目次

概要

重要なお知らせ ... 4
概観 ... 4
コントロールモジュールの各部 5
スクリーン切り替え .. 8
機器のコンフィグレーション 12
ディスプレイのコントラストを調整する には .. 13
ディスプレイとキーボードのコンフィグレーション 13
時刻と日付の設定 ... 16
RS-232 ポートをコンフィグレーションするには 16
IP アドレス設定 .. 17
シグナルプロット ... 20
複数のシグナルをプロットするには 23

メソッド

メソッドをデザインする 26
アクティブメソッドに名前を付けて保存する 27
アクティブメソッドをサービスメソッドとして保存する 29
デフォルトメソッドに戻す ... 29
PC カードの使い方 ... 29
GC メモリのメソッドにアクセスする 29

流量と圧力のコントロール

水素シャットダウン ... 34
カラムシャットダウン ... 34
エレクトロニックニューマティクスコントラール（EPC） 35
ガス流量のオン / オフ ... 35
流量と圧力表示の解釈 ... 35
カラムコンフィグレーション ... 36

カラムモード .. 38
イニシャルカラム流量またはイニシャルカラム圧力 40
流量プログラムまたは圧力プログラム 41
補助チャンネル ... 42
流量と圧力の問題を解決するには 46

Automation

インジェクタコントロール 49
シーケンスパラメーター 53
シーケンスのコントロール 54
ランテーブル ... 55
クロックテーブル ... 59

スプリット / スプリットレス注入口

水素使用上の注意 ... 61
オプション ... 61
注入口モード ... 61
注入口とカラム ... 62
注入口のセットアップ ... 63
プレップラン ... 64
注入口モードの設定 ... 65
スプリット / スプリットレス注入口に関する用語 65
圧力パルスモード .. 66
スプリットモード ... 68
スプリットレスモード ... 70
ガスセーバー ... 73

パージ付き充填カラム注入口

水素使用上の注意 ... 75
注入口とカラムのコントロール値 75
注入口のセットアップ ... 76
パージ付き充填カラム注入口を使用する

Released: 2004 年 3月 6850 Series コントロールモジュールユーザーアイフォメーション ページ 1 of 188
目次

Programmable Temperature Vaporization 注入口
水素使用上の注意 79
注入口モード 79
注入口とカラム 80
注入口のセットアップ 80
注入口モードの設定 83
注入口の加熱 83
PTV 用語 .. 85
パルスドモード 86
Split mode .. 93
Splitless mode 97
溶剤ベントモード 103

Cool On-Column 注入口
注入口温度 118
Cool On-Column 注入口の操作 120

熱伝導度検出器（TCD）
水素使用上の注意 121
基本条件 .. 121
TCD パラメータ 121
メークアップガス 124
極性 ... 125
シグナル選択 126
アナログ出力 128
TCD を使用する 129

炎光光度検出器（FPD）
水素使用上の注意 153
基本情報 .. 153
点火オフセットを使用する 154
炎を点火する 155
エレクトロメータを使用する 156
シグナル選択 157
メークアップガスモードを選択するには 159
ヒーターのコンフィグレーション 160
FPD バラメータ 160
FPD を使用する 161

水素炎イオン化検出器（FID）
水素使用上の注意 130
検出器操作上の注意 130
ジェット .. 131
エレクトロメータ 131
メークアップガス 132
シグナル選択 133
アナログ出力 135

自動再点火－点火オフセット 135
FID バラメータ 136
FID を使用する 138

Microcell Electron キャプチャ検出器
直線性 ... 140
検出器ガス 141
温度 .. 141
エレクトロメータ 141
アナログ出力 141
検出器の操作 142

カラムオーブン
オーブンの能力 144
オーブンの安全保護 144
オーブンセットアップ 145
定温分析 146
温度プログラムリング 147
カラム補償分析 150

バラブ
バラブの種類 163
バラブをコンフィグレーションする 164
サンプルバルブ 164
サンプルバルブに接続したマルチバルブ 166
目次

マニュアルでバルブをコントロールする 167
バルブボックス温度の設定 168

サービスモード
サービススクリーン .. 169

ログブック .. 169
診断 .. 170
較正 .. 177
メンテナンス .. 181
アップデート機能 .. 185
概要

重要なお知らせ

すべての権利は留保されています。著作権法で許されている場合を除き、書面による事前の許可なく本書の複製、翻案、翻訳をすることは法律で禁じられています。

Vespel® は、E.I. duPont de Nemours Co., Inc. の登録商標です。

Swagelok® は、Swagelok Company の登録商標です。

部品番号 G2629-96329

初版 2004 年 3 月

このマニュアルは「G2629-97327, G2629-97328 コントロールモジュールユーザーマニュアル」の改定版です。

Printed in USA

概観

このコントロールモジュールを使用すると、すべての 6850 ガスクロマトグラフ (GC)、6850 オートインジェクタ、バルブをプログラミングまたはコントロールできるようになります。

このコントロールモジュールを 6850 GC に接続すると、以下のが可能になります。

• 分析メソッドを実行する
• 分析メソッドを作成、編集し、メソッドを PC メモリカーデに保存して GC へメソッドを移転する
• GC で温度や流量を設定し、GC コンポーネント (カラム、注入口、検出器など) をコンフィグレーションする
• オープン温度や検出器出力などのシグナルをリアルタイムで表示する
• 診断テストを実行する
• メッセージ、各種設定、必要とされるアクションなどについてのコンテキスト情報 (文脈依存情報) を提供
• その他豊富な各種機能の実行
概要

コントロールモジュールの各部

コントロールモジュールの各部

図 1. コントロールモジュール

コントロールモジュールはディスプレイ、キーボード、6850 GC に接続しているケーブルで構成されています。左側にあるスロット（図では隠れている）では PCMCIA フラッシュメモリカード（PC カード）を収容できます。

コントロールモジュールはディスプレイに表示されるスクリーンのセットに、キーボードからインストラクション（実行手順）を入力することによって操作します。これらのインストラクションのセットは名前を付けてメソッドとして保存できます。

スクリーン

図 1 に代表的なステータススクリーンの例を示します。すべてのスクリーンページの操作はここから始まります。スクリーン下端の 5 つのラベルはそのすぐ下にある 5 つのキー（F1 〜 F5）に対応します。右端の 3 つのラベルはスクリーン右横にある 3 つのキー（F6 〜 F8）に対応します。キーにラベルされた機能は表示されるスクリーンにより異なります。

各種スクリーンのすべてを、11 ページの表 2 にリストします。
キーボード

キーボードはスクリーンの切り替え、インストラクション (操作手順) やデータの入力に使用します。

F1 ～ F5 ナビゲーションキー。スクリーン下端にキーの行先がラベルされます。
F6 ～ F8 アクションキー。スクリーン右端にキーの行先がラベルされます。
Esc（ape） アクションをキャンセルするか、直前のスクリーンに戻ります。
← → ディスプレイ上でカーソルを移動します。
↑ ↓ 設定項目、設定値、英数字の文字を選択します。
m (enu) 追加ダイアログを示します。
i (info) 現在選択されている項目のコンテキストヘルプ (文脈依存ヘルプ)。
ヘルプの索引を見るには 2 回押します。
0 ～ 9 数や文字を入力。
. 小数点を入力。
- マイナス符号を入力。
Enter 現在の入力項目あるいはアクションを受け入れます。
0 ～ 9、+、- キーはアルファベット文字を入力するのにも使用します。特殊的入力方法についてはこのセクションの以降で説明します。
ステータススクリーン

すべての操作は、ここに示すステータススクリーンから始まります。他のスクリーンからステータススクリーンに戻るには、繰り返して Esc を押します。

Status

<table>
<thead>
<tr>
<th>所要時間</th>
<th>時刻</th>
<th>サンプル</th>
<th>メソッド</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next run time</td>
<td>10.00 min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

メッセージ

Warning、Faults、Shutdown、Method アナウンスは、潜在的な問題点があることをユーザーに知らせます。Run Log アナウンスは点滅により Run Log を読むよう知らせます。コントロールモジュールや Agilent ケミステーションまたは Agilent Cerity Networked Data System for Chemical QA/QC で Start キーがロックされると、StrtLock アナウンスが点滅します。

StrtLock アナウンスが点滅中にキーボードを使用すると、Control Module スクリーンの下の方に Keyboard Locked が表示されます。

スクロールリスト - GC やアクティブメソッドに問題があることを示します。上図の例では、オーブン温度がまだ安定せず、GC は Not Ready です。

メッセージ - 装置の状態。メッセージには GC で準備されている分析やシーケンス種類が表示されます、また、準備ができているかどうかも表示されます。

所要時間 - アクティブメソッドでの分析所要時間。

ステータススクリーンでのボタンラベル - ディスプレイの下にある F1 〜 F5

ステータススクリーンの要素は以下のとおりです。

- 時刻 - 24 時間表示での時刻
- サンプル - Last Sample （直前の分析）か、現在進行中の分析かを区別して表示
- メソッド - アクティブなメソッドの名前。読み込まれた後に修正されたメソッドは名前の後に + 符号が付く
- ステータス - 現在の GC の状態
- アナウンス - GC が分析を開始することができない、または結果に影響を及ぼす何らかの状態。Warning、Faults、Shutdown、Method アナウンスは、潜在的な問題点があることをユーザーに知らせます。Run Log アナウンスは点滅により Run Log を読むよう知らせます。コントロールモジュールや Agilent ケミステーションまたは Agilent Cerity Networked Data System for Chemical QA/QC で Start キーがロックされると、StrtLock アナウンスが点滅します。

StrtLock アナウンスが点滅中にキーボードを使用すると、Control Module スクリーンの下の方に Keyboard Locked が表示されます。

スクロールリスト - GC やアクティブメソッドに問題があることを示します。上図の例では、オーブン温度がまだ安定せず、GC は Not Ready です。

メッセージ - 装置の状態。メッセージには GC で準備されている分析やシーケンス種類が表示されます、また、準備ができているかどうかも表示されます。

所要時間 - アクティブメソッドでの分析所要時間。

ステータススクリーンでのボタンラベル - ディスプレイの下にある F1 〜 F5
キーと、右側の F6 〜 F8 キーの機能に対応します。表 1 を参照してください。

表 1. ステータススクリーンラベル

<table>
<thead>
<tr>
<th>キー</th>
<th>スクリーンラベル</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Settings</td>
<td>オープン温度、ホールドタイム、注入口温度など、頻繁に変更する設定値</td>
</tr>
<tr>
<td>F2</td>
<td>Automation</td>
<td>バルブやインジェクタコントロール、クロックテーブルとランテーブル</td>
</tr>
<tr>
<td>F3</td>
<td>Method Files</td>
<td>GC コントロール値のセットを作成または保存する</td>
</tr>
<tr>
<td>F4</td>
<td>Setup</td>
<td>オープンの上限温度、圧力単位など、あまり変更しない設定値</td>
</tr>
<tr>
<td>F5</td>
<td>Service</td>
<td>ログファイル、テスト、温度較正、圧力較正など</td>
</tr>
<tr>
<td>F6</td>
<td>Plot</td>
<td>ディスプレイ上にリアルタイムで表示するシグナル</td>
</tr>
<tr>
<td>F7</td>
<td>Stop</td>
<td>分析またはシーケンスをストップ</td>
</tr>
<tr>
<td>F8</td>
<td>Start</td>
<td>分析またはシーケンスをスタート</td>
</tr>
</tbody>
</table>

スクリーン切り替え

下の例ではコントロールモジュールでカラムをセットアップする方法を説明しています。カラムを定義しておくと、流量または圧力のうち一方を指定すると、装置はもう一方を自動的に計算することができます。

例：カラムのセットアップ

1. ステータススクリーンから操作を始めます。他のスクリーンが表示されている場合は、ステータススクリーンが現われるまで、繰り返し Esc を押します。

Status

<table>
<thead>
<tr>
<th>6850A</th>
<th>10:07:32 Last Sample B0</th>
<th>Default+</th>
<th>Not Ready</th>
</tr>
</thead>
</table>

Next run time 10.00 min
Manual Run Status Waiting for Ready

F1 F2 F3 F4 F5 F6 F7 F8

Released:2004年3月 6850 Series コントロールモジュールユーザーアイノフォメーション ページ8 / 188
2. Setup (F4) を押して次のスクリーンを表示します。このマニュアルでは、ほとんどのスクリーンをステータススクリーンからたどる経路（この場合、Status/Setup）で説明します。

Status / Setup

3. Column Setup を押して次のスクリーンを表示します。Auxiliary EPC GC では、2 番目のスクリーンが表示されます。それ以外の場合は、最初のスクリーンが表示されます。

Status / Setup / Column Setup

4. カラムの Source Connection （入口）と Outlet Connection （出口）の接続が正しく指定されていることを確認します。正しく指定されていない場合は、←と→のキーを使用して設定したい項目を選び、↑と↓のキーを使用して選択します。Enter を押します。
5. 中央にある？マークとメッセージはカラムがコンフィグレーションされていないことを示します。これを修正するには、More (F6) を押してポップアップメニューを表示します。

Status / Setup / Column Setup / More

6. ↑と↓キーを使用してConfigure Columnを選択し、Enterか数字の1キーを押します。

Status / Setup / Column Setup / More / Configure Column / Enter

7. ←と→を使用して3つのフィールド間を移動できます。スクリーンに表示されている単位で数値を入力し、OK (F6)を押します。これで値が設定され、その前のスクリーンに戻ります。

Status / Setup / Column Setup

8. カラムがコンフィグレーションされたので？マークはなくなっています。スタート画面に戻るには、繰り返してEscを押します。スクリーンはひとつずつ戻ります。ファンクションキーのラベルの意味は以下のとおりです。
表 2. コントロールモジュールの各種スクリーン機器のコンフィグレーション

<table>
<thead>
<tr>
<th>F1 Inlet</th>
<th>F2 Oven</th>
<th>F3 Column</th>
<th>F4 Detector</th>
<th>F5 Auxiliary</th>
</tr>
</thead>
<tbody>
<tr>
<td>溫度、ランプ、温度モード、圧力、流量、ランプ、注入口モード*、パルスモード*、ガスセーバーモード*、パルス/スプリットモード*、溶剤ベントモード*、搬送ガス*、単位*、クーラント情報</td>
<td>温度、オープンプログラム</td>
<td>流量プログラム、圧力プログラム、カラムモード、コンフィグレーション</td>
<td>温度、流量、シグナル、出力、ガスタイプ</td>
<td>温度と圧力プログラム、補助 EPC設定</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F2 Automation (シーケンスタイプ、サンプル用途、シーケンス繰返し、シーケンスコントロール値)</th>
<th>F1 Injector</th>
<th>F2 Valves</th>
<th>F4 Clock Table</th>
<th>F5 Run Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>注入量、ポンプ、洗浄、深さ、滞留時間、粘性、低速プランジャ</td>
<td>トグルバルブ</td>
<td>イベント追加&削除</td>
<td>イベント追加&削除</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F3 Method Files (アクティブの表示、アクティブの保存、サービスの保存、デフォルトへの復帰)</th>
<th>F4 Save Listing</th>
<th>F4 PC Card</th>
<th>F5 GC Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>保存、読込み、削除</td>
<td>読込み、削除</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F4 Setup (カラム補償)</th>
<th>F5 Service (ログの実行、サービスのスタート、サービスの終了)</th>
</tr>
</thead>
<tbody>
<tr>
<td>搬送ガス、圧力単位、真空補正、cryo、コントロール</td>
<td>オーブン、シリアル番号、mfg date、時計、シリアル & LAN通信、Local UI、ディスプレイ、検出器タイプ、バルブ 1 & 2、Auto Temp & Pressure、インジェクタモードと容量、カラム寸法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F1 Log Book</th>
<th>F2 Diagnostics</th>
<th>F3 Calibration</th>
<th>F4メンテナンス</th>
<th>F5 Mod Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>ログブックの表示/保存</td>
<td>注入口、検出器、キーボード</td>
<td>オープン工場設定設定、注入口、カラム、検出器、補助 EPC</td>
<td>サービス制限、メンテナンスの早期フィードバック</td>
<td>GC: インジェクタ、コントロールモジュール、ファームウェア更新</td>
</tr>
</tbody>
</table>

F6 Plot signals

F7, F8 Start & Stop Runs

* スプリット/スプリットレス注入口およびPTV 注入口のみ
機器のコンフィグレーション

次の場合に機器のコンフィグレーションが必要です。

- 最初に使用する前
- 変更を加えた場合、または新しいハードウェアを追加した場合

機器のコンフィグレーションは、日付や時刻など全体のパラメータを設定することになり、機器内にインストールされているデバイスの情報を伝えて、GC が適切にコントロールできるようにします。

コンフィグレーションの設定は、メソッドに直接影響します。コンフィグレーションできないデバイスは、ディスプレイで利用できない場合があり、また設定できる値がない場合もあります。また、設定は、ガスサンプリングバルブのサンプルループの充填など、特定のタスクの実行をコントロールします。

GC を最初に使用する前に、次の項目や機能をコンフィグレーションします。

- ディスプレイのコントラスト （13 ページのディスプレイのコントラストを調整するには 参照）
- ディスプレイおよびキーボード （13 ページのディスプレイとキーボードのコンフィグレーション 参照）
- 時刻と日付 （16 ページの時刻と日付の設定 参照）
- IP アドレス設定 （17 ページの IP アドレス設定 参照）
- 通信設定 （16 ページの RS-232 ポートをコンフィグレーションするには および 17 ページの IP アドレス設定 参照）
- カラム （8 ページのスクリーン切り替え および 36 ページのカラムコンフィグレーション 参照）
- インジェクタ情報などオートメーションパラメータ （49 ページの Automation 参照）
- 注入口 （該当する注入口タイプの章を参照）
- 検出器 （該当する検出器タイプの章を参照）
- オートプレップラン （64 ページのプレップラン 参照）
- オープン （145 ページのオープンセットアップ 参照）
- バルブ （164 ページのバルブをコンフィグレーションする 参照）
ディスプレイのコントラストを調整するには

1. 以下のスクリーンを表示します。

Status / Setup / Configure / Display

2. ↑、↓キーを使用してスクリーンのコントラストを調整します。調整を終えたら Done を押します。

ディスプレイとキーボードのコンフィグレーション

このコントロールモジュールでは GC キーボードやディスプレイで利用できる機能を定義できます。これは、GC が特定分析の専用機として使用されている場合や、リモートケミステーションまたは Cerity Chemical によって操作されている場合に役に立ちます。
ディスプレイとキーボードのコンフィグレーション

GC キーボードとディスプレイ機能を定義するには

1. 以下のスクリーンを表示します。

Status / Setup / Configure / Local UI

Local UI	20:11:56 Last Sample 00 Default+ Not Ready		
Enable Local Access (scrolling line)			
Oven Temp	Message Line	Run Time	
Inlet Pressure	Service Mode	Run Time Mode	
Column Flow	Stored Methods	Count Up	
Signal	Sequence Info	Count Down	
		Beeps	Locks

- Oven Temp、Message Line、Inlet Pressure、Column Flow、Signal、Run Time は表示されるだけで値の変更はできません。設定値を変更するにはコントロールモジュールあるいはケミステーションが必要です。
- Service Mode - SERVICE メソッドをキーボードから読み込むことができ、(169 ページのサービスモードを参照してください)
- Stored Methods - GC 保存されたメソッドのリストをスクロールディスプレイに表示します。キーボードからメソッドを選択し GC に読み込むことができます。
- Run Time Mode - Run Time を表示したとき Count Up （Start からの経過時間）または Count Down（分析が終了するまでの時間）のどちらを表示するか選択できます。この選択はランテーブルに影響を与えません。

2. GC ディスプレイに表示したい項目、GC キーボードで実行したい動作、Run Time が選択されている場合は Run Time Mode を選択します。

3. Beeps を押すと次のスクリーンが表示されます。

Status / Setup / Configure / Local UI / Beeps

Local Beeps	20:12:07 Last Sample 00 Default+ Not Ready	
Enable Key Click [a click sounds when a key is pressed]		
Enable Setpoint Beep [a beep sounds if a setpoint is changed]		
Enable Warning Beep [a beep sounds during warnings]		

4. ビープ動作を選択してください。
5. Esc を押すと Local UI スクリーンに戻ります。Locks を押して次のスクリーンを表示します。
ディスプレイとキーボードのコンフィグレーション

Status / Setup / Configure / Local UI / Locks

<table>
<thead>
<tr>
<th>Local Locks</th>
<th>40:12:25</th>
<th>Last Sample</th>
<th>Default+</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Lock Local Keyboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Lock Local Start Key</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Lock Remote Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lock Local Keyboard - コントロールモジュールからのすべてのパラメータ変更ができなくなります。
- Lock Local Start Key - GC キーボードの Start キーを無効にします。
- Lock Remote Start - GC 背面にあるREMOTE コネクタのStart機能を無効にします。この場合、コントロールモジュールを使用して測定を開始できます。
- Host Lock - レポートされる値です。On は、ケミステーションや他のコンピュータが GC をコントロールしていて、コントロールモジュールから設定値を変更できないことを示します。
- Sequence Lock - GC からのシーケンスの実行はロックアウトされます。
- Clock Table Lock - クロックテーブルアクセスはロックアウトされます。
- Clock Table Exec Lock - クロックテーブルイベントの実行はロックアウトされます。
- Method & Sequence & Clock Table Lock - GC キーボードまたはコントロールモジュールからのメソッドの読み込み、またシーケンスとクロックテーブルもロックアウトされます。
時刻と日付の設定

