar las peticiones de BootP? Done Hecho

Ε

Edit Editar Edit BootP Addresses Editar direcciones de BootP Edit BootP Addresses... Editar direcciones de BootP... Edit BootP Addresses... Editar direcciones de BootP... Edit BootP Settings Editar ajustes de BootP End-User License Agreement Acuerdo de licencia de usuario final Exit Salir

Glosario UI

F

File – Save Archivo – Guardar Finish Finalizar Firmware revision Revisión del firmware

Install Instalar Instrument – Instrument Configuration Instrumento – Configuración de instrumento Instrument Configuration Configuración de instrumento Intensity-Test test de intensidad Internet Protocol (TCP/IP) Protocolo de Internet (TCP/IP)

L

Lamps Lámparas LC System Access — Access Point Acceso a sistema LC — Punto de acceso

Μ

Maintenance Mantenimiento Menu – Instrument – Setup Instrument Method Menú – Instrumento – Método de instrumento de configuración Method Método Modify... Modificar... Modular 3D LC System Sistema LC 3D modular

Ν

Next Siguiente

0

OK Aceptar Options Opciones Others Otros

Ρ

POWER ON ENCENDIDO PREPARE PREPARAR Properties Propiedades Pumps Bombas

0

Quick Noise Test test de ruido rápido

R

READY PREPARADO

S

Samplers Inyectores Self-Test autotest Serial number Número de serie Service & Diagnostics Servicio y diagnóstico Services Servicios Services and Administrative Tools Servicios y Herramientas administrativas SHUT DOWN APAGAR Slit Test test de rendija Start Iniciar START INICIO START REQUEST PETICIÓN DE INICIO Stop Detener STOP FINAL System Info Información del sistema

T

Type ID ID Tipo

U

Using Default Utilizar predeterminados Using Stored Utilizar almacenados UV lamp Tag Etiqueta de lámpara UV

W

Wavelength Calibration calibración de la longitud de onda Welcome Bienvenidos

Y

Yes

Sí

A

absorbancia negativa 147 Agilent Lab Advisor 168 Agilent Configuración de la ChemStation 85 en Internet 300 ajustes avanzados de los parámetros del método utilización 108 aiustes de control utilización 103 ajustes de la tabla de tiempos utilización 112 Ajustes de parámetros de método utilización 104 ajustes del espectro utilización 109 ajustes especiales inicio en frío forzado 288 sistema residente de arranque 288 aiustes generales del método utilización 105 algas 298, 298 altitud no operativa 29 altitud operativa 29 analógico cable 262 anchura de banda 156 anchura de pico (tiempo de respuesta) 137 anchura de pico 158 anchura de rendija programable 30.32 anchura de rendija 30, 32, 143 apg remoto 283

ASTM condiciones ambientales 27 autotest 202 avisos y precauciones 232

B

BCD 267 cable Beer-Lambert (ley) 135 bioinerte 51, 241 bioinertes materiales 18 BootP service ajustes 78 detención 78 instalación 72 reinicio 79 BootP configuración automática 70 modos de inicialización 61 utilizar almacenados 63 utilizar predeterminados 63 y almacenar 62

C

cable analógico 262 BCD 267 CAN 269 269 IAN que conecta APG remoto 45 que conecta CAN 45 que conecta la alimentación 45 que conecta la ChemStation 45 que conecta LAN 45

remoto 264 RS-232 270 cables de alimentación 26 cables analógicos 260 BCD 260 261 CAN IAN 261 remotos 260 RS-232 261 visión general 260 calentamiento del detector 160. 160 calibración de la longitud de onda 221 CAN cable 269 Características de GLP 31. 33 características seguridad y mantenimiento 31, 33 cartucho almacenamiento 247 limpieza 246 max-light 246 celda de flujo celda de fluio de cartucho Max-Light 154 celda de sensibilidad elevada Max-Light 154 especificaciones 31, 32 factores de corrección 136 información sobre disolventes 298 celda de prueba utilización 198 ChemStation configuración 88 condensación 27, 36

conexiones de fluio 51, 51 conexiones eléctricas descripciones de 275 configuración automática con BootP 70 configuración de instrumento utilización 115 configuración de la torre de módulos 44. 45 vista frontal 44 vista posterior 45 Configuración de los parámetros TCP/IP 59 Configuración del ordenador y de la Agilent ChemStation 85 configuración del PC configuración local 85 configuración LAN ChemStation 88 configuración del ordenador 85 configuración local 85 configuración manual de LAN 80 configuración ChemStation 88 detector 97 dos torres de módulos 44.46 torre de módulos 38 una torre de módulos 39 39 41 vista frontal de las dos torres de módulos 46 vista posterior de las dos torres de módulos 47 consideraciones sobre la alimentación 24 constante de tiempo frente a tiempo de respuesta 34 consumo de corriente 29 control y evaluación de datos 31.33 Convertidor D/A 224 corriente oscura 227