GCには、メソッドやエラーの記録などのタスクで時刻と日付を使用するための内部クロックがあります。日付と時刻を設定するには

1. 以下のスクリーンを表示します。

Status / Setup / Configure / Clock Set

2. 日付と時刻を設定したら、Done を押します。

RS-232 ポートをコンフィグレーションするには

以下では GC 背面にある RS-232 とラベルされたコネクタについて説明します。この接続は、コントロールモジュールと GC の通信には関係ありません。

通常、6850 は出荷時に適切に通信のコンフィグレーションがされています。ただし、通信設定を確認または変更する場合は以下のようにします。

1. 以下のスクリーンを表示します。

Status / Setup / Configure / Serial Comm

2. 外部デバイスの仕様に応じて各種コントロールパラメータを調整します。調整を終了したら Esc を押します。

3. 日付と時刻を現在の日時にあわせます。Done を押すと時計はリセットします。
IP アドレス設定

IP アドレスの設定方法は、GC にインストールした LAN カードの種類で異なります。

現在の設定を見ることは、以下のスクリーンを表示します。

Status / Setup / Configure / LAN Comm

<table>
<thead>
<tr>
<th>LAN Setup</th>
<th>03:00:05 Last Sample 00</th>
<th>Default</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN Card Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>139.30.255.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.248.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default Gateway</td>
<td>139.30.248.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Mode</td>
<td>Use BootP to get address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAN カードがインストールされている場合は、現在の LAN カードの設定が参照のために表示されます。LAN カードがインストールされたとき、IP アドレス、サブネットマスク、デフォルトゲートウェイ、およびタイムアウト値が設定されます。コントロールモードについては、次項で説明します。

コントロールモード

LAN Setup スクリーンに表示されたコントロールモードは、LAN コンフィグレーション設定を取得する現在の方法を示します。使用可能なコントロールモードは、インストールされている LAN カードによって異なります（表 3 を参照してください）。GC にどの LAN カードがインストールされているかを確認する方法については、13 ページの現在のコンフィグレーションを表示を参照してください。

表 3. 使用可能なコントロールモード

<table>
<thead>
<tr>
<th>LAN カード</th>
<th>使用可能なコントロールモード</th>
<th>設定の入力</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2552B</td>
<td>BootP</td>
<td>N/A</td>
</tr>
<tr>
<td>J4100A</td>
<td>BootP、ローカルに入力した設定</td>
<td>GC フロントパネル</td>
</tr>
<tr>
<td>Lantronics</td>
<td>DHCP、ローカルに入力した設定</td>
<td>GC フロントパネル、コントロールモジュール</td>
</tr>
</tbody>
</table>

・ J2552B または J4100A LAN カードがインストールされている場合、メッセージ "Supports Bootp BootP Control Mode Only" が表示されます。コントロールモジュールから LAN アドレスを設定することもできますが、この操作をお勧めしません。コネクション速度が非常に遅くなるからです。

・ BootP/DHCP を使用してアドレスを取得する場合、GC は BootP プログラムまたは Windows NT® DHCP から LAN アドレスを受信するように設定されます。
ローカルに設定を入力する場合、GC は、コントロールモジュールや GC フロントパネルから入力した IP アドレス、サブネットマスク、ゲートウェイ値を使用するように設定されます。

設定を調整するには、以下のスクリーンを表示します。

Status / Setup / Configure / LAN Comm / Set IP

自動割当アドレス設定

1. BootP プログラムまたは DHCP を使用して GC LAN カードコンフィグレーションを設定するには、BootP/DHCP を選択します。GC は、適切なメソッドを自動的に使用します。
2. Done を押します。GC を再起動するまで新しい設定は有効になりません。ただちに再起動するには、以下のウィンドウが表示されたときに Yes を選択します。
特定の IP アドレス設定

Lantronics LAN カードを使用する 6850 GC の LAN 設定の調整には、コントロールモジュールを使用することができます。GC にどの LAN カードがインストールされているかを確認する方法については、13 ページの現在のコンフィグレーションを表示を参照してください。

1. 以下のスクリーンを表示します。

Status / Setup / Configure / LAN Comm / Set LAN

2. 指定した IP アドレス、サブネット、およびゲートウェイ設定を使用するには、Local を選択します。

3. フィールド間の移動には←と→を使用し、値の調整には数字キーを使用します。

4. 設定が正しいことを確認し、Done を押します。GC を再起動するまで新しい設定は有効になりません。ただちに再起動するには、以下のウィンドウが表示されたときに Yes を選択します。
シグナルプロット

このコントロールモジュールスクリーンでは、同時に３つまでのリアルタイムプロットを表示できます。シグナルのプロットについて以下の例で説明します。

1つのシグナルをプロットするには
1. 以下のスクリーンを表示します。
 Status / Plot

 ![Status / Plot Screen](image)

2. 上記のスクリーンには現在オープン温度がプロットされています。Selectキーを押すとプロットできるシグナルのリストが表示されます。
 Status / Plot / Select

 ![Status / Plot / Select Screen](image)

 Available Signalsリストの中のSignal項目は、検出器スクリーンで選択されているシグナルを示します。

 シグナルは以下のいずれかです。
 - Detector
 - Column Comp
 - Detector - Col Comp
 - Test Chromatogram
 - Other

 詳細は検出器の章を参照してください。
3. シグナルを隣のリストに移動するには、シグナルを選択して Move キーを押します。同時に 3 つまでのシグナルを選択して移動できますが、まず 1 つのシグナルを選択して移動する場合を説明します。

4. まず、Oven Temperature シグナルを Available Signals リストに戻します。次に、Signal シグナルを Selected Signals リストに移動します。

5. このようにしてシグナルを移動すると、Selection スクリーンは以下のようにになります。

6. Time Range を入力します。プロットの横幅で単位は min です。分析時間がこの設定時間より長い場合は、プロットはスクリーンの左側にスクロールされます。

7. ここで Setup を押すと、縦軸スケール（Y レンジ）が設定できます。プロットのスケールは後でいつでも変更できるので、必ずしもここでスケールを設定する必要はありません。

8. Done を押すと シグナル選択スクリーン (Signal Selection) に戻ります。もう一度 Done を押すとプロットが表示されます。Y レンジを設定していなかったり、設定したが設定値が大きすぎてる場合は、以下のようなプロットが表示されます。
9. Rescale キーを押します。ウィンドウいっぱいにプロットが表示されるように Y レンジは変更されます。

10. スケールを再調整するには、←と→を使用して横スケールを調整し、↑と↓を使用して縦スケールを調整します。この例では、縦スケールが高感度すぎるので、縦スケールを調整します。

11. サンプルを注入し（この例では空気を注入しました）Start を押します。測定開始ポイントに縦線がマークされます。
12. ピークが現われて、そのピークがスケール範囲を超えている場合は、トレーリングエッジが現われるのを待ってから Rescale を押して、ピークの頂上をスケール範囲に入れます。↓を一度押します。

13. より詳しくプロットを調べるには、Cursor キーを押します。矢印カーソルがスクリーンに現われ、その時間とシグナル値がスクリーンの右上端に表示されます。

←と→キーを使用してカーソルを動かします。下のスクリーンでは、小さい方のピークのリテンションタイムとピーク高さが表示されています。

14. カーソルを消すには、もう一度 Cursor を押します。

複数のシグナルをプロットするには

下のプロットは、前のページでスケール調整を行なった検出器シグナルのプロットです。これに、オープン温度のプロットを加えてみます。

1. 以下のスクリーンを表示します。
2. Select を押すとシグナルのリストが表示されます。Oven Temperature を選択して Move を押します。スクリーンは以下のようになります。

3. ↑と↓キーを使うか、数字の 2 キーを押して Oven Temperature をハイライトにします。Setup を押して、この Oven Temperature シグナルの Y Range を設定します。範囲を 0 度～150 ℃に設定するとよいでしょう。

4. Done を押すとプロット選択スクリーン（Plot Selection）に戻ります。もう一度 Done を押すと、2 つのプロットが表示されます。

これら 2 つのプロットは重ねて表示されていますが、それぞれ独立した Y スケールを持っています。2 つのプロットは①、②の番号で識別できます。これらのプロットで表示されている座標軸を選ぶには数字の 1 と 2 のキーを使います。選択したプロットの Y スケールが表示されます。
例えば、Oven Temperature プロットのスケールを直すには、数字の 2 を押してプロットを選択してから、Rescale を押します。同様に、←、→、↑、↓キーを使って、それぞれのプロットのスケールを別々に調整できます。
メソッド

GCメモリの中には常に1つのアクティブメソッドが存在します。アクティブメソッドとは、現在GCを操作しているコントロールパラメータ値のセットであり、ランテーブルイベントやオートインジェクタのコントロールパラメータも含まれます。

必要に応じて分析条件を調整すると、アクティブメソッドはその内容が変更されます。変更した内容を保存し、常駐メソッドを作成するには
1. 分析の必要に応じてアクティブメソッドを変更します。
2. メソッドに名前をつけて、GCメモリに保存します。名前をつけたメソッドを5つとSERVICEという名前のメソッドを1つ保存できます。

ここではアクティブメソッドに名前を付けて保存する方法、またはSERVICEメソッドとして保存する方法を説明します。

またGCからPCカードにメソッドをコピーする方法、PCカードからGCへメソッドをダウンロードする方法も説明します。

メソッドに含まれている内容 - コントロールすることのできるすべてについての詳細 - は以下で説明をします。

メソッドをデザインする

メソッドとはGCの分析方法を決定するコントロール値の集合です。メソッドはコントロールモジュールあるいはケミステーションで作成され、GCで実行されます。

• 各種スクリーンの内容は使用するハードウェアによって異なります。GCはそのコンポーネントから多くの内容を自動的に認識できますが、若干の情報（使用する搬送ガスの種類など）はユーザが自分で入力しなければなりません。装置の要素は使用する前に、必ずコンフィグレーション（定義）してください。

• メソッドをセットアップするときは、最初に搬送ガスをコンフィグレーションし、次にカラムを、最後に注入口をセットアップします。検出器はいつでもセットアップできます。

• コントロールモジュールのキーを押すと、現在の画面についての情報が表示されます。もう一度押すとインフォメーションシステムの索引にアクセスします。
アクティブメソッドに名前を付けて保存する

アクティブメソッドに名前を付けて保存するには
1. 以下のスクリーンを表示します。

Status / Method Files

1. このスクリーンにはアクティブメソッドの最初の部分が表示されています。↑と↓キーを使用してアクティブメソッドをチェックし、すべての値が正しいことを確認します。
2. Save を押すと以下のスクリーンが表示されます。

Status / Method Files / Save

4. コントロールモジュールの数字キーにはラベルされている値（数字）と隠されている値（英字）があります（表 4 を参照）。隠されている値はこのスクリーンのメソッド名 (Method Name) フィールドなどの英数字フィールドに、テキストを入力するときにのみ使われます。
5. カーソルを Method Name フィールドの左端に移動します。エントリーを入力するにはキーボードを使用します。
 a. ←と→キーを使用してカーソルを動かします。
 b. 数字がラベルされているキーを何度か押して隠されている値を表示します。行き過ぎた場合はキーをそのまま押し続けると値はループします。
 c. メソッド名には拡張子を付けません。
表 4. キーラベルと隠されている文字

<table>
<thead>
<tr>
<th>キーラベル</th>
<th>隠し文字</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A B C</td>
</tr>
<tr>
<td>2</td>
<td>D E F</td>
</tr>
<tr>
<td>3</td>
<td>G H I</td>
</tr>
<tr>
<td>4</td>
<td>J K L</td>
</tr>
<tr>
<td>5</td>
<td>M N O</td>
</tr>
<tr>
<td>6</td>
<td>P Q R</td>
</tr>
<tr>
<td>7</td>
<td>S T U</td>
</tr>
<tr>
<td>8</td>
<td>V W X</td>
</tr>
<tr>
<td>9</td>
<td>Y Z _</td>
</tr>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>.</td>
<td>, ; :</td>
</tr>
<tr>
<td>+ * /</td>
<td></td>
</tr>
</tbody>
</table>

6. 終了するには OK を押し、GC 長期メモリにメソッドを保存します。表 5 を参照してください。

表 5. 保存されるメソッド内容

<table>
<thead>
<tr>
<th>項目</th>
<th>保存の可否</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven controls</td>
<td>yes</td>
</tr>
<tr>
<td>Injector controls</td>
<td>yes</td>
</tr>
<tr>
<td>Injector/valve sample list</td>
<td>保存されない</td>
</tr>
<tr>
<td>Inlet</td>
<td>yes</td>
</tr>
<tr>
<td>Column</td>
<td>yes</td>
</tr>
<tr>
<td>Detector</td>
<td>yes</td>
</tr>
<tr>
<td>Signal</td>
<td>yes</td>
</tr>
<tr>
<td>Column compensation</td>
<td>yes</td>
</tr>
<tr>
<td>Aux 1</td>
<td>yes</td>
</tr>
<tr>
<td>Run Table</td>
<td>yes</td>
</tr>
<tr>
<td>Sample valve</td>
<td>yes</td>
</tr>
<tr>
<td>Multi valve</td>
<td>yes</td>
</tr>
<tr>
<td>Sequence sample list</td>
<td>保存されない</td>
</tr>
<tr>
<td>Clock table</td>
<td>保存されない</td>
</tr>
</tbody>
</table>
メソッド
アクティブメソッドをサービスメソッドとして保存する

1. Status / Method Files でメソッドを表示します。
2. Service キーを押すと、アクティブメソッドは SERVICE メソッドとして保存されます。既存の SERVICE メソッドは、アクティブメソッドの内容に置き換えられます。

デフォルトメソッドに戻す

デフォルトメソッドは、出荷時に読み込まれていたもので、通常の分析を開始するスターティングポイントとして妥当なパラメータ値に設定されています。このメソッドは必要に応じて編集できます。

オリジナルの工場出荷設定に戻すには Default キーを押します。以下のスクリーンが表示されます。

Status / Method Files / Default

- **Yes** を押すとデフォルトメソッドが読み込まれます。これが新しいアクティブメソッドになります。それ以前のアクティブメソッドの内容は、保存していなければ失われます。
- **No** を押すとデフォルトメソッドの読み込みはキャンセルされます。現在のアクティブメソッドはそのまま残ります。

PC カードの使い方

メソッドは GC に保存できますが、コントロールモジュールに挿入された PC カードにも保存できます。複数の PC カードを使用すると、どの GC でも使用できる、メソッドの広範なライブラリを保存できます。また、それぞれのメソッドについて内容のリストイングを保存することもできます。リストイングはそのメソッドの各種設定値のテキストファイルで、コントロールモジュールに表示されるものとまったく同じです。

PC カードを使用するためには、GC に接続する前に PC カードをコントロールモジュールに挿入します。別の PC カードを使用する場合は、カードを交換する前
メソッド
PC カードの使い方

にコントロールモジュールを取り外す必要があります。
PC カードは、各種メモリ容量の製品が市販されており、最寄りのコンピューターショップで購入できます。コントロールモジュールには PC カードが標準で付属していないです。

GC から PC カードにメソッドをコピーするには
1. 以下のスクリーンを表示します。

Status / Method Files / PC Card

2. 右側のリストでメソッドを選択します。
3. Save を押すと PC カードにメソッドが保存されます。

PC カードから GC にメソッドをコピーするには
PC カードに保存されているメソッドは、それを作成した GC にも他の GC にもダウンロードできます。
1. 以下のスクリーンを表示します。

Status / Method Files / PC Card

2. 左側のリストでメソッドを選択します。
3. Load キーを押します。選択されたメソッドはその GC のアクティブメソッドになります。
4. Status / Method Files で Save キーを押し、メソッドに名前をつけて、GC の長期メモリに保存します。
PC カードからメソッドを削除するには

1. 以下のスクリーンを表示します。

 Status / Method Files / PC Card

<table>
<thead>
<tr>
<th>PC Card</th>
<th>20:56:20 Last Sample 00 Default+ Not Ready</th>
</tr>
</thead>
</table>

 Methods on PC Card

<table>
<thead>
<tr>
<th>Method</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKOUT</td>
<td>4 Sep 98</td>
<td>10:3</td>
</tr>
<tr>
<td>HEAVES</td>
<td>4 Sep 98</td>
<td>10:3</td>
</tr>
<tr>
<td>LOROIL</td>
<td>4 Sep 98</td>
<td>10:1</td>
</tr>
<tr>
<td>OLEFINZ</td>
<td>4 Sep 98</td>
<td>7:05</td>
</tr>
</tbody>
</table>

 Methods on Instrument

 (ACTIVE: 23 Jun 98)

2. 左側のリストでメソッドを選択します。
3. Delete を押します。ポップアップメニューが現われます。

 Status / Method Files / PC Card

<table>
<thead>
<tr>
<th>Method</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKOUT</td>
<td>4 Sep 98</td>
<td>10:3</td>
</tr>
<tr>
<td>HEAVES</td>
<td>4 Sep 98</td>
<td>10:3</td>
</tr>
<tr>
<td>LOROIL</td>
<td>4 Sep 98</td>
<td>10:1</td>
</tr>
<tr>
<td>OLEFINZ</td>
<td>4 Sep 98</td>
<td>7:05</td>
</tr>
</tbody>
</table>

 1. Delete Selected Method または 2. Delete All を選択して Enter を押します。
4. 削除モード（1. Delete Selected Method または 2. Delete All）を選択して Enter を押します。
5. 確認スクリーンが表示されます。Yes あるいは No を選んで、Enter を押します。

メソッドのリストを PC カードに保存するには

ポータブルコンピュータなどを使って PC カードのデータにアクセスできるなら、メソッドのリストを保存すると、メソッドのすべてのパラメータや設定値をテキストフォーマットでリストできて便利です。
メソッド

GCメモリのメソッドにアクセスする

Status / Method Files

Save Listing を押します。methodname.lst と名付けられたテキストファイルが Method Files スクリーンに保存されます。コントロールモジュールは、自動的に以前のバージョンのリスティングを上書きすることに気を付けてください。

GCメモリのメソッドにアクセスする

GC に保存されているメソッドのリストを見るには

以下のスクリーンを表示します。

Status / Method Files / GC Methods

保存されているメソッドを読み込むには

読み込みたいメソッドを選択して、Load キーを押します。選択されたメソッドがアクティブメソッドになります。
メソッド
GCメモリのメソッドにアクセスする

GC 長期記憶メモリからメソッドを削除するには

1. メソッドを選択して、Deleteキーを押します。ポップアップメニューが現われます。

Status / Method Files / GC Methods / Delete

<table>
<thead>
<tr>
<th>GC Methods</th>
<th>21:01:37 Last Sample 00 Default+ Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Date Time</td>
</tr>
<tr>
<td>TRIAL3</td>
<td>22 Oct 98 10:59:32</td>
</tr>
</tbody>
</table>

2. 削除モード（1. Delete Selected Method または 2. Delete All）を選択してEnterを押します。

3. 確認スクリーンが表示されます。YesあるいはNoを選んで、Enterを押します。
流量と圧力のコントロール

水素シャットダウン

検出器には、搬送ガスまたは燃焼ガスとして水素を使用するものがあります。

警告

搬送ガスや燃焼ガスとして水素（H₂）を使用する場合は、水素がオーブンの中に流れ出ると爆発するおそれがあります。このため、すべての接続が完了するまでは絶対に水素ガスの供給を行なわないでください。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接続部にカラムを接続するか、キャップでふさいでおいてください。

水素は可燃性です。漏れたガスが囲まれた気密な空間に閉じ込められると火災や爆発を引き起こすおそれがあります。水素を分析で使用するときは、装置を操作する前に必ずすべての接続部、ライン、およびバルブの漏れテストを実行してください。装置に対してなんらかの作業を行うときは、必ず水素（H₂）をその供給源で閉じてください。

GC は流量と圧力をモニターしています。水素を使用するようコンフィグレーションされている流路で、流量または圧力がその設定値に到達できない場合は、GC は漏れが発生したものとして、水素安全シャットダウンを生起し、以下のことを実行します。

• 注入口への搬送ガス供給バルブを閉じる。
• スプリット/スプリットレス注入口内のスプリットバルブを開く。
• オーブンヒータを OFF にする。後部のオーブンフラップを全開にする。
• 注入口、検出器、補助加熱ゾーンを OFF にする。

この状態から復旧するには、シャットダウンの原因（ボンベのバルブが閉じている、重大な漏れなど）を修正して、装置を一度 OFF にし、再度 ON にします。

カラムシャットダウン

搬送ガスの供給源がシャットダウンされた場合は、オーブンヒータが OFF になります。搬送ガスの流れない状態で、加熱されることによるカラムの損傷を防ぎます。後部のオーブンフラップは半分開きます。

この状態から回復するには、シャットダウンの原因（ボンベのバルブが閉じている、重大な漏れなど）を修正して、オーブンを再度 ON にし、障害の原因となった注入口または補助チャンネルも ON にします。
流量と圧力のコントロール

エレクトロニックニューマティクスコントロール（EPC）

GC はすべてのガスの流量と圧力を電子的にコントロールしています。EPC には次の機能があります。

- 注入口での流量および圧力のコントロール。カラムに流れられる搬送ガスの流量や圧力をプログラミングできます。
- すべての検出器ガスで、固定リストリクタを圧力調整することによる間接的な流量コントロール
- 固定リストリクタ全体で圧力調整することによる 3 つの補助チャンネルの圧力コントロール
- サンプル分析中に、搬送ガスの消費を節約するガスセーバーモード（スプリット/スプリットレス注入口）
- カラムが定義されている場合、スプリット比を直接入力できる（スプリット/スプリットレス注入口）

注入口、検出器、補助スクリーンに設定値を入力します。

ガス流量のオン/オフ

すべてのガス流量は OFF の設定が可能であり、流量または圧力の設定値はそのままでガスをオン/オフできます。流量をオフにするには、設定値を選択し、↑または↓キーを押します。

ガスコントロールモジュールに使用されているバルブは、ガスの開閉操作用ではなく、ガスの計測用にデザインされています。そのため、この種のバルブを Off としても、0.2 mL/min 程度の少量のガスが流れています。

流量と圧力表示の解釈

GC は、気圧と温度を測定することで、リテンションタイムの変動の原因となる設置環境の変化の影響を取り除きます。

流量と圧力は、ある定義された状態に補正して表示されます。定義された状態とは NTP（標準状態）であり、25℃、1 気圧です。同様に、設定値についても設置環境の相違は NTP に補正されます。
したがって、装置上に表示される流量と石鹸膜流量計で測定した流量は一致しないことがあります。これは、石鹸膜流量計の測定値は NTP 状態ではなく個々の設置環境により異なるためです。ただし、リテンションタイムは設置環境の影響を受けません。

石鹸膜流量計の測定値を NTP (25℃、1 気圧) に換算するには、測定時の気圧と石鹸膜流量計の温度がわいていかなければならない。

変換式は以下の通りです:

\[
\text{Flow rate at NTP} = \frac{\text{Flow rate}_{\text{local}} \times 298 \times \text{Pressure}_{\text{local}}}{\text{Temperature}_{\text{local}}}
\]

ここで:

NTP での流量 = 標準状態 (25℃、1 気圧) に補正した流量 (mL/min 単位)。
流量_{local} = 石鹸膜流量計で測定された流量 (mL/min 単位)
温度_{local} = 測定時の石鹸膜流量計の温度。この値はケルビン温度 (Kelvin = Celsius + 273)。
圧力_{local} = 測定時の大気圧。単位は atm (1 atm = 1.01325 bars = 760 Torr = 760 mm Hg (0℃) = 101.325 kPa = 14.7 psi)。

電子式流量計の中に、25℃、1 気圧と異なる温度や圧力で表示されるよう校正されているものがありません。NTP に補正されない限り、これらの流量計の読み取り値はディスプレイに表示される値と一致しません。

カラムコンフィグレーション

毛管カラムを定義 (コンフィグレーション) するには、カラムの長さ、内径、膜厚を入力します。この情報を利用して GC はカラム流量を計算します。

カラムコンフィグレーションにより、スプリット / スプリットレス注入口で毛管カラムを使用する際に以下のことが可能になります:

- スプリット比を直接入力すると、その流量が自動的に計算され設定されます。
- カラム流量、カラムヘッド圧のどちらでも入力できます。流量を入力するとき、装置は指定した流量を達成するに必要な圧力を計算してその値に設定し、流量と圧力の両方の値を表示します。
・スプリットレス注入では、ガス流量を測定する必要はありません。
・4種類のカラムモードを選択できます（38ページのカラムモードを参照）。カラムが定義されていないと選択できないものがあります。

カラムをコンフィグレーションするには
1. 以下のスクリーンを表示します。

```
Status / Settings / Column
```

2. クエスチョンマークがスクリーンの左側に表示され、カラムが定義されていないことを示します。カラムを定義するには、Moreキーを押し、Configure Columnを選んでEnterを押して下のスクリーンを表示します。

```
Status / Settings / Column / More / Configure Column / Enter
```

3. カラムのLength（長さ）、ID（内径）、Film（膜厚）を入力します。
4. OKを押します。

カラム寸法が分からない場合（通常、カラム寸法はカラムに記載されています）、またはGCの計算機能を使用したくない場合は、長さか内径のいずれかに0を入力します。この場合、カラムは定義されず、スプリット/スプリットレス注入口では圧力設定値のみが、充填カラム注入口ではトータル流量のみが使用できます。
カラムモード

流量モード
流量は、NTP（標準温度と標準圧力、25℃、1気圧）に合わせて補正されます。

- **Constant flow**（定流量）- 分析中にカラム内の搬送ガスのマス流量を一定に保ちます。温度プログラムによりカラムの通気抵抗が変化した場合は、カラムヘッド圧力を調整して流量を一定に保ちます。これによって、分析時間をかなり短縮できます。
- **Ramped flow**（ランプ流量）- 入力したプログラムに従って、分析中にカラム流量を増加します。

圧力モード
圧力は、ゲージ圧力（絶対圧力と大気圧の差）です。通常の検出器はカラム流量に対して通気抵抗が僅かなため、カラムヘッドのゲージ圧力は、カラムの入口から出口までの圧力差と同じになります。ただし、質量選択検出器と原子発光検出器は例外です。

- **Constant pressure**（定圧力）- 実行中にカラムヘッドのゲージ圧力を一定に保ちます。カラムの抵抗が変化した場合、ゲージ圧力は変化しませんが、マス流量は変化します。
- **Ramped pressure**（ランプ圧力）- ユーザが入力したプログラムに従って、分析中にカラムヘッドのゲージ圧力を上げます。

カラムモードと注入口モードの比較
選択したカラムモードにより利用できる注入口モードが変化します。たとえば、カラム圧力モードを使用すると、ほとんどの種類の注入口では圧力モードしか利用できなくなります。
カラムモードを選択するには
以下のスクリーンを表示します。

Status / Settings / Column / More

1. Column Mode を選択して、Enter を押し、次のスクリーンを表示します。

Status / Settings / Column / More / Column Mode / Enter

2. 表示された選択肢から希望するカラムモードを選択します。OK を押します。
これでカラムモードの選択は完了です。

警告

カラムパラメータは、オープンのイニシャル温度で設定します。
ニューマティクスの設定値の中には、オープン温度によって、カラムの抵抗やガス粘度が変わるために、値が変わるものがございます。これによって、ユーザーの中には、オープン温度が変化した際に圧力などの設定値が変更されたと誤解される方がいるかもしれませんが、カラム内の流量の条件は、カラムモード（定流量、定圧力、ランプ流量、ランプ圧力）およびイニシャル設定値によって指定されたときと変わっていません。
流量と圧力のコントロール
イニシャルカラム流量またはイニシャルカラム圧力

最初に仮設定する推奨圧力と流量

表6および表7に、各種カラム内径についての推奨流量を示します。これらの流量は、様々な化合物の分析に使用してほぼ最適値が得られます。

表6. カラムの内径と搬送ガス流量

<table>
<thead>
<tr>
<th>カラムの種類</th>
<th>カラム内径</th>
<th>搬送ガス流量 mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>毛管</td>
<td></td>
<td>水素</td>
</tr>
<tr>
<td></td>
<td>50-µm id</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>100-µm id</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>200-µm id</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>250-µm id</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>320-µm id</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>530-µm id</td>
<td>5.3</td>
</tr>
<tr>
<td>金属充填カラム</td>
<td>1/8-in. id</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1/4-in. id</td>
<td>60</td>
</tr>
<tr>
<td>ガラス充填カラム</td>
<td>2-mm id</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4-mm id</td>
<td>30-60</td>
</tr>
</tbody>
</table>

上記流量はNTP（25℃、1気圧）でのmL/min値で、すべてのカラムで推奨されます。
毛管カラムの流量は、カラム内径に比例し、ヘリウムの場合は水素よりも20％小さくなっています。

表7. 毛管カラムで推奨されるガス圧力

<table>
<thead>
<tr>
<th>長さ（m）</th>
<th>プラズマガス圧力 psi（kPa）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10 µm</td>
</tr>
<tr>
<td>10</td>
<td>25 (170)</td>
</tr>
<tr>
<td>15</td>
<td>39 (270)</td>
</tr>
<tr>
<td>25</td>
<td>68 (470)</td>
</tr>
<tr>
<td>30</td>
<td>83 (570)</td>
</tr>
<tr>
<td>50</td>
<td>32 (220)</td>
</tr>
<tr>
<td>60</td>
<td>39 (267)</td>
</tr>
</tbody>
</table>
スプリット/スプリットレス注入口

カラムが定義されている場合（36ページのカラムコンフィグレーション参照）、流量または圧力のどちらかを入力すると、選択したカラムモードに従って、もう一方が決定されます。

カラムが未定義の場合、入力できるのは圧力だけです。

パージ付き充填注入口

定義された毛管カラムを使用する場合は（36ページのカラムコンフィグレーション参照）、カラムヘッド圧のみを入力できます。

カラムが定義されていない場合は、トータル流量のみを入力できます。

イニシャル流量またはイニシャル圧力を設定するには

以下のスクリーンを表示します。

Status / Settings / Column

1. psi（圧力モードの場合）またはmL/min（流量モードの場合）の各フィールドにスクロールします。
2. 希望するイニシャル値を入力して、Enterを押します。

流量プログラムまたは圧力プログラム

ランプ圧力またはランプ流量のカラムモードを選択した場合は、カラムスクリーンにシングルランププログラムをセットアップするための項目が表示されます。

プログラムはイニシャル値（圧力または流量）とイニシャル時間から始まります。イニシャル時間が経過すると圧力ランプまたは流量ランプが開始され、ファイナル値（圧力または流量）に達します。その後はファイナル値のままファイナル時間保たれます。

オープンプログラムは分析の長さを決定します。流量または圧力プログラムがオープンプログラムよりも早く終了した場合は、流量（または圧力）はプログラムの最後のファイナル値に保たれます。オープンプログラムでボストラン期間が設定されている場合は、ボストラン圧力やボストラン流量も入力できます。
流量プログラムまたは圧力プログラムを作成するには
以下のスクリーンを表示します。

Status / Settings / Column

1. カラムモードが定流量になっていると、流量ランプの設定フィールドは灰色表示され入力できません。More キーを押して、カラムモードスクリーン（38 ページのカラムモードを参照）にし、カラムモードをランプ流量に変更します。

2. イニシャル流量を mL/min フィールドに入力します。

3. ←と→キーを使って、残りのフィールドにも値を入力し、そのランプを完成させます。必要ならば、Post Run 値も入力します。

4. 圧力プログラムも同じ手順でセットアップできます。

補助チャンネル

オプションとして 3 つの追加補助圧力コントロールチャンネルが利用できます。Aux 設定スクリーンの Aux 3、Aux 4、Aux 5 への入力でコントロールします（Aux 1 と Aux 2 はヒーターコントロール）。

カラムのコンフィグレーションで Aux チャンネルが Inlet に指定された場合（36 ページのカラムコンフィグレーションを参照）、このチャンネルを使用して 3 ランプ圧力プログラミングだけでなくランタイムプログラミングも可能です。この使用法としては、ガスサンプリングバルブを使用する場合が最も一般的です。
熱補助タイプのコンフィグレーション
以下のスクリーンを表示します。

Status / Settings / Auxiliary / More

1. Configure Thermal を選択します。
2. インストールしたデバイスのタイプを選択します。
 - MSD に Other を選択します。
 - このゾーンを無効にするには No Auxiliary を選択します。
3. OK を押します。

空圧のコンフィグレーション
以下のスクリーンを表示します。

Status / Settings / Auxiliary / More

1. Configure Pnuematics を選択します。
2. 適切なチャンネルに、使用するガスと平衡時間 (圧力が安定するための猶予時間でこれを過ぎるとエラーが発生) を選択します。実際に GC に接続してあるガスを選択してください。

カラム入力チャンネルに air を使用または選択しないでください。

補助温度と圧力の設定
以下のスクリーンを表示します。

警告 水素を使用する場合、供給管の下り側に充分な流れ抵抗がないと水素が多量に流れ危険な場合があります。

2. 適切なチャンネルに温度と圧力を設定します。
2. Esc キーを押します。
補助温度ランプの設定

1. 以下のスクリーンを表示します。

Status / Settings / Auxiliary / Ramps

2. 設定するランプを選択します。選択した Aux チャンネルの圧力ランプ表が表示されます。Aux #3 ランプの表を以下に示します。他も同じです。このスクリーンでは圧力値を psi 単位で表示していますが、Inlet Setup スクリーンで単位を指定できます。

3. 圧力レベル、圧力保持時間、次の圧力レベルへの移動速度に値を入力して、最高 3 つまでランプを設定します。
 - ランプとそれ以後のランプを無効にするには、速度に 0.0 を入力します。

4. OK を押します。
流量と圧力の問題を解決するには

ガスが設定圧力または流量に達しない

指定された時間よりも長く、ガスが設定圧力、流量に達しない状態が続いた場合
は、注入口または検出器はシャットダウンされます。この時間はコンフィグレーションされている個々のデバイスによって異なります。考えられる原因とその解決法は以下のとおりです。

- ガス供給圧力が設定値に達するには低すぎます。供給圧力は、希望の設定値よりも最低でも 10 psi 以上大きくする必要があります。
- システムのどこかに重大な漏れが生じています。電子式リークデテクタを使用して、漏れの発生箇所を発見し、修復してください。カラムが折れると大きな漏れが生じます。必ずカラムも点検してください。
- ガスセーバーを使用している場合には、ガスセーバーの流量が分析中の最高カラムヘッド圧力を維持するのに十分な流量に設定されていることを確認します。
- 使用しているカラムに対して流量が低すぎます。
- カラムが詰まっているかカラムの取り付け不良です。
- 注入口または検出器の圧力センサが正しく作動していません。担当の Agilent サービスエンジニアにご連絡ください。

スプリット/スプリットレス注入口を使用している場合

- スプリット比が低すぎます。スプリット流量を上げてください。
- 汚染その他の原因で、注入口のプロポーショナルコントロールバルブが固着しています。担当の Agilent サービスエンジニアにご連絡ください。

パージ付き充填カラム注入口を使用している場合

- 汚染その他の原因で、注入口のコントロールバルブが閉じたまま固着しています。担当の Agilent サービスエンジニアにご連絡ください。
ガスが設定圧力または流量を超える

考えられる原因とその解決法は以下のとおりです。

• そのデバイスの圧力センサが正しく動作していません。担当の Agilent サービスエンジニアにご連絡ください。

スプリット / スプリットレス注入口を使用している場合

• スプリット比が高すぎます。スプリット比を下げてください。
• プロポーションナルコントロールバルブがマウセしています。担当の Agilent サービスエンジニアにご連絡ください。
• スプリットベントライン上のトラップが汚染されています。担当の Agilent サービスエンジニアにご連絡ください。

バージ付き充填カラム注入口を使用している場合

• 汚染その他の原因で、注入口のコントロールバルブが開いたまま困着しています。担当の Agilent サービスエンジニアにご連絡ください。

注入口の圧力または流量が変動する

注入口の圧力が変動すると、分析中に流量やリテンションタイムが変動する原因となります。考えられる原因とその解決法は以下のとおりです。

• 流路系に小さな漏れがあります。電子式リークデテクタを使用して、漏れの発生箇所を発見し、修復してください。ガス供給配管の漏れ点検してください。
• スプリット / スプリットレス注入口にライナまたはスプリットベントトラップの閉塞などの大きな抵抗があります。適正なライナを使用していることを確認してください。デザインや充填剤の詰め過ぎなどにより大きな圧力降下を持っているライナは交換します。問題の原因がライナではないと思われる場合には、スプリットベントトラップが閉塞している場合があります。担当の Agilent サービスエンジニアにご連絡ください。
• 分析中に著しい室温の変化がありました。実験室の温度を安定させる措置を講じるか、または装置をより適切な場所に移動してください。
• システムに大容積のガスが追加されました（サンプリングバルブを使用した場合に、この問題が生じることがあります）。サンプル容量を減らしてください。
測定した流量が表示されている流量と一致しない

石鹸膜流量計を使用して流量をチェックした場合、測定値を NTP 状態に補正しても、設定した流量と一致しないことがあります。考えられる原因とその解決法は以下のとおりです。

- カラム長さ、内径、ガスタイプを間違ってコンフィグレーションしています。正しい情報に訂正してください。毛管カラムをかなり切ってしまった場合には、元の長さと実際の長さが違っている場合があります。実際の長さを入力してください。
- 定流量モードの選択後、新しい圧力設定値が入力されていません。定流量モードをオン/オフするたびに、新しい圧力設定値を入力しなおしてください。
- 内径 0.58 〜 0.75μm の WCOT カラムで、15m 未満の短いカラムが使用されています。トータルフローは、高流量用に設定されているため、注入口内に圧力が生じており、設定圧力がゼロの場合にもカラム圧力が存在します。短い 530 〜 750μm のカラムでは、トータルフローをできるだけ低くしてください（20 〜 30 mL/min）。より長い、抵抗の大きいカラム（15 〜 30 m など）を取り付けてください。
- スプリットベントラインが部分的に詰まっているために、実際の注入口の設定圧力よりも高くになっています。173 ページのスプリットベントテスト（スプリット / スプリットレス注入口および PTV 注入口のみ）を参照してください。
- 質量選択検出器が使用されていて、真空補償が選択されていません。
インジェクタコントロール

注入パラメータを設定するには
1. 以下のスクリーンを表示します。

Status / Automation / Injector

2. 以下を入力します:

Plunger Pumps - ホイールをサンプルに入れてプランジャーをポンピングする回数。ポンピングを行うことで、サンプル注入量を測定取る前に、シリンジ中の気泡を取り除くことができます。

Sample Size - 注入量。選択肢で表示される数字はセットアップの時に指定したシリンジサイズにより異なります。

Viscosity Delay - 注入ストロークの前に、シリンジプランジャーを上点で停止する時間（秒）。粘性の高いサンプルでは、この停止時間中、プランジャによってできた真空にサンプルが流れ込みます。

Slow plunger - 注入時のプランジャ速度を約 5 µL/sec に減速します（通常のプランジャ速度は 10 µL のシリンジで約 100 µL/sec）。
洗浄パラメータ

1. 以下のスクリーンを表示します。

Status / Automation / Injector / Washes

![Washes Screen]

2. 注入量を測り取る前にサンプルでシリンジを共洗いできます。また、注入前（pre-washes）と注入後（post-washes）の両方で、溶媒によりシリンジを洗浄できます。イベントの順番は以下のとおりです:
 - シリンジを溶媒 A で Solvent-A-Pre-Washes 回洗う
 - シリンジを溶媒 B で Solvent-B-Pre-Washes 回洗う
 - シリンジをサンプルで Sample-Pre-Washes 回共洗いする
 - サンプルを測り取り、注入する
 - シリンジを溶媒 A で Solvent-A-Post-Washes 回洗う
 - シリンジを溶媒 B で Solvent-B-Post-Washes 回洗う

3. 入力を終えたら Esc を押して 1 つ前のスクリーンに戻ります。

ニードル深さ

1. 以下のスクリーンを表示します。

Status / Automation / Injector / Depth Offset

![Depth Offset Screen]

2. デフォルト値は 0 mm で、バイアルの底にニードルがぶつからないように、安全係数が考慮されています。このパラメータは液体または固体サンプルのヘッドスペースを採取するのにも利用できます。サンプラマニュアルを参照してください。

3. 入力を終えたら Esc を押して 1 つ前のスクリーンに戻ります。
滞留時間
1. 以下のスクリーンを表示します。

Status / Automation / Injector / Dwell Times

2. 入力します。通常の場合は、注入前（Pre Dwell）と注入後（Post Dwell）滞留時間はどちらもゼロにしておきます。ゼロにしておくとすばやく注入でき、加熱されたニードル内でサンプルが気化する現象を最小にできます。

3. Esc を押して 1 つ前のスクリーンに戻ります。

溶媒パラメータ
使用する GC ファームウェア、インジェクタのタイプとファームウェア、GC のタレットサイズによって、多様な溶媒パラメータ設定が可能です。これらのパラメータ設定にアクセスするには
1. 以下のスクリーンを表示します。

Status / Setup / Automation / Injector

上図は、表示されるスクリーンの一例です。上記項目での GC のコンフィグレーションに基づいて、表示されるスクリーン内の設定は異なります。
2. 必要に応じてパラメータを設定します。

3. Esc キーを押します。
シリンジ容量
シリンジのサイズをミリリットル単位で入力します。

溶媒ボトルの使用法
GC の新しいバージョン（ファームウェアバージョン≧ A.05.00）では、溶媒容量を拡張できます。これは多数のサンプルを測定するときに便利です。使用するメソッドで溶媒 A または B の使用が指定されている場合、溶媒容量を下の表のように拡張できます。

<table>
<thead>
<tr>
<th>インジェクタタレットのタイプ</th>
<th>拡張溶媒設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2613A 3 つのバイアール位置</td>
<td>A、B、およびB2を使用</td>
</tr>
<tr>
<td>G2913A 1</td>
<td>A、A2、A3およびB、B2、B3</td>
</tr>
<tr>
<td>6850自動液体サンプラ すべて</td>
<td>A、A+およびB、B+を使用</td>
</tr>
</tbody>
</table>

使用する溶媒（A または B、またはその両方）はメソッドによって設定されています。50 ページの洗浄パラメータを参照してください。オートインジェクタまたはオートサンプラーシステムでの溶媒ボトル位置の詳細については、GC User Information の CD-ROM を参照してください。

廃液ボトルの使用法
廃液ボトルコントロールがスクリーンに表示されない場合、More を押してこのオプションを選択します。廃液に使用するボトルがある位置（A、B、または A と B を交互に）。

溶媒量
溶媒量では、シリンジの洗浄に使用する溶媒の量を調節して溶媒を節約できます。

セーバーモードを有効または無効にして、毎回の洗浄でシリンジ内に入れる溶媒の量を指定します。セーバーを有効にした場合のデフォルトはシリンジ量の 80% です。
インジェクタファン

ファンコントロールがスクリーンに表示されない場合、More を押して、このオプションを選択します。通常はファンをオンにしておきます。これはインジェクタを冷却し、サンプルを安定した状態に保つためです。ファンは1日1回、短時間オフになります。これはファンの寿命を延ばすためです。

シーケンスパラメータ

シーケンスパラメータはアクティブメソッドを使用して分析するサンプルのリストです。サンプルはインジェクタタレットのバイアル位置か、ストリーム選択バルブのサンプルポジションです。シーケンスリストはメソッドに保存されません。

分析するサンプルシーケンスをセットアップするには

以下のスクリーンを表示します。

Status / Automation

インジェクタパラメータを入力するには

1. シーケンスタイプに Injector を選択します。上のようなスクリーンが表示されます。
2. 以下のパラメータを入力します:
 - First Vial と Last Vial - サンプリングする最初のタレット位置番号と最後のタレット位置番号を入力します。タレットの位置番号の付け方がサンプラマニュアルを参照してください。
 - # Inj per Vial - バイアルあたりの繰り返し注入回数を入力します。デフォルトは1です。
 - Repeat Sequence - repeat を選択するとシーケンスが終了しても、また、最初からシーケンスは繰り返されます。no repeat を選択すると、すべてのサンプルを分析し終わったらシーケンスは終了します。

バルブパラメーターを入力するには

1. シーケンスタイプには Valve を選択します。
2. 以下のパラメータを入力します:

- **First Position** と **Last Position** - サンプリングする最初のバルブポジション番号と最後のバルブポジション番号を入力します。
- **# Inj per Position** - ポジションあたりの繰り返しサンプリング回数を入力します。デフォルトは1です。
- **Repeat Valve Range** - 繰り返しサイクル回数を入力します。ポジション範囲の一連の分析を繰り返します。
- **Repeat Sequence** - *repeat* を選択するとシーケンスが終了しても、また、最初からシーケンスは繰り返されます。*no repeat* を選択すると、すべてのサンプルを分析し終わったらシーケンスは終了します。