curvas de instrumento utilización 114

D

DAC Agilent Lab Advisor 225 Instant Pilot 225 deriva (ASTM) y ruido 30.32 deriva astm 213 desconexión 176 descripción para mantenimiento 256 desembalaje 36 detección clases de compuestos 151 detector configuración con la ChemStation 97 conseguir una sensibilidad más elevada 154 instalación 48 preparación 96 DHCP configuración 67 información general 65 dimensiones 29 diodo anchura 30, 32 Dirección MAC determinación 75 Directiva BAFE 295 disolventes 298 disposición del instrumento 21

E

embalaje dañado 36 EMF mantenimiento preventivo asistido 20 emisión de sonido 297 entorno 27 envío defectuoso 36 espacio en el banco 27 especificaciones físicas 29 especificaciones agrupamiento de longitudes de onda 30, 32 anchura de rendija programable 30, 32 anchura del diodo 30, 32 características de GLP 31. 33 celda de fluio 31, 32 comunicaciones 31, 33 control y evaluación de datos 31, 33 exactitud de la longitud de onda 30. 32 físicas 29 rango de longitud de onda 30, 32 rango lineal 30, 32 30, 32 ruido y deriva (ASTM) ruido y linealidad 34 salida de señal analógica 31, 33 seguridad y mantenimiento 31, 33 30.32 velocidad de datos de señal velocidad de muestreo de los espectros 30, 32 espectros adquisición 146 evaluación de datos v control 31. 33

F

factores de corrección de las celdas de flujo 136 fallo en el sensor de compensación 181 fallo en el sensor de fugas 179 fallos en el ventilador 182 firmware actualizaciones 273, 251

actualizar/volver a una versión anterior 251 descripción 272 273 herramienta de actualización sistema principal 272 sistema residente 272 frecuencia de línea 29 fuga 183 función de test autotest 202 calibración de la longitud de onda 221 cartucho de celda de prueba 198 cartucho max-light 198 condiciones 200 convertidor D/A 224 corriente oscura 227 DAC 224 deriva astm 213 fallo 201 introducción 196 rendija 216 ruido 213 test de celda 207 test de intensidad 204 210 test de ruido rápido verificación de la longitud de onda 219 funciones de test 164

Н

humedad 29

identificación de piezas 256 kit de accesorios 258 indicador de estado 166 indicador de la fuente de alimentación 165 información sobre disolventes 121 información de mantenimiento 20 instalación y configuración del sistema optimización de la configuración de la torre de módulos 38 instalación conexiones de flujo 51, 51 consideraciones sobre la alimentación 24 del detector 48 detector 48 entorno 27 27 espacio en el banco kit de accesorios 37 lista de control de la entrega 37 Instant Pilot utilización 117 interfaces de usuario 167 284 interfaces especiales interfases 278 interfaz gráfica de usuario detector 100 interferencia de radio 296 Internet 300 interruptor de configuración de 8 bits LAN integrada 285 interruptor de configuración 60

Κ

kit de accesorios 37 kit de válvulas de liberación de presión en línea 131, 258 kit de válvulas de liberación de sobrepresión 131

L

lámpara uv 12 LAN

BootP y almacenar 62 BootP 61 269 cable configuración automática con BootP 70 configuración de los parámetros TCP/IP 59 Configuración del ordenador y de la Agilent ChemStation 85 configuración manual con telnet 81 configuración manual 80 interruptor de configuración 60 primeros pasos 58 qué hacer en primer lugar 58 selección de la configuración de enlaces 69 selección del modo de inicialización 61 utilizar almacenados 63 utilizar predeterminados 63 limpieza celda de flujo 246 linealidad especificaciones 34 lista de control de la entrega 37 longitud de onda de la señal 156 longitud de onda de muestra y de referencia 139 longitud de onda y anchura de banda optimización 154 longitud de onda agrupamiento 30, 32 30, 32 exactitud rango 30, 32