シーケンスを使用しない分析では

シーケンスタイプには、None を選択します。

シーケンスのコントロール

シーケンスをスタートするには

ステータススクリーンまたは Status/Automation スクリーン上の Start を押します。
シーケンスを中断するには
Status/Automation スクリーンの PAUSE キーを押すと、シーケンスが中断（停止）されます。分析中であれば、GC はその分析を完了してから、シーケンスは中断されます。
スクリーンに PAUSE と表示され、点滅してシーケンスが中断されていることを示します。

Status / Automation / Pause

中断したシーケンスを再開するには
もう一度 PAUSE キーを押します。シーケンスが中断されたサンプルの、次のサンプルからシーケンスを再開します。

中断したシーケンスの続行を止めるには
Stop Seq キーを押します。

シーケンスを終了するには
ステータススクリーンの Stop ボタンを押すと、測定とシーケンスが終了します。Automation スクリーンの Stop Seq はシーケンスのみを終了します。実行中の分析は続けられます。終了したシーケンスを再開することはできません。

ランテーブル
ランテーブルは毎回の分析で指定された時間に実行されるイベントのリストです。一般的なイベントには、シグナルアッテネーションの変更、シグナル変動後のゼロリセット、バルブの切り替えが含まれます。ランテーブルは、メソッドの一部として保存されます。
ランテーブル中のすべての時間は run タイム、すなわち、分析をスタートしてからの経過時間 (min)です。
現在のランテーブルの内容を見るには、以下のスクリーンを表示します。

Status / Automation / Run table

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- イベントを削除するには：イベントを選択して Delete キーを押します。
- イベントを追加するには：
 a. Add キーを押して、使用できるイベントのリストを表示します。リストには、この GC にインストールされているハードウェア機能が表示されます。使用できるすべてのイベントリストを表 8 に示します。
 b. 追加したいイベントを選択します。
 c. イベントを実行する時間（スタートからの経過時間 Time min）と、必要ならそのパラメータ（Event Value）を入力します。OK を押します。ランテーブルの指定した時間に新しいイベントが追加されます。
- イベントを変更するには：削除したいイベントを選択して Delete キーを押します。それから、Add キーで変更したいイベントを追加します。
表 8. ランテーブルイベント

<table>
<thead>
<tr>
<th>Event</th>
<th>Event values</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve 1</td>
<td>ON / OFF</td>
<td></td>
</tr>
<tr>
<td>Valve 2</td>
<td>ON / OFF</td>
<td></td>
</tr>
<tr>
<td>MultiPort Valve</td>
<td>Position</td>
<td></td>
</tr>
<tr>
<td>Signal Zero</td>
<td>-500,000 ～ 500,000 または none</td>
<td>アナログ、デジタル</td>
</tr>
<tr>
<td>Signal Attenuation</td>
<td>0 ～ 10</td>
<td>アナログ</td>
</tr>
<tr>
<td>Signal Range</td>
<td>0 ～ 13</td>
<td>アナログ</td>
</tr>
<tr>
<td>Detector Negative Polarity</td>
<td>ON / OFF</td>
<td>アナログ、デジタル</td>
</tr>
<tr>
<td>Auxiliary Temperature</td>
<td>（室温 + 25 ℃）～ 200 ℃</td>
<td></td>
</tr>
<tr>
<td>Auxiliary #3 Pressure</td>
<td>0 ～ 689 kPa, 100 psig、または 6.89 bar</td>
<td></td>
</tr>
<tr>
<td>Auxiliary #4 Pressure</td>
<td>0 ～ 689 kPa, 100 psig、または 6.89 bar</td>
<td></td>
</tr>
<tr>
<td>Auxiliary #5 Pressure</td>
<td>0 ～ 689 kPa, 100 psig、または 6.89 bar</td>
<td></td>
</tr>
<tr>
<td>Store Signal Value</td>
<td>none</td>
<td>アナログ、デジタル</td>
</tr>
<tr>
<td>Signal Zero - Value</td>
<td>none</td>
<td>アナログ、デジタル</td>
</tr>
</tbody>
</table>

バルブイベント

これらのイベントはバルブ動作を直接コントロールします。バルブの ON、OFF を切り替える時間をランテーブルに入力します。

シグナルゼロ（Signal Zero）イベント

・ 出力されるすべてのシグナル値から減算する値を入力します。

または

・ イベント値はプランクのままにしておきます。GC はそのイベント生起時のシグナル値を保存し、出力されるシグナル値からその値を減算します。

シグナルレンジ（Signal Range）イベントとシグナルアッテネーション（Signal Attenuation）イベント

・ シグナルレンジ（Signal Range）イベントは、0-1 mV、0-1 V、0-10 V 出力のシグナルをスケーリングします。
シグナルアッテネーションイベント（Signal Attenuation）のスケーリングは0-1 mV 出力でのみ使用できます。これらのイベントはどちらも倍数スケールです。イベント値を1つ変更すると、シグナルは2倍に調整されます。

シグナル値保存（Store Signal Value）イベントとシグナルゼロ・値（Signal zero・value）イベント

この2つのイベントは一緒に使用して、バルブ切り替え時などでベースラインがシフトした後に、変動したベースラインを復帰させます。

- Store Signal Value - このイベントは、イベントを生起した時間のシグナル値を保存します。このイベントはベースライン上で実行します。
- Signal Zero - Value - すべての出力されるシグナル値からStore Signal Valueイベントで保存された値を減算して、変動したベースラインを復帰させます。これら2つのイベントをベースラインシフトアクションの前後で指定すると、シフトしたベースラインを前のベースラインレベルに復帰できます。Store Signal Valueイベントをベースラインシフトの前に指定し、Signal Zero - Valueイベントをベースラインシフトの後に指定します。図2を参照してください。

図2. シフトしたベースラインレベルの修正
クロックテーブル

クロックテーブルは時刻を指定して実行させるイベントのリストです。以下に説明する例では、メソッドの読み込み、プランクラン、シーケンスの開始が含まれます。クロックテーブルはメソッドには保存されません。

クロックテーブルの中には、カレンダー機能はありません。週末、祝日、休暇中にも、毎日同じことが実行されます。

現在のクロックテーブルの内容を見るには、以下のスクリーンを表示します。すべての時刻は clock タイムすなわち GC の内部クロックによって計時された時刻です。時刻は 24 時間表示です。

Status / Automation / Clock Table

• イベントを削除するには：イベントを選択して Delete キーを押します。
• イベントを追加するには：Add キーを押して、使用できるイベントのリストを表示します。リストされるイベントの種類は、その GC にインストールされているハードウェアによって異なります。

追加したいイベントを選択、イベントを実行する時刻（24 時間表示）と、必要ならそのパラメータ（Event Value）を入力し、OK を押します。新しいイベントがクロックテーブルの指定した時刻に追加されます。

• イベントを変更するには 削除したいイベントを選択して Delete キーを押します。それから、Add キーで変更したいイベントを追加します。
表 9. クロックテーブルイベント

<table>
<thead>
<tr>
<th>Event</th>
<th>Event values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve 1</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>Valve 2</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>MultiPort Valve</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>Start Blank Run</td>
<td>none</td>
</tr>
<tr>
<td>Start Sequence</td>
<td>none</td>
</tr>
<tr>
<td>Go Into Pre-Run</td>
<td>none</td>
</tr>
<tr>
<td>Column Compensation Run</td>
<td>none</td>
</tr>
<tr>
<td>Load GC Method</td>
<td>メソッド名</td>
</tr>
</tbody>
</table>
スプリット/スプリットレス注入口

水素使用上の注意

警告
搬送ガスや燃焼ガスとして水素（H₂）を使用する場合は、水素がオープンの中に流れ出ると爆発を引き起こすおそれがあることを知っておいてください。このため、すべての接続が完了するまでは絶対に水素ガスの供給を行わないでください。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接続部にカリムを接続するか、キャップでふさいでおいてください。

警告
水素は可燃性です。漏れたガスが閉まれた気密な空間に閉じ込められると火事や爆発を引き起こすおそれがあります。水素を分析で使用するときは、装置を操作する前に必ずすべての接続部、ライン、およびバルブの漏れテストを実行してください。装置に対してなんらかの作業を行なうときは、必ず水素（H₂）をその供給源で閉じてください。

オプション

スプリット/スプリットレス注入口には2つのオプションがあります。

• 標準 - 压力範囲は0〜100 psiです。ほとんどのカリムに適切です。
• 高圧 - 压力範囲は0〜150 psiです。ガスフローにかなり大きな抵抗となる、内径のごく小さな毛管カリムに有効です。

使用するオプションを決定するには、GCのコンフィグレーション(Status/Settings/Configure)を確認します。このスクリーンには、注入口の圧力範囲が表示されます。

注入口モード

注入口には、以下の4つの操作モードがあります。

• スプリット - カリムフローとベントフローに分割されます。
• スプリットレス - 分割されません。サンプルのほとんどはカリムに入ります。ピーク幅の拡大と溶剤のテーリングを避けるため、少量のサンプルが注入口からパージされます。
スプリット/スプリットレス注入口

注入口とカラム

パルスドスプリット - スプリットモードによく似ていますが、注入前と注入中に注入圧力を上げ、指定した時間に通常の圧力に戻します。スプリット比が変わらないようにトータルフローも増加します。この特殊な「プログラミング」は、流量プログラムや圧力プログラムとは独立したプログラムです（68ページのスプリットモードを参照）。

パルスドスプリットレス - パルスドスプリットモードに似ていますが、スプリットレスです。

スプリット/スプリットレス注入口は、ガスセーバー機能を装備しています。この機能は、注入を終えた後、カラムを流れる流量は変更せずに、注入口からスプリットベンチに捨てられる流量のみを減少します。詳しくは、73ページのガスセーバーを参照してください。

セプタムパージラインは、サンプルが注入されるセプタムの近くにあります。このラインから少量の搬送ガスが排出され、セプタムブリードが除去されます。この流量は自動的に設定されます。表10を参照してください。

表10. セプタムパージ流量

<table>
<thead>
<tr>
<th>搬送ガス</th>
<th>セプタムパージ流量</th>
</tr>
</thead>
<tbody>
<tr>
<td>He、N₂、95%Ar/5%Me</td>
<td>3mL/分</td>
</tr>
<tr>
<td>H₂</td>
<td>6mL/分</td>
</tr>
</tbody>
</table>

注入口とカラム

注入口パラメータとカラムパラメータは相互に関連しています。そしてその関係はカラムがコンフィグレーションされているかどうかによって異なります。そこで、GCをセットアップする際は、以下の順番に従ってください。

1. カラムをコンフィグレーションします（11ページのコントロールモジュールの各種スクリーン機器のコンフィグレーションを参照）。カラムをコンフィグレーションしていないと、カラムの注入口は圧力モードしか使用できません。スプリット比を直接設定するなど、注入口流量に依存した機能は利用できません。

2. カラムモードを選択します（38ページのカラムモードを参照）。

3. 必要ならば、カラムの流量と圧力をプログラムします（41ページの流量プログラムまたは圧力プログラムを参照）。

4. 注入口をセットアップします（63ページの注入口のセットアップを参照）。

5. オーブンをセットアップします（145ページのオーブンセットアップを参照）。

Released: 2004年3月 6850 Series コントロールモジュールユーザーアインフォメーション ページ62/188
6. 検出器をコンフィグレーションします（121ページの熱伝導度検出器（TCD）、130ページの水素炎イオン化検出器（FID）、140ページのMicrocell Electronキャプチャ検出器、153ページの炎光光度検出器（FPD）を参照）。

注入口のセットアップ

注入口をセットアップするには
1. 以下のスクリーンを表示します。

Status / Setup / Inlet Setup

2. 使用する搬送ガスを選択します。
3. 圧力単位を選択します（表11に圧力単位の換算表を示します）。

表11. 圧力単位の換算

<table>
<thead>
<tr>
<th>圧力单位</th>
<th>圧力单位</th>
<th>換算係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>bar</td>
<td>0.0689476</td>
</tr>
<tr>
<td>psi</td>
<td>kPa</td>
<td>6.89476</td>
</tr>
<tr>
<td>bar</td>
<td>psi</td>
<td>14.5038</td>
</tr>
<tr>
<td>bar</td>
<td>kPa</td>
<td>100</td>
</tr>
<tr>
<td>kPa</td>
<td>psi</td>
<td>0.145038</td>
</tr>
<tr>
<td>kPa</td>
<td>bar</td>
<td>0.01</td>
</tr>
</tbody>
</table>

4. 必要に応じて圧力調整を選択します。
 - Vacuum Correct - カラムが真空の場合。たとえば、質量選択検出器やマススペクトロメータを使用している場合です。
 - None - 圧力が通常の場合。ほとんどの検出器にあてはまる設置です。
 - Pressure Correct - 別の条件が関係する場合。
プレップラン

ガスセーバーモード、スプリットレスモード、パルスド注入口モードを使用してマニュアル注入で分析する場合は、GC に "Waiting for prep run" と表示され、以下のようなメッセージが表示されます。

- "Gas saver active"
- "Inlet purging"
- "Inlet pulse inactive"

このような場合、Prep Run キーを押し、設定をリセットします。"Ready for"メッセージが表示されたらサンプルを注入し、Start を押します。

この操作が煩わしいなら、各分析の最後で自動的に GC から Prep Run コマンドを発行するようにできます。以下のスクリーンで設定します。

Status / Setup / Automation / Auto Prep Run

Enable Auto Prep Run を選択し、Esc を押します。

こうしておくとガスセーバーは無効になり、注入口の圧力はパルス圧力レベルまですぐに上がり、注入口パージバルブは閉じられます。分析にガスセーバー機能を使って搬送ガスを節約したい場合は、Enable Auto Prep Run は選択しないでください。

Auto Prep Run を無効にしておくことをお勧めします。この機能は、スプリット/スプリットレス注入口がスプリットレスモードの場合にだけ適用し、Prep run を押すと同等の機能があります。
注入口モードの設定

1. 以下のスクリーンを表示します。この例は、GC がスプリットレスモードであることを示しています。

```
Status / Settings / Inlet / More / Inlet Mode / Enter
```

2. 希望するモードを選択して、OK を押します。

スプリット / スプリットレス注入口に関する用語

以下にスプリット / スプリットレス注入口に関連して使用される用語を挙げます。その多くは、この注入口を使用する際にスクリーンに表示されるフィールドです。

- 流量 - Purge Start におけるパージメントからの流量を mL/分の単位で表します。カラムのコンフィグレーションを行わずに操作している場合、この値は指定できません。
- 圧力 - 圧力パルスまたはペント期間の前後、実際の注入口の圧力および設定した注入口の圧力です（測定単位は psi、bar、kPa）。プログラムを使用しない場合、これが圧力プログラム、カラムヘッドまたは固定圧力の開始点になります。
- パルス圧力 - 測定開始に希望する注入口の圧力です。Prep Run を押した後に圧力はこの設定まで上昇し、Pulse time が経過するまで安定状態を保ち、その後 Pressure に戻ります。
- パルス時間 - 注入口の圧力は、Start Run 後この時間が経過すると、通常設定に戻ります。
- パージ流量 - Purge Start におけるパージメントからの搬送ガスの流量を mL/分の単位で表します。カラムのコンフィグレーションが必要です。
- パージ時間 - Start Run から測定した、サンプルの搬送が終了する時間（パージバルブが開きます）。パージ開始を、パルス時間の 0.1 〜 0.5 分前に設定します。
- スプリット流量 - スプリット / パージメントからの流量を mL/分の単位で表します。カラムがコンフィグレーションされていない場合、このフィールドは利用できません。
スプリット / スプリットレス注入口
圧力パルスモード

- スプリット比 - カラム流量に対するスプリット流量の比率です。カラムがコンフィグレーションされていない場合、このフィールドは利用できません。
- 温度 - 実際の、または設定したイニシャル注入口温度です。
- 総流量 - プレップラン（プレップランライトが点灯していて、点滅していないこと）およびPurge Start前後の測定中に表示される、注入口への総流量で、スプリット流量、カラム流量、セプタムパージ流量を合計したものです。これらの時間には設定値を入力できません。その他の時間には、Total flowには、設定値と実際の値があります。総流量を変更すると、スプリット比やスプリット流量は変化しますが、カラム流量や圧力はそのままです。圧力パルスを使用すると、スプリット比を一定に保つために総流量が増加します。

圧力パルスモード

圧力パルスモードは、分析開始直前に注入口の圧力を上げ、指定した時間後に通常の値に戻します。圧力パルスにより、注入口からカラムへのサンプルは速やかに移送されるため、注入口内でサンプルが分解する可能性が小さくなります。圧力パルスのためにクロマトグラフピークの形状が歪んだ場合は、リテンションギャップを使用すると、ピーク形状を回復できることもあります。

圧力パルスはスプリットモード、あるいはスプリットレスモードで使用され、カラム圧力プログラミングまたはカラム流量プログラミングと一緒に使用できます。図3に示されるように、圧力パルスプログラムは、圧力や流量プログラムに優先します。

圧力パルスはサンプルを注入する前に開始されなければなりません。オートインジェクタかシーケンスを使用している場合は、GCは自動的に圧力パルスを開始します。

マニュアル注入を行う場合は、パルスを開始する前にPrep Runを押し、"Ready for manual inj"メッセージが表示されるまで待ってください。
図 3. 圧力パルスとカラム流量（またはカラム圧力）

圧力パルスをセットアップするには
1. 先に、カラムに流れる流量の条件をセットアップします。必要であれば流量プログラム、圧力プログラムもセットアップします（41ページの流量プログラムまたは圧力プログラムを参照してください）。それから、下のスクリーンを表示します。

Status / Settings / Inlet / More

2. Pulse Mode を選択し、Enter を押して、下のスクリーンを表示します。

Status / Settings / More / Pulse Mode / Enter

3. Mode で Pulsed を選択します。Pressure 値と Time 値を入力します。
 • Pressure はプレップランからパルス時間（Pulse Time）までの注入口圧力です。
 • Time（Start 後の経過時間）は、注入口圧力を圧力パルスから流量プログラムまたは圧力プログラムで設定された圧力（41ページの流量プログラムまたは圧力プログラムを参照）に変更する時間です。

4. OK を押すと、これらの値はセットされます。Esc でキャンセルできます。
スプリットモード

流路系

スプリット注入では、液体サンプルは高温の注入口で急速に気化します。気化した少量のサンプルだけがカラム内に入り、残りはスプリットベントとセプタムパージベントから排出されます。カラム流量に対するスプリット流量の比を表すスプリット比は、ユーザーがコントロールします。スプリット注入は、主にサンプルが高濃度で、サンプルの大部分をスプリット/パージベントから排出してもかまわないときに使用されます。また、希釈できないサンプルにも、スプリットモードを使用します。

図4にスプリットモード操作での、注入口流路系を示します。
スプリットモードの使い方（カラムがコンフィグレーションされている場合）

1. カラムモードが、スプリットモードで、定流量モードかランプ流量モードになっていることを確認します。38ページのカラムモードを参照してください。

2. 以下のスクリーンを表示します。

Status / Settings / Inlet

3. 注入口温度（Temp）を設定します。

4. スプリット比またはカラム流量を入力します。装置が他の値を計算して表示します。

5. カラム流量（mL/min）を設定します。

スプリットモードの使い方（カラムがコンフィグレーションされていない場合）

以下のスクリーンを表示します。

Status / Settings / Inlet

1. 必要ならば、注入口モードをスプリットモードに変更します。
スプリット/スプリットレス注入口
スプリットレスモード

2. 注入口の温度（Temp）と圧力（Pressure）を設定します。流量計を使用してスプリットベントから排出される流量を測定します。

Total flow からスプリットベントフローとセプタムパージフローを引いて、カラム流量を計算します（搬送ガスタイプによるセプタムパージ流量の仕様については、表10を参照してください）。

3. スプリット比を下げてください。必要に応じて調整します。

スプリット比 = \frac{スプリット流量}{カラム流量}

スプリットレスモード

流路系
スプリットレスモードでは、サンプルを注入してしばらくの間、パージバルブは閉じられています。その間にライナーで気化したサンプルはカラムに移送されます。注入口、指定された時間が経過すると、パージバルブが開き、ライナー内に残っているサンプルの蒸気は、スプリットベントから追い出されます。このパージにより、大きな注入口容積と小さいカラム流量に起因する溶剤テーリングは防止されます。図5を参照してください。
ガスセーバーを使用する場合は、ガスセーバー時間をパージ時間より後に設定してください（ガスセーバーについての詳細は73ページのガスセーバーを参照）。

図5. スプリットレス流路系（プレップランからパージ時間まで）

スプリットレスモードでの注入

スプリットレス注入の正しい手順は以下のとおりです：
1. 加熱した注入口でサンプルと溶剤を気化します。
2. 流量を少なく、オーブンの温度を低くして、カラムヘッドに溶剤凝縮ゾーンを生成させます。
3. カラムヘッドのこのゾーンでサンプルをトラップし、再濃縮します。
4. すべての（または少なくとも大部分の）サンプルがカラムに流入した後で、パージバルブを開き、注入口内に残ったサンプル（大部分は溶剤）を排出します。これによって、残留サンプルによって発生する長い溶剤テールングを除去します。
5. オーブン温度を上げて、まず溶剤を、次にサンプルをカラムヘッドの凝縮部分から展開します。

操作条件を調整して最適化するには、ある程度の試行錯誤が必要です。スタートアップポイントで使用する主要なパラメータの推奨値を表12に示します。
スプリットレスモードの使い方（カラムがコンフィグレーションされている場合）

1. カラム、搬送ガス、流量プログラム、圧力プログラム（使用している場合）が正しくコンフィグレーションされていることを確認してください。

2. 以下のスクリーンを表示します。

Status / Settings / Inlet

| スクリーン | コントロールモジュールユーザーインフォメーション | ページ72 / 188 |

3. 必要ならば、注入口モードをスプリットレスに変更してください。65 ページの注入口モードの設定を参照してください。

4. カラム温度 (Temp) とカラム流量 (Column mL/min) を入力します。

5. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run（64ページのプレップランを参照）を使用します。

表 12. スプリットレスモードの注入口パラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>指定可能な設定値の範囲</th>
<th>設定開始時点の推奨値</th>
</tr>
</thead>
<tbody>
<tr>
<td>オープン温度</td>
<td>冷却なし、0 ℃〜 375 ℃ CO2 冷却、20 ℃〜 375 ℃</td>
<td>溶剤の沸点より 30 ℃下</td>
</tr>
<tr>
<td>オープン初期時間</td>
<td>0 〜 999.9分</td>
<td>≥ 注入口パージ時間</td>
</tr>
<tr>
<td>注入口パージ時間</td>
<td>0 〜 999.9分</td>
<td>ライナー容積 / カラム流量</td>
</tr>
<tr>
<td>ガスセーバー時間</td>
<td>0 〜 999.9分</td>
<td>パージ時間より後</td>
</tr>
<tr>
<td>ガスセーバー流量</td>
<td>15 〜 1000 mL/min</td>
<td>最大カラム流量より 15 mL/min大きい値</td>
</tr>
</tbody>
</table>

Released:2004 年 3 月 6850 Series コントロールモジュールユーザーインフォメーション
スプリットレスモードの使い方（カラムがコンフィグレーションされていない場合）

1. 必要ならば、注入口モードをスプリットレスに変更してください。
2. 以下のスクリーンを表示します。

Status / Settings / Inlet

3. カラムの温度（Temp）（最高 375 ℃）と圧力（Pressure）を入力します。
4. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run（64ページのプレップランを参照）を使用します。

ガスセーバー

ガスセーバーはサンプルをカラムに移送した後、スプリットベントに流れる搬送ガス流量を減少します。カラムヘッドの圧力と流量は一定に保ったままで、パージおよびスプリットベント流量のみを減少します。カラム流量以外の流量は、Start（シーケンスまたはオートインジェクタの操作）、Prep Run（マニュアル注入）が押されるまで、減少したままです。図6を参照してください。
図6. ガスセーバー操作

ガスセーバーをコンフィグレーションするには以下のスクリーンを表示します。

Status / Settings / Inlet / More / Gas Saver / Enter

1. Gas Saverを選択します。Flow値とTime値を入力します。
 - Flowは注入と注入の間にセットされる減少された流量です。
 - Time (注入後の経過時間) は通常の流量からガスセーバーモードの流量 (Flow) に、流量を変更する時刻です。手動もしくは自動で Prep Runイベントが実行されるまで、ガスは減少されたままの流量です。
2. OKを押すと、これらの値はセットされます。Escでキャンセルできます。
水素使用上の注意

警告
搬送ガスや燃焼ガスとして水素（H2）を使用する場合は、水素がオーブンの中
に流れ出ると爆発を引き起こすおそれがあることを知っておいてください。この
ため、すべての接続が完了するまでは絶対に水素ガスの供給を行わないでくだ
さい。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接
続部にカラムを接続するか、キャップでふさいでおいてください。

警告
水素は可燃性です。漏れたガスが気密な空間に充満すると、火災や爆発のおそれ
があります。水素を分析で使用するときは、装置を操作する前に必ずすべての接
続部、ライン、およびバルブの漏れテストを実行してください。装置に対してな
んらかの作業を行なうときは、必ず水素（H2）をその供給源で閉じてください。

注入口とカラムのコントロール値

注入口パラメータとカラムパラメータは相互に関連しています。そしてその関係
はカラムがコンフィグレーションされているかどうかによって異なります。下記
に従ってGCをセットアップしてください。

1. 充填カラム、あるいはコンフィグレーションされていないワイドボア毛管
カラムを使用している場合は、流量モードのみを利用できます。流量モー
ドはパージ付き充填カラム注入口でデフォルトのコントロールメソッドで
す。

ワイドボア毛管カラムを使っているなら、カラムをコンフィグレーション
して（36ページのカラムコンフィグレーションを参照）、流量モードの代
わに注入口圧力モードを使用できます。

2. カラムモードを選択します（38ページのカラムモードを参照してください）。

3. 必要ならば、カラムの流量と圧力をプログラムします（41ページの流量プ
ログラムまたは圧力プログラムを参照してください）。

4. 注入口をセットアップします（76ページの注入口のセットアップを参照し
てください）。

5. オーブンをセットアップします（145ページのオーブンセットアップを参
照）。

6. 検出器を設定します（121ページの熱伝導度検出器（TCD）、130ページの
水素炎イオン化検出器（FID）、153ページの炎光光度検出器（FPD）、140
ページのMicrocell Electronキャプチャ検出器を参照）。

Released: 2004年3月 6850 Seriesコントロールモジュールユーザーアイフォメーション ページ75/188
注入口のセットアップ

注入口をセットアップするには、次のスクリーンを表示します。

Status / Setup / Inlet Setup

1. 使用する搬送ガスを選択します。
2. 希望する圧力単位を選択します（表13に圧力単位の換算表を示します）。

表13. 圧力単位の換算

<table>
<thead>
<tr>
<th>換算前</th>
<th>換算後</th>
<th>換算係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>bar</td>
<td>0.0689476</td>
</tr>
<tr>
<td></td>
<td>kPa</td>
<td>6.89476</td>
</tr>
<tr>
<td>bar</td>
<td>psi</td>
<td>14.5038</td>
</tr>
<tr>
<td></td>
<td>kPa</td>
<td>100</td>
</tr>
<tr>
<td>kPa</td>
<td>psi</td>
<td>0.145038</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>0.01</td>
</tr>
</tbody>
</table>

3. 必要に応じて圧力調整を選択します。
 - Vacuum Correct- カラムが真空の場合。たとえば、質量選択検出器やマススペクトロメータを使用している場合です。
 - None- 圧力が通常の場合。ほとんどの検出器にあてはまる設定です。
 - Pressure Correct- 別の条件が関係する場合。
パージ付き充填カラム注入口を使用する

この注入口には充填カラムを取り付け、高い効率での分離を必要としない分析に使用します。また、ワイドボア毛管カラムを取り付けて、10 mL/min 以上の流量を流して使用することもできます。

毛管カラムを使用する場合、カラムがコンフィグレーションされていると、この注入口は圧力コントロールモードで使用することもできます。カラムがコンフィグレーションされていない（充填カラムおよびコンフィグレーションしていない毛管カラム）場合、この注入口は流量コントロールモードで使用します。

図 7 では、これらのモードを比較しています。

図 7. パージ付き充填カラム注入口の流路ダイアグラム
パージ付き充填カラム注入口を使用する

充填カラムまたは未定義の毛管カラム
充填カラムやコンフィグレーションしていない毛管カラムを使用する場合に、注入口をプログラムするには、次のスクリーンを表示します。

Status / Settings / Inlet

充填カラムまたは未定義の毛管カラム

上の例では、以下の点に注目してください:

• 温度と流量について設定値と実測値が表示される。
• 注入口の圧力は測定 / 表示されるが、設定はできない。

1. 注入口温度 Temp をセットします。
2. 注入口に流す総流量 Total Flow をセットします。総流量は、カラム流量とセプタムパージ流量の和です。

毛管カラムがコンフィグレーション済みの場合
コンフィグレーション済みの毛管カラムを使用して注入口をプログラムするには

1. 以下のスクリーンを表示します。

Status / Settings / Inlet

2. そのメソッドで使用する注入口温度 Temp と圧力 Pressure をセットします。

• 温度と圧力について設定値と実測値が表示されます。
• トータル流量は測定 / 表示されますが、設定はできません。
Programmable Temperature Vaporization 注入口

水素使用上の注意

警告
搬送ガスや燃焼ガスとして水素（H2）を使用する場合は、水素がオープンの中
に流れ出ると爆発を引き起こすおそれがあることを知っておいてください。この
ため、すべての接続が完了するまでは絶対に水素ガスの供給を行わないでくだ
さい。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接
続部にカラムを接続するか、キャップでふさいでおいてください。

警告
水素は可燃性です。漏れたガスが囲まれた気密な空間に閉じ込められると火事や
爆発を引き起こすおそれがあります。水素を分析で使用するときは、装置を操作
する前に必ずすべての接続部、ライン、およびバルブの漏れテストを実行してく
ださい。装置に対してなんらかの作業を行うときは、必ず水素（H2）をその
供給源で閉じてください。

注入口モード

Agilent Programmed Temperature Vaporization（PTV）注入口システムには5つの操
作モードがあります。

• 主要コンポーネントの分析には、通常スプリットモードが使用されます。
• パルスドスプリットモードは、スプリットモードと似ていますが、サンプ
ル導入時に注入口に圧力パルスを加えることでサンプルのカラムへの移送
を加速します。
• スプリットレスモードは、痕跡分析に使用されます。
• パルスドスプリットレスモードでは、サンプル導入時に圧力パルスが使用
できます。
• 溶剤ベントモードは、多量の注入に使用されます。毎回の測定で、単数注
入か複数注入が使用できます。
注入口とカラム

注入口パラメータとカラムパラメータは相互に関連しています。そしてその関係はカラムがコンフィグレーションされているかどうかによって異なります。そこで、GCをセットアップする際は、以下の順番に従ってください。

1. カラムをコンフィグレーションします（11ページのコントロールモジュールの各種スクリーン機器のコンフィグレーションを参照）。カラムをコンフィグレーションしていないと、カラムの注入口は圧力モードでしか使用できません。スプリット比を直接設定するなど、注入口流量に依存した機能は利用できません。

2. カラムモードを選択します（38ページのカラムモードを参照）。

3. 必要ならば、カラム流量またはカラム圧力をプログラムします（41ページの流量プログラムまたは圧力プログラムを参照）。

4. 注入口をセットアップします（80ページの注入口のセットアップを参照）。

5. オーブンと検出器をセットアップします（オーブンのセットアップは145ページのオーブンセットアップを、検出器のセットアップ方法は、該当する章を参照）。

注入口のセットアップ

注入口をコンフィグレーションするには、次のスクリーンを表示します。

Status / Setup / Inlet Setup

1. 使用する搬送ガスを選択します。
2. 希望する圧力単位を選択します（表14に圧力単位の換算表を示します）。
表 14. 圧力単位の換算

<table>
<thead>
<tr>
<th>選算前</th>
<th>選算後</th>
<th>選算係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi</td>
<td>bar</td>
<td>0.0689476</td>
</tr>
<tr>
<td>kPa</td>
<td>psi</td>
<td>14.5038</td>
</tr>
<tr>
<td>bar</td>
<td>psi</td>
<td>14.5038</td>
</tr>
<tr>
<td>kPa</td>
<td>psi</td>
<td>0.145038</td>
</tr>
<tr>
<td>kPa</td>
<td>bar</td>
<td>0.01</td>
</tr>
</tbody>
</table>

3. 必要に応じて圧力調整を選択します。
 - Vacuum Correct カラムが真空の場合。たとえば、質量選択検出器やマススペクトロメータを使用している場合です。
 - None 圧力が通常の場合。通常の検出器にあてはまる設定です。
 - Pressure Correct 別の条件が関係する場合。

4. More を押し、Coolant Type を選択してから、Enter を押します。

5. 冷媒の種類を設定して、OK を押します。注入口の冷媒冷却を無効にする場合、または冷媒冷却が利用できない場合は、No Coolant を選択します。OK を押します。
6. Liquid CO2 を選択した場合は、More を押し、Coolant Settings を選択します。以下のスクリーンが表示されます。該当する情報を入力して、OK を押します。

- Cryo Enable を選択すると、カラムオーブンがイニシャル温度に達するとすぐに注入口が冷媒冷却されます。選択しない場合、冷却は無効です。
- Timeout - Cryo Timeout (冷却タイムアウト) が来ると注入口温度がシャットダウンします。オーブンの安定後、指定した時間（5 〜 120 分の範囲で、デフォルトは 30 分）内に分析が開始されない場合です。Cryo Timeout を OFF にすると、この機能は無効になります。シーケンスの終了時や自動化分析が何かの理由で中断したとき冷媒を無駄にしないため、この機能をオンにしておくことをお勧めします。Post Sequence メソッドも使用できます。
- Ambient - Cryo が有効な場合、注入口を設定値に保持するために冷媒冷却が使用される上限温度です。設定値がこの上限よりも高い場合、注入口を設定値まで下げるために冷媒冷却が使用されますが、この設定値に保持するためには使用されません。
- Cryo Fault（冷却故障）- 16 分間冷却操作を続けても、設定温度に達しない場合、注入口はシャットダウンされます。この時間は設定値に到達する時間であり、安定して設定値で準備ができる時間ではありません。

シャットダウン操作

Cryo Timeout と Cryo Fault はどちらも Cryo シャットダウンの原因になります。Cryo シャットダウンは、GC が測定を開始できない場合に冷媒を節約します。冷媒冷却システムは正常に機能していると考えられます。オーブンが設定値に達する前に指定した Cryo Timeout の期間が終了すると Cryo Timeout になります。冷媒冷却を 16 分間続けても、オーブンが設定温度に達しない場合、Cryo Fault になります。この場合、注入口ヒーターはオフになり、冷却バルブは閉じます。GC はビープ音を発し、Inlet cryo shut off と表示されます。
過熱を避けるために、注入口ヒーターをモニターします。ヒーターが許容時間にわたりオンで、注入口が設定値になっていない場合、ヒーターはシャットダウンされます。GC はビープ音を発し、Inlet heating slow と表示されます。

どちらの状態から回復する場合も、GC をオフにしてから再びオンにするか、または新しい設定値を入力してください。

注入口モードの設定

プログラミングの前に、注入口のモードを設定します。設定方法は以下のとおりです。

1. 以下のスクリーンを表示します。下の例では、注入口はスプリットレスモードになっています。

 Status / Settings / Inlet / More / Inlet Mode / Enter

 ![スクリーン例]

 2. 希望するモードを選択したら、OK を押して、1 つ前のスクリーンに戻ります。

注入口の加熱

温度は、イニシャル温度と 3 つの速度および 3 つのプラトーでプログラムできます。速度は、0.1 〜 720 ℃ /min の間で選択できます。

注意

イニシャル温度とオーブンのイニシャル温度が近すぎる場合、注入口は設定値を維持できない場合があります。少なくとも上下 6 ℃ の差を付けることをお勧めします。

通常の目的では、PTV は、サンプル全体を注入し終えるまでサンプルを注入口ライナーに保持しておくように設計されており、注入は複数回行われる場合があります。この場合、サンプルを急速にカラムに移送できるように PTV を加熱します。イニシャル保持、シングルランプ、サンプル移送を完了する最終保持によってこれが可能になります。
2つのランプを追加で利用でき、数種類の用途が可能です。

- 注入口を高温に加熱して、次の測定に供えてライナーを熱クリーニングできます。
- 注入口は、熱応力を軽減するために、下方にだけプログラムできるようになっています。つまり、ファイナル温度は前回より低い温度しか設定できません。
- 下方プログラミングは、次回の測定に注入口を準備するために使用されます。これでサイクル時間が減少でき、サンプルのスループットが増大します。

PTV温度ランプをプログラムするには

1. 以下のスクリーンを表示します。

Status/Settings/Inlet/Ramps/Ramp 1

2. ランプを入力します。147ページの温度プログラミングと類似しています。

- スタート温度 - 実際の、また設定した注入口の温度です。
- スタートタイム - Start Runから測定した時間で、Start Runで注入口のイニシャル温度保持が終了します。通常、Vent Endより後です。
- 昇温速度 - 注入口の温度ランプ1、2、3の昇温プログラムです。最大は、毎分 720 ℃です。
- ファイナル温度 - ランプ1、2、3での最終的な注入口の温度です。範囲は、-30 ℃〜 375 ℃で、Start Runから測定するのではなく、継続時間です。
- ファイナルタイム - ファイナル温度1、2、3の保持時間です。
PTV 用語

以下にPTV注入口に関連して使用される用語を挙げます。その多くは、この注入口を使用する際にスクリーンに表示されるフィールドです。

・ 流量 - Purge Startにおけるパージベントからの流量をmL/分の単位で表します。カラムのコンフィグレーションを行わずに操作している場合、この値は指定できません。

・ 圧力 - 圧力パルスまたはベント期間の前後の、実際の注入口の圧力および設定した注入口の圧力です（測定単位はpsi、bar、kPa）。プログラムを使用しない場合、これが圧力プログラム、カラムヘッドまたは固定圧力の開始点になります。

・ パルス圧力 - 測定開始に希望する注入口の圧力です。Prep Runを押した後に圧力はこの設定まで上昇し、Pulse timeが経過するまで安定状態を保ち、その後Pressureに戻ります。

・ パルス時間 - 注入口の圧力は、Start Run後この時間が経過すると、通常設定に戻ります。

・ パージ流量 - Purge Startにおけるパージベントからの搬送ガスの流量をmL/分の単位で表します。カラムのコンフィグレーションが必要です。

・ パージ開始 - Start Runから測定した、サンプルの移送が終了する時間（パージバルブが開きます）。パージ開始を、パルス時間の0.1～0.5分前に設定します。

・ スプリット流量 - スプリットパージベントからの流量をmL/分の単位で表します。カラムがコンフィグレーションされていない場合、このフィールドは利用できません。

・ スプリット比 - カラム流量に対するスプリット流量の比率です。カラムがコンフィグレーションされていない場合、このフィールドは利用できません。

・ 温度 - 実際の、また設定したイニシャル注入口温度です。

・ 総流量 - プレップラン（プレップランライトが点灯していて、点滅していないこと）およびPurge Start前の測定中に表示される、注入口への総流量で、スプリット流量、カラム流量、セプタムパージ流量を合計したもので、これらの時間には設定値を入力できません。その他の時間には、Total flowには、設定値と実際の値があります。総流量を変更すると、スプリット比やスプリット流量は変化しますが、カラム流量や圧力はそのままです。圧力パルスを使用すると、スプリット比を一定に保つために総流量が増加します。

・ ベント終了 - Start Runから測定した、溶剤ベント終了時間です。通常、多量の注入が行われた場合には注入が完了するより排出するほうが、時間がかかります。
ベント流量 - ベント期間にスプリットベントから出てくる搬送ガスの流量です。流量が大きいとライナーがすばやく掃除され、溶剤排出にかかる時間が減少します。通常のカラムでは、100 mL/minのベント流量であればほぼ問題ない速度で溶剤が排出されますが、カラムに微量の溶剤が付着します。

ベント圧力 - ベント期間中の注入口の圧力です。ベント中に注入口の圧力を減少することで、溶剤排出がすばやく行われます。また、圧力を軽減することで、この際にカラムに入る搬送ガスの量と溶剤蒸気の量が減少します。

0 ～ 100 psigでユーザーが選択します。0 を選択すると、注入口では任意のベント流量で可能な最も低い圧力を使用します。表15は、ヘリウムを使用した場合の各種ベント流量における最小圧力の近似値を示しています。表に出ているより低い圧力は、流量を減少しなければ使用できません。

表15. 達成可能最小圧力

<table>
<thead>
<tr>
<th>ベント流量 (mL/min)</th>
<th>設定値 "0"での実際のベント圧力</th>
<th>設定値 "0"での実際のベント圧力</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.7</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>1.3</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>2.6</td>
<td>18</td>
</tr>
<tr>
<td>500</td>
<td>6.4</td>
<td>44</td>
</tr>
<tr>
<td>1000</td>
<td>12.7</td>
<td>88</td>
</tr>
</tbody>
</table>

パルスドモード

圧力パルスモード（スプリットおよびスプリットレス）は、分析開始直前に注入口の圧力を上げ、指定した時間後に通常の値に戻します。圧力パルスにより、注入口からカラムへ、サンプルは速やかに移送されるため、注入口内でサンプルが分解する可能性は小さくなります。圧力パルスのためにクロマトグラフピークの形状が歪んだ場合は、リテンションギャップを使用すると、ピーク形状を回復できます。圧力パルスモードでマニュアル注入を行う前に、Prep Runを押す必要があります。

圧力パルスモードでは、カラム圧力およびカラム流量のプログラミングが可能です。ただし、圧力パルスプログラムは、カラム圧力や流量プログラムに優先します。図8を参照してください。
図 8. 圧力パルスとカラム流量（またはカラム圧力）

圧力パルスをセットアップするには
1. 先に、カラムに流れる流量の条件をセットアップします、必要であれば流
 量プログラム、圧力プログラムもセットアップします（41 ページの流量プ
 ログラムまたは圧力プログラムを参照してください）。それから、下のスク
 リーンを表示します。

Status / Settings / Inlet / More

2. Pulse Mode を選択し、Enter を押して、下のスクリーンを表示します。

Status / Settings / More / Pulse Mode / Enter
3. **Mode** で **Pulsed** を選択します。Pressure 値と Time 値を入力します。
 - Pressure はブレップランからパルス時間（Pulse Time）までの注入口圧力です。
 - Time （Start 後の経過時間）は、注入口圧力を圧力パルスから流量プログラムや圧力プログラムで設定された圧力（41 ページの流量プログラ

4. OK を押すと、これらの値はセットされます。Esc でキャンセルできます。

スプリットレスモードの使い方（カラムがコンフィグレーションされている場合）

1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8 ページのスクリーン切り替えおよび 36 ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80 ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41 ページの流量プログラムまたは圧力プログラムを参照）

2. 以下のスクリーンを表示します。

Status / Settings / Inlet

![PTV Inlet](image)

3. 注入口温度と希望のランプを設定します。
4. More を押して、Pulse Mode を選択します。
5. Pulsed Mode を選択します。
6. Pulse Pressure 値と Pulse Time 値を入力して、OK を押します。
7. More を押して、Inlet Mode を選択します。
8. Splitless を選択します。

9. パージバルブを開きたい場合は、Purge Start を入力します。
10. Purge flow を入力します。OK を押します。
11. 必要なら、Gas Saver をオンにします。Purge Start 後の時間を設定して、OK を押します。

12. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run (64 ページを参照) を押します。

スプリットレスモードの使い方（カラムがコンフィグレーションされている場合）
1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8 ページのスクリーン切り替えおよび 36 ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80 ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41 ページの流量プログラムまたは圧力プログラムを参照）
2. 以下のスクリーンを表示します。