Μ

MAC dirección 58 mantenimiento cambio de la celda de flujo 241

cambio de la lámpara de deuterio 237 cambio del sistema de tratamiento de fugas 249 definición de 234 descripción 235 etiqueta RFID de la lámpara y la celda de fluio 253 número de serie y revisión de firmware 253 secado del sensor de fugas 248 sustitución del firmware 251 material reciclable 31, 33 materiales bioinertes 18 matriz diodos 17 mensaje corriente de la lámpara uv 186 corriente del calentador de la lámpara UV 189 encendido sin cubierta 183, 183 fallo en el encendido de la lámpara UV 188 fallo en la calibración de la longitud de onda 190 fallos en el calentador 193 fuga de corriente de los diodos 185 potencia del calentador al límite 193 tiempo de espera remoto 177 valor de temperatura ilegal desde el sensor del dispositivo del ventilador 192 valor ilegal desde el sensor de la tarjeta principal 191 voltaje de la lámpara uv 187 mensajes de error generales 175 mensaies de error corriente de la lámpara uv 186 corriente del calentador de la lámpara UV 189 desconexión 176

encendido sin cubierta 183, 183 fallo en el encendido de la lámpara UV 188 fallo en el sensor de compensación 181 fallo en el sensor de fugas 179 fallo en la calibración de la longitud de onda 190 fallos en el calentador 193 fallos en el ventilador 182 fuga de corriente de los diodos 185 fuga 183 potencia del calentador al límite 193 proveedor CAN perdido 178 se ha perdido la recalibración de la longitud de onda 191 sensor de compensación abierto 181 sensor de fugas abierto 180 177 tiempo de espera remoto tiempo de espera 175 valor de temperatura ilegal desde el sensor del dispositivo del ventilador 192 valor ilegal desde el sensor de la tarjeta principal 191 voltaje de la lámpara uv 187

Ν

número de serie información 277, 277

Ó

óptico 11

0

optimización de la selectividad 148 optimización adquisición de espectros 146 anchura de pico 137

anchura de rendija 143 celda de fluio 129 cómo optimizar el rendimiento 126 configuración de la torre de módulos 38 de la selectividad 148 de la sensibilidad. la selectividad, la linealidad y la dispersión 135 descripción 127 longitud de onda de muestra y de referencia 139 longitud de onda v anchura de banda 154 márgenes para absorbancia negativa 147 rendimiento del detector 126 rendimiento 125 sensibilidad del detector 154 sistema 1260 153 otros parámetros avanzados del método utilización 111

Ρ

peso 29 piezas del kit de accesorios 258 precauciones y avisos 232 precisión fotométrica 136 proveedor CAN perdido 178

R

rango de frecuencia 29 rango de voltaje 29 rango lineal 30, 32 recalibración inicial 55 red de difracción 17 remoto cable 264 rendija fija 16

programable 15 rendimiento especificaciones 30, 32 optimización 126 reparaciones precauciones y avisos 232 sustitución del firmware 251 requisitos de instalaciones cables de alimentación 26 residuos electrónicos 295 residuos equipos eléctricos y electrónicos 295 resolución de problemas indicadores de estado 164. 165 mensajes de error 174, 164 RS-232C cable 270 ruido y deriva (ASTM) 30, 32 Ruido y linealidad especificaciones 34 ruido 213

S

salida de señal analógica 31, 33 se ha perdido la recalibración de la longitud de onda 191 seguridad de primera clase 293 seguridad estándares 29 información general 293 símbolos 292 selección de la configuración de enlaces 69 selección del modo de inicialización 61 señal analógica 282 sensor de compensación abierto 181 sensor de fugas abierto 180 sensor de temperatura 183

sistema 11 Software Agilent Lab Advisor 168 Software de diagnóstico de Agilent 168 Software de diagnóstico 168 supresión cuantificación 148

Т

telnet configuración 81 temperatura ambiente no operativa 29 temperatura ambiente operativa 29 temperatura no operativa 29 temperatura operativa 29 test de celda 207 test de intensidad 204 test de rendija 216 test de ruido rápido 210 tiempo de espera 175 tiempo de respuesta (anchura de pico) 137 tiempo de respuesta frente a constante de tiempo 34 tiempo de respuesta 158

U

utilización ajustes avanzados de los parámetros del método 108 aiustes de control 103 ajustes de la tabla de tiempos 112 ajustes de parámetros de método 104 ajustes del espectro 109 ajustes generales del método 105 configuración de instrumento 115 curvas de instrumento 114 detector 96 Instant Pilot 117

interfaz gráfica de usuario 100 otros parámetros avanzados del método 111

V

velocidad de recopilación de datos 158 verificación de la longitud de onda test 219 voltaje de línea 29 volumen de retardo 153 volumen extracolumna descripción 153

www.agilent.com

En este manual

En este manual se incluye información de referencia técnica sobre el detector de diodos Agilent 1290 Infinity (G4212A) y el detector de diodos Agilent 1260 Infinity (G4212B).

- · introducción y especificaciones,
- instalación,
- utilización y optimización,
- · diagnóstico y resolución de problemas,
- mantenimiento,
- identificación de piezas,
- · seguridad e información relacionada.

© Agilent Technologies 2010-2011, 2012

Printed in Germany 08/2012

G4212-95012