Status / Settings / Inlet

3. 注入口温度と希望のランプを設定します。
4. More を押して、Pulse Mode を選択します。
5. Mode では、Pulsed を選択します。

6. Enter values for Pulse Pressure 値と Pulse Time 値を入力して、OK を押します。
7. More を押して、Inlet Mode を選択します。
8. パージバルブを開きたい場合は、Purge Start を入力します。

9. OK を押します。
10. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run (64 ページを参照) を押します。
パルスドスプリットモードを使用するには（カラムがコンフィグレーションされている場合）

1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8ページのスクリーン切り替えおよび36ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41ページの流量プログラムまたは圧力プログラムを参照）
 - 注入口はパルスドスプリットモードになっている（83ページの注入口モードの設定および87ページの圧力パルスをセットアップするには参照）

2. 以下のスクリーンを表示します。カラムのコンフィグレーションによって表示が異なる場合があります（特定のフィールドが編集可または編集不可）。

Status / Settings / Inlet

3. 注入口温度（Temp）を設定します。カラム流量（mL/min）を設定します。それからスプリット比（Ratio）かスプリット流量（split mL/min）を入力します。スプリット比とスプリット流量は、どちらを入力しても、装置はもう一方の値を自動的に計算して表示します。

4. 必要であれば、Moreを押し、Gas Saverを選択してガスセーバーをオンにします。Pulse Timeより後になるように、Saver Timeを設定します。OKを押します。
5. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run（64ページを参照）を押します。

プログラビリモドモフを使用するには（カラムがコンフィグレーションされていない場合）

1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8ページのスクリーン切り替えおよび36ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41ページの流量プログラムまたは圧力プログラムを参照）
 - 注入口はパルスドスプリットモードになっている（83ページの注入口モードの設定および87ページの圧力パルスをセットアップするにはを参照）

2. 以下のスクリーンを表示します。

Status / Settings / Inlet

3. 注入口温度と希望のランプを設定します。
4. Moreを押して、Pulse Modeを選択します。
5. Pulsed Modeを選択します。

6. Pulse Pressure値とPulse Time値を入力して、OKを押します。
7. 注入口に流す総流量 Total Flow を設定します。流量計を使用してスプリット
ベントおよびセプタムパージベントから排出される流量を測定します。
8. 総流量からセプタムパージ流量を引きます。
9. スプリット比を算出します。必要に応じて調整してください。

Split mode

圧力パルスの有無が異なる 2 つのスプリットモードは、注入口に入ってくるガ
ス流路を、ソレノイドバルブを通るスプリットベント流量（流量は、mL/min 単
位で、スプリットベントとパージベントから）とセプタムパージ流量に分割しま
す。カラム流量に対するスプリットベント流量の割合を、スプリット比と言います。

下の図は、セプタムヘッドを含めたフローを示しています。セプタムレスヘッド
も、セプタムパージフローがヘッドをバイパスする以外は同じです（左下）。

総流量は、スプリット流量、カラム流量、セプタムパージ流量を合計したもので
す。総流量を変更すると、スプリット比やスプリット流量は変化しますが、カラ
ム流量や圧力はそのままです。
温度の検討

コールドスプリットの導入

コールドスプリットサンプルの導入には、溶剤の通常の沸点より低いイニシャル注入口温度を使用します。ライナーに気化した溶剤すべてを保持できる容量があれば、最初の注入口温度ランプを高い加熱速度（500 ℃/min 以上）で0.1分から開始します。ファイナル温度は、最も重い検体もライナーから気化して最低5分間保持できる高さが必要です。350 ℃、5分間のファイナル温度は、多量のC44を移送するのに充分であることが証明されています。

インジェクタの容量が大きい場合や溶剤を排出する場合には、溶剤がスプリットベントからベントされるまでイニシャル温度を保持してから最初のランプを開始します。熱的に安定した検体には高速モードを使用します。遅い速度では、注入口の熱的劣化を抑えることができます。

注入プロセスには一段昇温で充分です。残りのランプでライナーをクリーニングしたり、次の注入の準備に注入口の温度を下げたりできます。

ホットスプリットの導入

ホットスプリットの導入には、検体が気化する高さの温度にイニシャル温度を設定します。測定中、注入口が設定値を維持しますから、他には温度パラメータは必要ありません。

ライナーの容量が小さいため（約120マイクロリットル）、PTVではホットスプリットの導入の注入能力に制限があります。ホットスプリットモードで1μLを超えて注入すると、注入口から溢れて、分析に問題が生じる場合があります。

スプリットモードの使い方（カラムがコンフィグレーションされている場合）

1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8ページのスクリーン切り替えおよび36ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41ページの流量プログラムまたは圧力プログラムを参照）
 - 注入口はスプリットモードになっている（83ページの注入口モードの設定を参照）
2. 以下のスクリーンを表示します。カラムのモードによって表示が異なる場合があります（特定のフィールドが編集可または編集不可）。

Status / Settings / Inlet

3. イニシャル注入口設定値である、Temp を設定します。
4. イニシャル pressure または total flow を入力します。
5. 希望するスプリット比またはカラム流量を入力します。
6. 必要であれば、More を押し、Gas Saver を選択してガスセーバーをオンにします。次のスクリーンでパラメータの値を入力し、OK を押します。

Status / Settings / Inlet / More / Gas Saver

7. Gas Saver がオンである場合（64 ページを参照）、マニュアルでサンプルを注入する前に、Prep Run キーを押します。
スプリットモードの使い方（カラムがコンフィグレーションされていない場合）

1. 以下の点を確認してください。

 • カラムはコンフィグレーション済み（8ページのスクリーン切り替えおよび36ページのカラムコンフィグレーションを参照）

 • 搬送ガスはコンフィグレーション済み（80ページの注入口のセットアップを参照）

 • 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41ページの流量プログラムまたは圧力プログラムを参照）

 • 注入口はスプリットモードになっている（83ページの注入口モードの設定を参照）

2. 以下のスクリーンを表示します。

 Status / Settings / Inlet

3. 注入口温度 Temp をセットします。

4. 注入口に総流量または圧力を設定します。流量計を使用してスプリットベントおよびセプタムパージベントから排出される流量を測定します。

5. 総流量（Total flow）からセプタムパージ流量を引き、スプリット流量を求めます。

6. スプリット比を算出します。必要に応じて調整してください。

圧力パルス、カラム流量またはカラム圧力の図は、図 5 を参照してください。
Splitless mode

流量パターン

圧力パルスありまたはなしのこれらのモードでは、サンプルの注入および気化の間、ソレノイドバルブは閉じており、サンプルがカラムに移送される間も閉じたままです（図9を参照）。注入後の指定された時間に、バルブが開いてライナーに残った蒸気をスプリットベントから排出します（図10を参照）。このパージにより、大きな注入口容積と小さいカラム流量に起因する溶剤テーリングは防止されます。

図9は、セプタムヘッドを含めたフローを示しています。セプタムレスヘッドも、セプタムパージフローがヘッドをバイパスする以外は同じです（左下）。

図11は、このプロセスでの、流量、圧力、温度の時間的変化をグラフにしたもののです。

図9. ステージ1 サンプル注入
サンプルがカラムに移送された後、ソレノイドバルブが開き、残留している溶剤の蒸気をシステムからパージ。

図10. ステージ2 パージ
図 11. 流量、圧力、温度

温度の検討

コールドスプリットレスの導入

コールドスプリットレスの導入には、溶剤の通常の沸点より低いイニシャル注入口温度を使用します。通常の溶剤では、最初の注入口温度ランプを 0.1 分で開始すると、良好な移送および再現性が得られます。熱的に安定した検体には、500 ℃/分以上のプログラム速度が適切です。350 ℃、5 分間のファイナル温度で、多量のC44アルカンが移送できます。

温度プログラムが可能であることの主な利点は、デリケートな検体を移送するた
めに注入口を穏やかに加熱できることです。オーブンの最初の温度が、カラム上の検体に焦点を当てようすほど低ければ、注入口の加熱速度はさらに遅くできます（たとえば、120℃/min）。これにより、注入口からの温度劣化が低減し、ピークの形状や計量が向上します。

コールドスプリットレスの通常のアプリケーションでは、一段昇温で充分です。残りのランプでライナーをクリーニングしたり、次の注入の準備に注入口の温度を下げたりできます。

ホットスプリットレスの導入

ホットスプリットレスの導入には、検体が気化する高さの温度にイニシャル温度を設定します。測定中、注入口が設定値を維持しますから、他には温度パラメータは必要ありません。

ライナーの容量が小さいため（約120μL）、PTVでは注入された多量の液体から発生する蒸気を収容できません。1μLを超えて注入すると、注入口から蒸気が溢れて、分析に問題が生じる場合があります。コールドスプリットレスを導入すると、この問題を回避できます。

開始時の値

スプリットレス注入の正しい手順は以下のとおりです：

1. サンプルを注入し、注入口を温度プログラムして気化させます。
2. カラム流量を少なく、オーブンの温度を低くして、カラムヘッドに溶剤凝縮ゾーンを生成させます。
3. カラムヘッドのこのゾーンでサンプルをトラップし、再濃縮します。
4. すべて（または少なくともほとんど）のサンプルがカラムに移送されるまで待ちます。それから、パージバルブを開き、注入口内に残ったサンプル（大部分は溶剤）を排出します。これによって、残留サンプルによって発生する長い溶剤テーリングを除去します。
5. オーブンの温度を上げてサンプルを分析します。

操作条件を調整して最適化するには、ある程度の試行錯誤が必要です。スタートディグポイントで使用する主要なパラメータの推奨値を表16に示します。
表 16. スプリットレスモードの注入口パラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>指定可能な設定値の範囲</th>
<th>設定開始時点の推奨値</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーブン温度</td>
<td>冷却なし、室温 +10℃〜350℃ CO2冷却、30℃〜350℃</td>
<td>溶剤の沸点より10℃下</td>
</tr>
<tr>
<td>オーブン初期時間</td>
<td>0 〜 999.9 分</td>
<td>≥注入口パージ開始</td>
</tr>
<tr>
<td>注入口パージ開始</td>
<td>0 〜 999.9 分</td>
<td>ライナー容量 * x 5</td>
</tr>
<tr>
<td>ガスセーバー時間</td>
<td>0 〜 999.9 分</td>
<td>パージ開始後</td>
</tr>
<tr>
<td>ガスセーバー流量</td>
<td>15 〜 1000 mL/min</td>
<td>最大カラム流量より15 mL/min大きい値</td>
</tr>
<tr>
<td>注入口温度</td>
<td>冷却なし、オーブン温度 +10℃〜375℃ CO2冷却、30℃〜350℃</td>
<td>溶剤の沸点より10℃下で0.1分、その後昇温</td>
</tr>
</tbody>
</table>

* ライナー容量は、約120 µL

スプリットレスモードの使い方（カラムがコンフィグレーションされている場合）
1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8 ページのスクリーン切り替えおよび36 ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80 ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41 ページの流量プログラムまたは圧力プログラムを参照）
2. 以下のスクリーンを表示します。内容は、現在の設定に基づいて変化します。

Status / Settings / Inlet

3. 注入口温度と希望のランプを設定します。
4. カラム流量（mL/min）を入力します。
5. Moreを押して、Inlet Modeを選択します。
6. Splitlessを選択します。
7. FlowおよびPurge Startを入力します。
8. OKを押します。
9. 必要であれば、Moreを押し、Gas Saverを選択してガスセーバーをオンにします。Purge Startより後になるように、Saver Timeを設定します。
10. OKを押します。
11. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run（64ページを参照）を押します。

スプリットレスモードの使い方（カラムがコンフィグレーションされていない場合）

1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8ページのスクリーン切り替えおよび36ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41ページの流量プログラムまたは圧力プログラムを参照）
 - 注入口はスプリットレスモードになっている（83ページの注入口モードの設定を参照）

Released:2004年3月 6850 Series コントロールモジュールユーザーインフォメーション ページ102 / 188
2. 以下のスクリーンを表示します。内容は、現在の設定に基づいて変化します。

Status / Settings / Inlet

3. 注入口温度と希望のランプを設定します。
4. More を押して、Inlet Mode を選択します。
5. Splitless を選択します。

![PTV Inlet Screen](image)

6. Purge Start および Flow を入力します。OK を押します。
7. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run (64 ページを参照) を押します。

溶剤ベントモード

流量パターン

サンプルは冷えた注入口に注入します。条件を正しく選択し、サンプルが適切であれば、検体は注入口のライナーに留まり、溶剤は蒸発して排出されます。サンプルをカラムに移送して分析する前に、多量に注入するか複数回注入して濃度を高めることができるです。

下の図は、セプタムヘッドを含めたフローを示しています。セプタムレスヘッドも、セプタムパージフローがヘッドをバイパスする以外は同じです（左下）。
ステージ1 サンプルとベント

サンプリングおよびベント時ソレノイドバルブは開です。注入口はイニシャル温度で、溶剤の沸点かそれ以下です。溶剤蒸気はベントから排出され、サンプルはライナーの壁またはパッキングに残ります。

セプタムレスヘッドでのフロー

グラスライナー
ステージ2 サンプル移送

溶剤のベントが終了したら、ソレノイドバルブが開じ、注入口はファイナル温度まで加熱します。サンプルは毛管カラムに移送されます。

ステージ3 パージとクリーンアップ

ソレノイドバルブが再び開き、システムはステージ1コンフィグレーションに戻りますが、設定値が異なります。PTV注入口は、排出されます。注入口を熱クリーニングするため、またはサンプル移送後に注入口の温度を下げるために、昇温速度を追加して利用できます。これにより、ライナーの寿命が延びます。

温度、圧力、流量の検討

溶剤ベントモードには、ベント、サンプル移送、パージという、3つの異なる空圧状態があります。ベントでは、注入口の圧力やベントの流量を調節して、溶剤の排出が最適に行われるようにできます。移送状態では、通常のスプリットレス操作と似ており、検体をライナーからカラムに移送します。パージモードでは、注入口を次の測定に備えられます。
溶剤ベントモードの根本的な問題は、揮発性の検体を溶剤と一緒に失う可能性があることです。いくつかの解決法が考えられます。

- 注入口ライナーをなど保持力の高い材質でパッキングする。これで、揮発性検体の回収率はかなり向上しますが、さらに沸点が高い物質の回収率に影響がある可能性があります。
- サンプルの移送開始時に溶剤をいくらかライナーに残しておく。残留溶剤が、固定相のような働きをして、揮発性物質を保持しますが、溶剤の大きなピークが犠牲になります。
- 注入口の温度を下げる。この方法では、揮発性検体の蒸気圧は減少し、効率のよい回収が可能です。

溶剤の除去は以下の方法で早められます。

- サンプル導入時の注入口内の圧力を減少 - Vent pressure パラメータ
- 注入口の通過を増加 - Vent flow パラメータ

これらの解決策では、確かにPTVの使用が面倒になりますが、柔軟性が増し、困難な問題を解決できる可能性が高まります。
操作の順序
以下に、溶剤ベントモードを使用した通常の分析手順を示します。

<table>
<thead>
<tr>
<th>手順</th>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 注入前</td>
<td>スプリットベン</td>
<td>パージ流量またはセーバー流量</td>
</tr>
<tr>
<td></td>
<td>タフロー</td>
<td>注入口圧力</td>
</tr>
<tr>
<td></td>
<td>カラム設定値より取得</td>
<td>システムは休止状態で、注入口にパージフロー（オンの場合、セーバー</td>
</tr>
<tr>
<td></td>
<td></td>
<td>フロー）が流れている。</td>
</tr>
<tr>
<td>2 プレップラン開始</td>
<td>スプリットベン</td>
<td>ベント流量設定値</td>
</tr>
<tr>
<td></td>
<td>タフロー</td>
<td>注入口圧力</td>
</tr>
<tr>
<td></td>
<td>セーバー圧力設定値</td>
<td>注入に備えて設定値変更 GCの準備ができたら、サンプル注入。注入口およ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>びオープンの温度プログラムイニシャルタイム開始。溶剤ベントおよび</td>
</tr>
<tr>
<td></td>
<td></td>
<td>検体トラップ開始。</td>
</tr>
<tr>
<td>3 ベント終了時</td>
<td>スプリットベン</td>
<td>なし、ソレノイドバルブ閉</td>
</tr>
<tr>
<td></td>
<td>タフロー</td>
<td>注入口圧力</td>
</tr>
<tr>
<td></td>
<td>カラム圧力設定値</td>
<td>溶剤ベント終了、注入口の加熱と共に検体移送開始。</td>
</tr>
<tr>
<td>4 パージ開始</td>
<td>スプリットベン</td>
<td>パージ流量設定値</td>
</tr>
<tr>
<td></td>
<td>タフロー</td>
<td>注入口圧力</td>
</tr>
<tr>
<td></td>
<td>カラム圧力設定値</td>
<td>検体移送終了、注入口から残留蒸気パージ。分析開始。</td>
</tr>
<tr>
<td>5 セーバー時</td>
<td>スプリットベン</td>
<td>セーバー流量設定値</td>
</tr>
<tr>
<td></td>
<td>タフロー</td>
<td>注入口圧力</td>
</tr>
<tr>
<td></td>
<td>カラム圧力設定値</td>
<td>分析終了、ガス節約のため搬送ガス流量減少（セーバーがオンの場合）。</td>
</tr>
</tbody>
</table>

重要なポイント
- カラムを通るフローは注入口の圧力が制御します。プロセスで分析を行っている間、カラムに入力された流量または圧力の設定値またはプログラムでコントロールします。
- ベント終了 (Vent End) およびパージ開始 (Purge Start) は、セーバー時間 (Saver time) より前に来ることがあります。
- ベント終了 (Vent End) は、注入口の加熱が始まり、検体が放出される前に来る必要があります。
- パージ開始 (Purge Start) は、オープンが熱し、サンプルがカラムに移動する前に起きる必要があります。
時系列

下に行くほど時間が進んでいます。他のすべての量は右に行くほど増加します。表12は、この関係を図示しています。

図12. 時間の関連
Start Run とは

注入口およびオーブンの温度プログラムはどちらも Start Run で開始します。バージ開始などすべての時間は、Start Run から測定を開始します。Start Run が起きるのは、以下の場合は。

- サンプルがマニュアルで注入された場合、ユーザーが Start Run キーを押すと Start Run が始まります。
- 自動サンプラーを使用して、1 回の測定で 1 回の注入が行われる場合、注入を行うためにシリンジキャリアが移動したときに Start Run が起こります。
- 自動サンプラーを使用して、1 回の測定で複数回の注入が行われる場合、最初の注入を行うためにシリンジキャリアが移動したときに Start Run が起こります。一連の注入で、上記以外の場合は Start Runs は生じません。

このような注入を追加で行うには時間がかかります。そのため、注入口およびオーブンの温度プログラムを調整します（主に、ランプの Start Time 値）。注入操作をコントロールする各種の時間の値も調整する必要もあります。詳細は、111 ページの多量の注入を参照してください。

溶剤ベントモードを使用するには（カラムがコンフィグレーションされている場合）

1. 以下の点を確認してください。

- カラムはコンフィグレーション済み（8 ページのスクリーン切り替えおよび 36 ページのカラムコンフィグレーションを参照）
- 搬送ガスはコンフィグレーション済み（80 ページの注入口のセットアップを参照）
- 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41 ページの流量プログラムまたは圧力プログラムを参照）

2. 以下のスクリーンを表示します。内容は、現在の設定に基づいて変化します。

Status / Settings / Inlet
3. More を押します。Inlet Mode を選択します。
 a. Mode は、Solvent Vent を選択します。

![PTV Inlet Mode](image)

 b. ベント圧力 (Pressure)、流量 (Flow)、ベント終了 (Vent End)を入力します。ベント終了 (Vent End) は、どのランプの開始時間よりも早く設定する必要があります。
 c. Purge Start および Flow を入力します。OK を押します。
 d. 必要に応じて、注入口温度とランプを設定します。
 e. 必要があれば、Gas Saver をオンにして、OK を押します。セーバー時間が、パージ開始 (Purge Start) より後であることを確認します。

![PTV Inlet](image)

4. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run (64ページを参照)を押します。

溶剤ベントモードを使用するには（カラムがコンフィグレーションされている場合）

1. 以下の点を確認してください。
 - カラムはコンフィグレーション済み（8ページのスクリーン切り替えおよび36ページのカラムコンフィグレーションを参照）
 - 搬送ガスはコンフィグレーション済み（80ページの注入口のセットアップを参照）
 - 使用する場合は、流量プログラムまたは圧力プログラムがコンフィグレーション済み（41ページの流量プログラムまたは圧力プログラムを参照）
2. 以下のスクリーンを表示します。内容は、現在の設定に基づいて変化します。

Status / Settings / Inlet

- Mode は、Solvent Vent を選択します。
- ベント圧力 (Pressure)、ベント終了 (Vent End) を入力します。
 ベント終了 (Vent End) は、どのランプの開始時間よりも早く設定する必要があります。
- Purge Start を入力します。OK を押します。
- 必要に応じて、注入口温度とランプを設定します。

3. More を押します。Inlet Mode を選択します。

a. More を押します。Inlet Mode を選択します。

b. ベント圧力 (Pressure)、ベント終了 (Vent End) を入力します。
 ベント終了 (Vent End) は、どのランプの開始時間よりも早く設定する必要があります。

c. Purge Start を入力します。OK を押します。

d. 必要に応じて、注入口温度とランプを設定します。

4. マニュアルでサンプルを注入する場合は、注入の前に、Prep Run (64 ページを参照) を押します。

多量の注入

この機能には、G2613A または G2880A インジェクタが必要です。また、Agilent Data System も必要です。
• GC ケミステーション (rev. A.10.01 以上で、6850 パッチを当ててあること)
• Cerity Chemical (rev. 4.07 以上降)
通常の気化注入口は、1 ～ 5 µL の範囲で液体を注入するように設計されています。多量に注入すると、サンプルが気化したときに発生する蒸気が注入口から溢れて、クロマトグラフィーがゆがむ可能性があります。表 17 は、公称ライナー液体容量一覧です。

表 17. ライナー容量

<table>
<thead>
<tr>
<th>ライナー</th>
<th>公称液体容量</th>
<th>不活性</th>
</tr>
</thead>
<tbody>
<tr>
<td>オープンパフル</td>
<td>5 µL</td>
<td>高</td>
</tr>
<tr>
<td>グラスウェール充填</td>
<td>25 µL</td>
<td>表面積大により、低</td>
</tr>
</tbody>
</table>

溶剤ベントモードでは、溶剤を除去するときに検体はライナー内に熱的にトラップされています。溶剤がなくなると、ライナーの容量を使用して、別の注入を行います。多量のサンプルから検体を濃縮するために注入を複数回繰り返すことができます。注入を行い、溶剤を除去した後で、検体はカラムに移送されます。これにより、オフラインで濃縮する必要がなく、サンプルの損失を最小限に抑えられます。

指定するコントロールパラメータは以下のとおりです。
- シリンジの最大容量 (0.1 ～ 100 µL。デフォルトは、10 µL)。
- 各測定で、他のパラメータに従ってサンプラーから注入口に複数回の注入を行うか否か (1 回か複数回か。デフォルトは 1 回)。複数回の場合、Start Run コマンドを初回の注入時にだけ発信。1 回の注入の場合、各測定で Start Run コマンドを発信。
- X (注入量。単位 µL) と Y (注入回数) の積で指定される、注入量。X:0.1 ～ 0.5 × シリンジ容量。Y: 1 ～ 100。デフォルトは、0.1 × シリンジ容量 (X) と 1 (Y)。
- 注入と注入の間隔 (秒単位)。この値を最小ハードウェアサイクル時間 (0 ～ 100。デフォルト 0) に追加。
- 最初の注入以前に溶剤またはサンプルでシリンジを洗浄する回数。1 セットで複数回の注入 (0 ～ 15。デフォルト 0) の場合、残りの注入の前には洗浄を行いません。
- 最後の注入の後で、シリンジを溶剤で洗浄する回数。1 セットで複数回の注入 (0 ～ 15。デフォルト 0) の場合、残りの注入の後には洗浄を行いません。
- 測定したサンプルを吸い込む前に、シリンジプランジャをポンピングする回数。1 セットで複数回の注入 (0 ～ 15。デフォルト 0) 行う最初の注入の前にだけポンピングを行います。
算出値
ソフトウェアでは、以下の値を計算し表示します。

- \(X \) (注入ごとの量) と \(Y \) (測定後の注入回数) の積。
- 入力したパラメータおよびサンプラーの機械的なサイクル時間に基づき、1セット複数回の注入にかかる概算合計時間（分単位）。注入と注入間の遅延、注入前後の滞留時間、粘性遅延を含みます。

例
これらの値は、沸点の幅が広いサンプルで使用しました。

一般的パラメータ

<table>
<thead>
<tr>
<th>名称</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>サンプル</td>
<td>ヘキサン中の炭化水素 C_{10} \sim C_{44}</td>
</tr>
<tr>
<td>モード</td>
<td>溶剤ベント</td>
</tr>
<tr>
<td>PTV タイナー</td>
<td>グラスウール充填</td>
</tr>
<tr>
<td>注入量</td>
<td>10.0 (\mu)L 注入 1 回 (25 (\mu)L シリンジ)</td>
</tr>
<tr>
<td>注入速度</td>
<td>速</td>
</tr>
<tr>
<td>カラム</td>
<td>30 m x 320 (\mu)m x 0.25 (\mu)m HP5、p/n 19091J-413E</td>
</tr>
<tr>
<td>カラム流量</td>
<td>4 mL/min の定流量</td>
</tr>
</tbody>
</table>

注入口パラメータ

<table>
<thead>
<tr>
<th>名称</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>イニシャル温度</td>
<td>40 ℃</td>
</tr>
<tr>
<td>イニシャルタイム</td>
<td>0.3 分</td>
</tr>
<tr>
<td>昇温速度</td>
<td>(0.3)℃/分</td>
</tr>
<tr>
<td>ファイナル温度</td>
<td>375 ℃</td>
</tr>
<tr>
<td>ファイナルタイム</td>
<td>5 分</td>
</tr>
<tr>
<td>ヤンバル温度</td>
<td>250 ℃</td>
</tr>
<tr>
<td>ヤンバルタイム</td>
<td>0 分</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>名称</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>昇温速度</td>
<td>220 ℃/分</td>
</tr>
<tr>
<td>パージ開始</td>
<td>2.0 分</td>
</tr>
<tr>
<td>ファイナル温度</td>
<td>2250 ℃</td>
</tr>
<tr>
<td>ファイナルタイム</td>
<td>0 分</td>
</tr>
</tbody>
</table>
オーブンパラメータ

<table>
<thead>
<tr>
<th>名称</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>イニシャル温度</td>
<td>40 ℃</td>
</tr>
<tr>
<td>イニシャルタイム</td>
<td>2.5 分</td>
</tr>
<tr>
<td>昇温速度 1</td>
<td>25 ℃/min</td>
</tr>
<tr>
<td>ファイナル温度 1</td>
<td>320 ℃</td>
</tr>
<tr>
<td>ファイナル時間 1</td>
<td>10.0 分</td>
</tr>
<tr>
<td>昇温速度 2 (オフ)</td>
<td></td>
</tr>
</tbody>
</table>

検出器パラメータ

<table>
<thead>
<tr>
<th>名称</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>検出器</td>
<td>FID</td>
</tr>
<tr>
<td>検出器温度</td>
<td>400 ℃</td>
</tr>
<tr>
<td>水素流量</td>
<td>40 mL/min</td>
</tr>
<tr>
<td>空気流量</td>
<td>450 mL/min</td>
</tr>
<tr>
<td>メークアップ（N₂）</td>
<td>45 mL/min</td>
</tr>
</tbody>
</table>
図13. 10 µL 1回の注入から得られたクロマトグラム

図13に示されている結果を、同じサンプルのスプリットレス分析と比較しました。スプリットレス分析では、すべての検体が100%の回収率を示すことになっています。データによれば、これらの条件では、C_{20}以上の化合物は完全に回収され、回収率と注入のサイズは無関係でした。それに対し、C_{20}以下の化合物は一部が溶剤と一緒にベントされました。
可能性のある調整方法
達成目標に応じて、利用できる調整方法が多数利用できます。
さらに多くの溶剤を排出するには
• ベント終了、注入口イニシャルタイム、バージ開始を増やす。多量にトラップされた検体には影響しませんが、溶剤ピークがさらに除かれてしまう。
• ベント流量を増やし、同じ注入口タイミングでより急速にライナーをクリーニングする。ベント流量を増やすと、0に設定している場合、ベント圧力を上げます。これにより、カラムに付く溶剤が増えます。
• イニシャル温度を上昇させ、より多くの溶剤を蒸発させて、排出する。蒸気圧が増加するため、揮発性検体の損失が増加します。
沸点が低い検体の回収率を向上するには
• 検体の蒸気圧を下げるために、注入口温度を減少して効果的に検体をトラップ。溶剤の蒸気圧も低下するため、排出に時間がかかります。
• ライナーに保持力の高いパッキングを使用する。Tenaxなどの材質を使用すると、揮発性検体の回収率は向上しますが、沸点の高い化合物は放出されない可能性があります。沸点の高いピークを計量したい場合、検討が必要です。
• さらに多くの溶剤をライナーに残す。溶剤は、擬似固定相として作用し、揮発性検体の保持を促進します。検出器の溶剤に対する許容量に釣り合いが取れている必要があります。

例・続き
最後の数ページで示した1回注入の例では、10µLを1回注入しても、グラスウール充填ライナーの過負荷にはならなかったことを明確にしています。つまり、複数回の10µL注入も可能だということです。
1回の測定で、10回の注入を行い、各回10µLの量にすることに決定しました。これにより、分析感度が大幅に増加します。この分析の目的は、高い沸点の化合物を検出し測定することですから、沸点の低い化合物の回収率を向上するための調整は行いませんでした。
ケミステーションの推定では、10回の注入に合計1.3分必要です。以下のようなタイミング変更を行いました。
パラメータ 変更前 変更後
<table>
<thead>
<tr>
<th></th>
<th>変更前</th>
<th>変更後</th>
</tr>
</thead>
<tbody>
<tr>
<td>注入ロイニシャル時間</td>
<td>0.3分</td>
<td>1.6分</td>
</tr>
<tr>
<td>ベント終了</td>
<td>0.2分</td>
<td>1.5分</td>
</tr>
<tr>
<td>パージ開始</td>
<td>2.0分</td>
<td>3.0分</td>
</tr>
<tr>
<td>オープンイニシャルタイム</td>
<td>2.5分</td>
<td>3.0分</td>
</tr>
</tbody>
</table>

結果は、図14に示されています。

図14. 10mLの注入から得られたクロマトグラム
Cool On-Column 注入口

警告

この注入口は、液体サンプルを直接毛管カラムに導入します。このため、注入口とオーブンの両方が注入時に冷えていて、溶剤の沸点かそれ以下である必要があります。サンプルが注入口でただちに気化しないため、サンプルの識別とサンプルの変質についての問題が最小限に抑えられます。適切に行えば、Cool On-Column 注入でも正確で精度の高い結果が得られます。

注入口温度がカラムオーブンに追従する、トラックオーブンモードで注入口を操作できますし、最大 3 つの温度ランプをプログラムすることもできます。液体 CO₂ を使用して室温以下の温度を達成する、冷媒冷却オプションもあります。

図 15. EPC を利用した Cool On-Column 毛管注入口

注入口温度

CryoBlast（オプション）

CryoBlast は、測定と測定の間のサイクル時間を短縮します。CO₂ cryogenic 冷却バルブと CryoBlast 機能があれば、トラックオーブンモードで -17 ℃、温度プログラムモードで -20 ℃ まで注入口の温度を下げられます。
トラックオーブンモード
トラックオーブン（Track oven）モードでは、オープンプログラムの間をとおして注入口の温度がオープンの温度より3℃高い状態を保ちます。温度の設定値は自動的に設定され、入力はできません。CryoBlastがあれば、オープンの温度を-17℃まで追跡でき、CryoBlastがなければ、下限は室温に設定されます。

温度プログラミングモード
このモードでは、最大3つまで温度ランプを入力でき、注入口とオープンを独立して操作できます。

どのようにオープンの温度が非常に低い場合は、注入口の温度は少なくともオープンより20℃高くする必要があります。この温度は、溶剤をフォーカスするには充分です。

室温以上では、注入口は常にオープンより3℃高く保ち、注入口の温度コントロールが正しく行われるようにします。

オープン温度プログラムが測定をコントロールします。注入口温度プログラムより時間がかかる場合、注入口はオープンプログラム（および測定）が終了するまでファイナル温度に留まっています。

設定値範囲
以下の表は、注入口パラメータの設定値範囲を示しています。

<table>
<thead>
<tr>
<th>温度</th>
<th>指定可能な設定値の範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>トラックオーブン</td>
<td>3℃オープン温度より高く、最高温度は375℃。CryoBlastがあれば、注入口は-17℃の温度を維持できるが、指定可能なオープンの設定値は、-60℃。</td>
</tr>
<tr>
<td>CryoBlastがない場合の昇温温度</td>
<td>室温～375℃</td>
</tr>
<tr>
<td>CryoBlastがある場合の昇温温度</td>
<td>-20℃～375℃</td>
</tr>
</tbody>
</table>
Cool On-Column 注入口の操作

カラム、適切なインサート、セプタムナットまたは冷却塔がインストールされていることを確認します。カラムに合うニードルを使用していることを確認してください。

1. カラム、搬送ガス、流量プログラム、圧力プログラム（使用している場合）が正しくコンフィグレーションされていることを確認してください。34ページの流量と圧力のコントロールを参照してください。

圧力は、カラムからでも注入口テーブルからでも設定できます。定流量モードまたはランプ流量モードでは、圧力は流量要件で決定されます。流量だけを設定することをお勧めします。

2. Inlet を押します。

3. 温度モードの選択
 - Track を押して、オープントラックモードを使用します。
 - Ramps を押して、温度ランプを定義します。ランプのプログラムは、オープンのランプと同様に行います。147ページの温度プログラミングを参照してください。

4. イニシャル温度を入力します（温度プログラムのみ）。
5. 希望の注入口圧力または流量の値を入力します。
6. サンプルを注入します。
熱伝導度検出器（TCD）

水素使用上の注意

警告
搬送ガスや燃焼ガスとして水素（H2）を使用する場合は、水素がオーブンの中
に流れ出ると爆発を引き起こすおそれがあることを知っておいてください。この
ため、すべての接続が完了するまでは絶対に水素ガスの供給を行なわないでくだ
さい。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接
続部にカラムを接続するか、キャップでふさいでおいてください。

警告
水素は可燃性です。漏れたガスが困まった気密な空間に閉じ込められると火事や
爆発を引き起こすおそれがあります。水素を分析で使用するときは、装置を操作
する前に必ずすべての接続部、ライン、およびバルブの漏れテストを実行してく
ださい。装置に対してなんらかの作業を行なうときは、必ず水素（H2）をその
供給源で閉じてください。

操作条件
TCD検出器は以下の場合には作動しません。

- フィラメントが切断あるいはショートしている
- リファレンスガス流量が5 mL/min未満に設定されている

TCDパラメータ

リファレンスガス、メークアップガス、搬送ガスは同じ種類のガスを使用しま
す。そのように注入口と検出器をコンフィグレーションしてください。表19に
それらのガスの最大流量を示します。

表18の情報を参考にして、TCDの温度と流量を選択してください。図16およ
び図17にそれらのガスの最小供給圧力を示します。
表 18. 推奨流量と温度

<table>
<thead>
<tr>
<th>ガスの種類</th>
<th>流量範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>搬送ガス</td>
<td>充填カラム 10 〜 60 mL/min</td>
</tr>
<tr>
<td>（水素、ヘリウム、窒素）</td>
<td>毛管カラム 1 〜 5 mL/min</td>
</tr>
<tr>
<td>リファレンス</td>
<td>mL/min</td>
</tr>
<tr>
<td>（搬送ガスと同じガスの種類）</td>
<td>図 16 を参照して値を選択。</td>
</tr>
<tr>
<td>毛管メークアップ</td>
<td>充填カラム 2 〜 3 mL/min</td>
</tr>
<tr>
<td>（搬送ガスと同じガスの種類）</td>
<td>毛管カラム 5 〜 15 mL/min</td>
</tr>
</tbody>
</table>

検出器温度

150 ℃未満ではフィラメントを ON にできません。
検出器温度は、分析で使用する最高オーブン温度より 30 〜 50 ℃高い値にします。

表 19. 最大ガス流量

<table>
<thead>
<tr>
<th>Gas</th>
<th>大流量 (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>リファレンスガス</td>
</tr>
<tr>
<td>窒素</td>
<td>100</td>
</tr>
<tr>
<td>ヘリウム</td>
<td>100</td>
</tr>
<tr>
<td>水素</td>
<td>100</td>
</tr>
<tr>
<td>アルゴン</td>
<td>100</td>
</tr>
</tbody>
</table>

図 16 を参照して、使用する毛管カラムや充填カラムに対応するリファレンスガス流量を選択してください。グラフに示されている値の ± 0.25 パーセント内が適切な値です。例えば、カラムとメークアップガス流量の合計が 30 mL/min の場合、最適なリファレンスガス流量はその流量の 1.5 〜 2.0 倍、すなわち 45 〜 60 mL/min になります。

充填カラムを使用する場合は、少量のメークアップガス流量（2 〜 3 mL/min）を流すと、最高のピーク形状が得られます。
図16. リファレンスガス流量を選択する

図17. リファレンスガスまたはメークアップガスの供給圧力と流量の関係
（25℃、1気圧）

* この圧力は、流量調整モジュールの圧力降下を考慮してあります。
メークアップガス

メークアップガスはカラムの出口付近から検出器に入ります。メークアップガスは、サンプルが検出器を通過するスピードを加速し、カラムによって達成されたピークの分離が、検出器内での再混合により損なわれないようにしています。充填カラムではメークアップガスは不要です。

毛管カラムがコンフィグレーションされていない場合、メークアップガス流量を入力します。カラムをコンフィグレーションする方法は、36 ページの「カラムコンフィグレーション」を参照してください。

毛管カラムがコンフィグレーションされていると、2 種類のメークアップガスモードを選択できます。

メークアップガスモードを選択するには

Constant Makeup (コンスタントメークアップ) モードでは、検出器に流れるメークアップガス流量は一定です。

Constant Combo (コンスタント合計) モードでは、検出器に流れるメークアップガス流量は変化します。カラム流量が変化するにつれて、メークアップガスの流量はその変化を補うように変化して、検出器に流れる合計流量を一定にします。

以下のスクリーンを表示します。

Status / Settings / Detector / More / Makeup Mode / Enter

マークアップモードを選択して OK を押します。
メークアップガス流量を設定するには

上の Detector スクリーンでは、選択したメークアップガスモードが反映されています。選択されているモードの流量 (Constant Makeup 流量か Constant Combo 流量のどちらか) を入力します。

極性

窒素またはアルゴンを搬送ガスとして使用すると、ヘリウムや水素は負のピークとして出現します。GC システムによっては負のピークを積分できるものもありますが、おまけ解決法は、そのピークが出るシグナル領域を反転させ、正のピークとして処理することです。

シグナルの反転は通常、ランテーブルエントリ (55 ページのランテーブルを参照) を使用して実行されますが、以下に示すように、マニュアルでも実行できます。

検出器シグナルを反転するには

1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Polarity

2. Enter を入力して、下のスクリーンを表示します。
3. Signal で normal または inverted を選択します。

水素の分析

水素はヘリウムより大きい熱伝導を持つ唯一の元素です。また、常温でヘリウムに少量の水素（20 % 未満）を混合したガスは、水素やヘリウムの純粋なガスよりも小さい熱伝導度を示します。ヘリウムを搬送ガスとして使用していると、水素のピークは正のピーク、負のピーク、割れたピークとして現れる場合があります。

この問題には以下の 2 つの解決法があります：

- 窒素あるいはアルゴンを搬送ガスとして使用します。これによって、ヘリウムを搬送ガスとして使用するときに発生する固有の問題は解決しますが、水素以外の成分に対する感度は低下します。
- 200 ℃〜300 ℃ の高温で検出器を操作します。

最適な検出器の操作温度を決定するには、既知の水素濃度範囲を、検出器温度を変更して繰り返し分析します。水素のピークが正常な形状を示し、濃度に関係なく同じ方向（空気あるいはプロパンに対するレスポンスと比較して負の極性）になった温度が、最適な温度です。

水素は負のピークとして出現するため、分析の適当な時間にシグナルを反転する必要があります。

シグナル選択

シグナル出力としていくつかの種類のシグナルを選択できます。選択されたシグナルはリアパネルの SIG コネクタから出力され、インテグレータ、アナログコーダ、その他の外部デバイスに送って処理できます。選択されたシグナルは RS-232 コネクタやオプションの LAN 通信カードからデジタル出力することもできます。
出力シグナルを選択するには
1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Signal

2. Enter を入力して、下のスクリーンを表示します。

Status / Settings / Detector / More / Signal / Enter

3. リストされた 4 種類のシグナルから 1 つを選んでください。
 - Detector - 検出器で測定された生シグナルです。
 - Column Comp - この検出器用に保存されているカラム補償プロフィールです。
 - Detector - Column Comp - 検出器シグナルからカラム補償プロフィールを差し引いた結果です。
 - Test Chromatogram - 装置に保存されているシグナルです。外部のシグナル処理装置テスト用に再現性のあるシグナルを提供します。

シグナルの種類はケミステーションまたは Cerity Chemical を使って他の種類に変更できます。

シグナルをゼロ調整するには
- Zero フィールドに値を入力します。すべての出力されるシグナル値からその値が差し引かれます。
 または
- Zero フィールドをブランクにして、Zero キーを押します。GC に現在のシグナル値が保存され、すべての出力されるシグナル値からその値が差し引かれます。
ピーク幅 (PW)
このフィールドには、デジタルシグナルのサンプリング周期の最適なピーク幅を表示します。

アナログ出力
アナログレコーダのシグナルスケールを調整するには
1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Analog Output

2. Enter を入力して、次のスクリーンを表示します。

Status / Settings / Detector / More / Analog Output / Enter

3. 出力シグナルにあわせて適切な値を入力します。レンジとアッテネーションは倍数スケールです。値を 1 つ変更すると、シグナルは 2 倍に調整されます。
 • Range は 3 種類のアナログ出力をスケール調整できます。
 • Attenuation は 0-1 mV 出力のみをスケール調整できます。

Fast Peaks （高速ピーク検出機能）は、TCD では利用できません。
TCD を使用する

以下のスクリーンを表示します。

Status / Settings / Detector

<table>
<thead>
<tr>
<th>Temp</th>
<th>Reference</th>
<th>Constant Makeup</th>
<th>Gas</th>
<th>Filament</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 °C</td>
<td>OFF</td>
<td>2.0</td>
<td>He</td>
<td>OFF</td>
</tr>
<tr>
<td>0.4 mL/min</td>
<td>2.0 mL/min</td>
<td>H2</td>
<td>Signal 0.00 25µV/unit</td>
<td></td>
</tr>
</tbody>
</table>

1. 検出器温度を設定します（122 ページの推奨流量と温度を参照）。カラムの最高使用温度を超えた温度に設定するのを避けてください。カラムの一部は検出器ブロックの中に入らないためその部分の液相が分解します。
2. リファレンスガス流量の値を入力します（図 16 のリファレンスガス流量の選択を参照）。
3. 表示されているメークアップガスの種類が、装置に配管されているガスの種類と同じであることを確認してください。
 - 毛管カラムがコンフィグレーションされていない場合、コンスタントメークアップガス流量（constant makeup）を入力してください。
 - 毛管カラムがコンフィグレーションされている場合、メークアップモードを選択し、流量を設定します（124 ページのメークアップガスを参照してください）。
 - 充填カラムを使用する場合は、メークアップガスを OFF にするか、少量（2 〜 3 mL/min）にセットします。
4. 右の Filament ボタンを押してフィラメントをオンにします。温度が安定するまで 30 分ほどかかります。
5. 必要ならば、シグナル反転（125 ページの極性を参照）を使用して、負ピークを反転させます。サンプルが正のピークと負のピーク、どちらの成分も含んでいる場合は、Run Table イベントでシグナル反転の ON と OFF を切り替えます。
水素炎イオン化検出器（FID）

水素使用上の注意

警告
搬送ガスや燃焼ガスとして水素（H₂）を使用する場合は、水素がオープンの中
に流れ出ると爆発を引き起こすおそれがあることを知っておいてください。この
ため、すべての接続が完了するまでは絶対に水素ガスの供給を行わないでくだ
さい。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接
続部にカラムを接続するか、キャップでふさいでおいてください。

警告
水素は可燃性です。漏れたガスが囲まれた気密な空間に閉じ込められると火事や
爆発を引き起こすおそれがあります。水素を分析で使用するときは、装置を操作
する前に必ずすべての接続部、ライン、およびバルブの漏れテストを実行してく
ださい。装置に対してなんらかの作業を行なうときは、必ず水素（H₂）をその
供給源で閉じてください。

検出器操作上の注意

TCD 検出器は以下の場合には作動しません。
• 空気流量または水素流量が Off あるいは 0.0 に設定されている
• 炎が点火しない場合

検出器のシャットダウン

流路系の支障または炎が点火できないために GC が検出器ガスをシャットダウン
した場合は、ヒータとメークアップガス流量を除くすべての検出器の機能が
OFF になります。
ジェット

FID 検出器には標準のキャピラリカラムジェットを取り付けて出荷されています。模擬蒸留（Simulated distillation）や高温での分析、または充填カラムを使用する場合は、ジェットを交換する必要があります。表 20 を参照してください。

表 20. FID 検出器で使用するジェット

<table>
<thead>
<tr>
<th>ジェットタイプ</th>
<th>パーツ番号</th>
<th>ジェット先端内径</th>
</tr>
</thead>
<tbody>
<tr>
<td>毛管カラム用</td>
<td>19244-80560</td>
<td>0.29 mm (0.011 インチ)</td>
</tr>
<tr>
<td>充填カラム用</td>
<td>18710-20119</td>
<td>0.47 mm (0.018 インチ)</td>
</tr>
<tr>
<td>充填カラム用大口径（高ブリード分析用）</td>
<td>18789-80070</td>
<td>0.030 インチ</td>
</tr>
<tr>
<td>高温分析用（GC 模擬蒸留で使用）</td>
<td>19244-80620</td>
<td>0.47 mm (0.018 インチ)</td>
</tr>
</tbody>
</table>

エレクトロメータ

エレクトロメータはサンプルの燃焼で発生した電流を増幅します。FID を操作しているときに、エレクトロメータの ON / OFF を切り替える必要はありません。エレクトロメータを OFF にしないとならないのは、検出器をクリーニングするときだけです。あるいは、検出器を外すときだけです。

注意

分析中にエレクトロメータを OFF にしないでください。OFF にすると、検出器出力そのものがキャンセルされます。

エレクトロメータを ON/OFF するには

1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Electrometer / Enter

![エレクトロメータの設定画面](image-url)

When the electrometer is OFF, the high voltage supply is turned off. This allows safe handling of the FID assembly.
メークアップガス

メークアップガスはカラムの出口付近から検出器に入ります。メークアップガスは、サンプルが検出器を通過するスピードを加速し、カラムによって達成されたピークの分離が、検出器内での再混合により損なわれないようにしています。

メークアップガスモード

カラムがコンフィグレーションされていない場合、メークアップガス流量はコンスタント（定流量）のみです。カラムをコンフィグレーションする方法は、36ページのカラムコンフィグレーションを参照してください。

カラムがコンフィグレーションされていると、2種類のメークアップガスモードを選択できます。

- Constant Makeup (コンスタントメークアップ) モードでは、検出器に流れるメークアップガス流量は一定です。
- Constant Combo (コンスタント合計) モードでは、検出器に流れるメークアップガスの流量は変化します。カラム流量が変化するにつれて、メークアップガスの流量はその変化を補うように変化して、検出器に流れる合計流量を一定にします。

メークアップガスモードを選択するには

1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Makeup Mode / Enter
2. **Mode** の Constant Makeup か Constant Combo のどちらかを選択します。OK を押して FID スクリーンに戻ります。

Status / Settings / Detector

<table>
<thead>
<tr>
<th>FID</th>
<th>Temp</th>
<th>Flame Gases</th>
<th>Constant Makeup</th>
<th>Flame</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>H2</td>
<td>OFF</td>
<td>OFF</td>
<td>0.00</td>
</tr>
<tr>
<td>26°C</td>
<td>ml/min</td>
<td>ml/min</td>
<td>ml/min</td>
<td>ml/min</td>
<td>ml/min</td>
</tr>
</tbody>
</table>

3. 流量の値を入力して、enter を押します。
4. Esc を押して 1 つ前のスクリーンに戻ります。

メークアップガス流量を設定するには

上の Detector スクリーンでは、選択したメークアップガスモードが反映されています。選択されているモードの流量（Constant Makeup 流量か Constant Combo 流量のどちらか）を入力します。

シグナル選択

シグナル出力としていくつかの種類のシグナルを選択できます。選択されたシグナルはリアパネルの SIG コネクタから出力され、インテグレーター、アナログレコーダ、その他の外部デバイスに送って処理できます。選択されたシグナルは RS-232 コネクタやオプションの LAN 通信カードからデジタル出力することもできます。

出力シグナルを選択するには

1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Signal / Enter

- Detector
- Column Comp
- Detector-Column Comp
- Test Chromatogram
- Other 10

Zero OFF

Signal 0.00

PW 0.01 min 20 Hz
2. リストされた4種類のシグナルから1つを選んでください。
 • Detector - 検出器で測定されたシグナルです。
 • Column Comp - この検出器用に保存されているカラム補償プロフィールです（150ページのカラム補償分析を参照してください）。
 • Detector - Column Comp - 検出器シグナルからカラム補償プロフィールを差し引いた結果です。
 • Test Chromatogram - 装置に保存されているシグナルです。外部のシグナル処理装置テスト用に再現性のあるシグナルを提供します。

シグナルの種類はケミステーションまたはCerity Chemicalを使って他の種類に変更できます。

3. OK を押します。

シグナルをゼロ調整するには
 • Zeroフィールドに値を入力します。すべての出力されるシグナル値からその値が差し引かれます。次に、OKを押します。
 または
 • Zeroフィールドをブランクにして、Zeroキーを押します。GCに現在のシグナル値が保存され、すべての出力されるシグナル値からその値が差し引かれます。次に、OKを押します。

ピーキ幅（PW）

このフィールドには、デジタルシグナルのサンプリング周期を表示します。
アナログ出力

以下のコントロールパラメータはアナログレコーダのシグナルスケールを調整します。

シグナル出力を調整するには
1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Analog Output / Enter

<table>
<thead>
<tr>
<th>Output</th>
<th>Attin</th>
<th>Range</th>
<th>Fast Peaks</th>
<th>Not For TCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1mV</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1V, 0-10V</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. 出力シグナルにあわせて適切な値を入力します。レンジとアッテネーションは倍数スケールです。値を1つ変更すると、シグナルは2倍に調整されます。
 - Range は、すべてのアナログ出力をスケール調整できます。
 - Attenuation は 0-1 mV 出力のみをスケール調整できます。

3. 必要であれば、Fast Peaks（高速ピーク検出）機能を選択します。Fast Peaks（高速ピーク検出機能）を選択すると、最小 0.004 分の狭いピークを検出できるようになります。選択しない場合の標準スピードでは、検出の最小ピーク幅は 0.01 分です。高速ピーク検出機能を利用するには、GC からのデータを処理するのに十分な速さのインテグレーター（少なくとも 15 Hz のバンド幅）が必要になります。自動再点火 - 点火オフセット

4. OK を押します。

自動再点火 - 点火オフセット

点火オフセット Lit Offset とは、FID で炎が点火している場合と消えている場合とで期待される FID 出力の相違です。出力がこの値よりも低いと、FID は炎が消えているものとみなし、何度か再点火を試みます。少なくとも Lit Offset 値まで出力が増加しない場合は、検出器は温度とメークアップガス流量を除いたすべての機能をシャットダウンします。
Lit Offset のデフォルト設定値は 2.0 pA です。ガスとシステムがきわめてクリーンな場合を除き、通常はこの設定で十分です。以下の場合には、この設定値を変更してください：

- 炎が点火しているのに、検出器が再点火を試みるために、シャットダウンが発生する。
- 炎が消えているのに、検出器が再点火を実行しない。

Lit Offset を調整するには

1. 以下のスクリーンを表示します。

 Status / Settings / Detector / More / Lit Offset / Enter

 ![Lit Offset Screen](image)

 - This is the signal difference between Flame ON and Flame OFF. It is used for automatic flame ignition.
 - Set to zero to disable.

2. 上記の説明を参考にして Lit Offset を調整します。ゼロを入力すると、表示内容は Off になります。OK を押します。

FID パラメータ

表 21 の情報を参照して温度と流量を選択します。図 18 から最小供給圧力を選択してください。

表 21. 推奨流量

<table>
<thead>
<tr>
<th>ガスの種類</th>
<th>流量範囲</th>
<th>推奨流量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mL/min</td>
<td>mL/min</td>
</tr>
<tr>
<td>搬送ガス (水素、ヘリウム、窒素)</td>
<td>毛管カラム 1 ～ 5 充 填カラム 10 ～ 60</td>
<td></td>
</tr>
<tr>
<td>検出器ガス</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水素</td>
<td>24 ～ 60*</td>
<td>40</td>
</tr>
<tr>
<td>空気</td>
<td>200 ～ 600*</td>
<td>450</td>
</tr>
<tr>
<td>カラムガス + キャピラリメーター</td>
<td>10 ～ 60</td>
<td>50</td>
</tr>
<tr>
<td>クアップガス</td>
<td></td>
<td></td>
</tr>
<tr>
<td>推奨：窒素</td>
<td></td>
<td></td>
</tr>
<tr>
<td>代替：ヘリウム</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* フレームを点火し続けるために、空気に対する水素の比率は 8 ～ 12 % にしてください。
図18. FIDガスの供給圧力と流量の関係（25 ℃、1気圧）

* この圧力は、流量調整モジュールの圧力降下を考慮してあります

<table>
<thead>
<tr>
<th>压力 (psig)</th>
<th>流量 (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>0</td>
</tr>
<tr>
<td>207</td>
<td>20</td>
</tr>
<tr>
<td>276</td>
<td>40</td>
</tr>
<tr>
<td>345</td>
<td>60</td>
</tr>
<tr>
<td>414</td>
<td>80</td>
</tr>
</tbody>
</table>

この圧力は、流量調整モジュールの圧力降下を考慮してあります。
FID を使用する

警告

空気または水素を ON にする前に、カラムが取り付けられているか、または FID のカラム接続部が栓でふさがれていることを確認してください。水素がオーブンに漏れると、爆発のおそれがあります。

1. 以下のスクリーンを表示します。

Status / Settings / Detector

メークアップガスモード メークアップガスのタイプ

<table>
<thead>
<tr>
<th>フォース</th>
<th>11:58:13 Last Sample 0.0</th>
<th>Default+</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>Flame Gases Air Constant Makeup Gas</td>
<td>Flame Off</td>
<td>Signal 0.30 pA</td>
</tr>
<tr>
<td>OFF</td>
<td>H2</td>
<td>OFF</td>
<td>He</td>
</tr>
</tbody>
</table>

検出器温度 水素流量 空気流量 メークアップガス流量

2. 検出器温度を設定します。炎を点火するために、温度（Temp）は 150 ℃よりも高くしてください。また、最高オーブン温度よりも 20 ℃程度高くしてください。

3. 水素と空気の流量（Flame Gases）を入力します。

4. 表示されているメークアップガスの種類（Gas）が、装置に配管されているガスの種類と同じであることを確認してください。

- キャビリラリカラムがコンフィグレーションされていない場合、メークアップガス流量を入力します。この場合、コンスタントメークアップガス流量（Constant Makeup）のみが使用できます。カラムをコンフィグレーションする方法は、36 ページのカラムコンフィグレーションを参照してください。

- キャビリラリカラムがコンフィグレーションされている場合は、More を押して、Makeup Mode を選択します。Enter を押して下のスクリーンを表示します。

- 充填カラムを使用する場合は、メークアップガス流量を OFF にします。
5. メークアップガスモードを選択します。OK を押すと 1 つ前のスクリーンに戻ります。Constant Makeup 流量または Constant Combo 流量を入力します。

6. Flame キーを押して、空気と水素を ON にし、点火プロセスが開始します。通常、点火後に信号は 5 〜 20 pA 増加します。鏡やクロムメッキしたレンチなどの冷えた金属鏡面をコレクタ出口の上にかざして、炎が点火していることを確認します。炎が点火していれば、鏡面が曇ります。
Microcell Electron キャプチャ検出器
基本情報

図 19. μECD 空圧

直線性
μECD レスポンスファクタと濃度曲線は、幅広い範囲の化合物に対して、4 桁かそれ以上のオーダーで直線になります（リニアダイナミックレンジ = 10⁴ 以上）。それでも、物質が直線性を示す範囲の限界を確認するために、サンプルの較正曲線を測定する必要があります。
検出器ガス

µECD は、メーカーアップガスおよび陽極ガスとして、窒素またはアルゴン/メタンを使用して動作します。

検出器の感度が高いため、搬送ガスおよびメーカーアップガスは、乾燥していること、酸素を含まないことが必要です。良好な状態の水分トラップ、薬品トラップ、酸素トラップを、搬送ガスおよびメーカーアップガスの供給ラインに設置してください。

温度

ピークのテーリングを避け、セルをクリーンに保つため、検出器の温度は使用するオーブンの最高温度より高く設定する必要があり、最後の化合物の溶出温度に基づいて設定値を決めます。過度に高い温度で操作すると、必ずしも良い結果は出ず、サンプルやカラムの分解を促進する場合があります。

エレクトロメータ

検出器のコンフィグレーションには、エレクトロメータの ON/OFF 設定値が含まれています。検出器を操作する場合は、常にエレクトロメータを ON にしてください。

アナログ出力

µECD からアナログ出力を使用する場合、以下の手順で出力レンジを 10 に設定する必要があります。

1. 以下のスクリーンを表示します。

 Status / Settings / Detector / More / Analog Output / Enter

 Microcell ECD 10:34:49 Last Sample 00 DEF_GCM Ready

 Analog Output

 Output 0-1mV Attn 0 Range 10 Fast Peaks Not For TCD

 OK
2. 出力信号にあわせて適切な値を入力します。レンジとアッテネーションは倍数スケールです。値を1つ変更すると、シグナルは2倍に調整されます。
 - **Range**（値: 10）は、すべてのアナログ出力をスケール調整できます。
 - **Attenuation**は0-1 mV出力のみをスケール調整できます。

3. 必要であれば、**Fast Peaks**（高速ピーク検出）機能を選択します。Fast Peaks（高速ピーク検出機能）を選択すると、最小0.004分の狭いピークを検出できるようになります。選択しない場合の標準スピードでは、検出の最小ピーク幅は0.01分です。高速ピーク検出機能を利用するには、GCからのデータを処理するのに十分な速さのインテグレータ（少なくとも15 Hzのバンド幅）が必要になります。自動再点火 - 点火オフセット

4. **OK**を押します。

検出器の操作

表1の情報を参照して温度と流量を選択します。

最大供給圧力が100 psiを超えてはなりません。最大供給圧力を使用して、最大のメークアップガス流量を達成します。

表1 操作パラメータ

<table>
<thead>
<tr>
<th>Gas</th>
<th>推奨流量範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>搬送ガス</td>
<td>30 〜 60 mL/min</td>
</tr>
<tr>
<td>充填カラム（窒素またはアルゴンメタン）</td>
<td>0.1 〜 20 mL/min, 内径による</td>
</tr>
<tr>
<td>毛管カラム（水素、窒素またはアルゴンメタン）</td>
<td>10 〜 150 mL/min（通常、30 〜 60 mL/min）</td>
</tr>
</tbody>
</table>

温度

250℃ 〜 400℃

通常は、オーブンランプの最高温度より25℃高く検出器の温度を設定します。

注意

- 搬送ガスのタイプがメークアップガスのタイプと異なる場合、メークアップガスの流量は搬送ガス流量の3倍以上にする必要があります。
- μECD は、メークアップガスの流量を減少すると感度が上がります。
・μECDのクロマトグラフィ速度（高速ピーク検出機能）は、メークアップガスの流量を増加すると上昇します。

検出器のガスが接続されており、カラムが正しく設置され、システムに漏れがないことを確認してください。オーブンの温度、注入口の温度と注入口の流量を設定します。選択した搬送ガスのタイプが、GCに配管されているものと同じであることを確認します。

1. 以下のスクリーンを表示します。

 Status / Settings / Detector

 検出器温度
 Constant Makeup
 Makeup Gas
 Output
 Inlet
 Oven
 Column
 Detector
 Auxiliary

 メークアップガスの流量
 メークアップガスのタイプ

2. 検出器温度を設定します。μECDのセルをクリーンに保つために、セルの温度はオーブンの温度より高く設定してください。

注意
検出器の電子部品には正しいガスコンフィグレーションが求められます。

3. 表示されているメークアップガスのタイプ（Gas）が、装置に配管されているガスの種類と同じであることを確認してください。必要な場合には、ガスのタイプを変更します。

4. メークアップガスの値を入力します。

 充填カラムを使用する場合は、メークアップガスをOFFにします。

 毛管カラムがコンフィグレーションされている場合、必要であれば、新しい流量モードを選択して、メークアップガス流量または複合ガス流量を設定します。

 毛管カラムがコンフィグレーションされていない場合、コンスタントメークアップガス流量だけが利用できます。メークアップガス流量の値を入力します。

Released: 2004年3月 6850 Series コントロールモジュールユーザーインフォメーション ページ 143 / 188
カラムオーブン

オーブンの能力

• 温度範囲（室温 +5 ℃）～ 350 ℃
 -20 ℃～ 350 ℃（CO2 冷却の場合）
• 温度プログラミング - 7 つのプラトーがある 6 ランプまでプログラム可
• 最長分析時間 - 999.99 min
• 温度ランプ速度 - 0 ～ 120 ℃/min
• オーブンは、それぞれひとつの注入口、検出器、カラムと組み合わせて使
 用できます。

オーブンの安全保護

マニュアルシャットダウン

オーブンリッド（上蓋）を上げると、オーブンヒーター、ファン、冷却バルブ
（取り付けられている場合）の電源は OFF になります。メモリに保持されている
設定値は失われません。オーブンリッドを閉じると、オーブンは通常の操作に
どります。

自動シャットダウン

通常の運転で、オーブン温度が設定値に達しないか、設定温度を維持できない場
合は、GC のオーブンファンとヒーターは OFF になります。ステータススクリー
ンにシャットダウン（Shutdown）アナウンスが点滅して、メッセージが表示さ
れます。

以下のような問題が考えられます:
• オーブンベントフラップが作動しない
• オーブンファン、ヒーター、温度センサが正しく機能していない
• 電子回路に問題がある

自動シャットダウンが起こると、オーブンは OFF になったままで、コントロール
モジュールを使ってリセット（Status / Settings / Oven）するまで回復しません。装
置の電源を OFF にして、再度 ON にする必要があります。

オーブンリッドを閉じた場合にもオーブンは自動的にシャットダウンします。
オーブンセットアップ

オーブンをコンフィグレーションするには
1. 以下のスクリーンを表示します。

Status / Setup / Oven Setup

<table>
<thead>
<tr>
<th>Oven Setup</th>
<th>03:08:43 Last Sample 01 DEF. HC:M+ Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equib Time</td>
<td>Cryo Type CO2</td>
</tr>
<tr>
<td>0.00 min</td>
<td></td>
</tr>
<tr>
<td>Max Temp</td>
<td>350 °C</td>
</tr>
<tr>
<td></td>
<td>Cryo Timeout Ambient Temp</td>
</tr>
<tr>
<td></td>
<td>420 min</td>
</tr>
<tr>
<td></td>
<td>25 °C</td>
</tr>
</tbody>
</table>

2. Equib Time 値と Max Temp 値を入力します。
 - Equib Time (平衡時間) - オーブン温度が設定値の ±1 ℃に達すると、ここでの指定された時間、オーブンが安定するのを待ちます。この時間が経過後オーブンはレディを宣言します。
 - Max Temp (最高温度) - オーブン温度の限界値です。ほとんどのカラムやアクセサリにはそれぞれの使用限界温度があります。Max Temp をコンフィグレーションするときには、アクセサリを損傷しないようにこれらの使用限界温度を考慮すべきです。

3. 冷却バルブが取り付けられていて使用する場合、Enable Oven Cryo を選択します。Cryo ambient temp 値と Cryo Timeout 値を入力します。

注意 冷媒によってオーブンを冷却する場合、カラムに冷点が生じないように、フランジ付きカラムハンガーを使う必要があります。

冷媒冷却が不要な場合や冷媒が使用できない場合は、この項目を選ばないでください。選択してしまうと、特に室温に近い温度で、適切なオーブン温度コントロールができなくなることがあります。

- Cryo ambient temp (気温) - 分析室の室温を入力します。この設定値によって、冷媒冷却が開始される温度が設定されます。通常の冷却操作の温度は Cryo ambient temp +25 ℃です。Quick Cryo Cool 急速冷媒冷却の場合の温度は、Cryo ambient temp +45 ℃です。
カラムオーブン
定温分析

- Cryo Timeout (冷却タイムアウト) - このタイムアウト (時間切れ) が来るとオーブンはシャットオフします。オーブンの安定後、指定した時間 (10 ~ 120 分) 内に分析が開始されない場合です。Cryo Timeout を OFF にすると、この機能は無効になります。メソッドの終了時や自動化分析がなにかの理由で中断したとき冷媒を無駄にしないため、この機能をオンにしておくことを勧めます。

4. 利用できる場合、Cryo Fault と Quick Cryo Cool を有効または無効にします。

- Cryo Fault (冷却失敗) - 16 分間冷却操作を続けても、設定温度に達しない (安定に時間が掛かりすぎる) 場合、オーブンはシャットダウンされます。

- Quick Cryo Cool (急速冷媒冷却) - この機能は Enable Oven Cryo に追加されている機能です。分析後のオーブンの冷却がより短時間で達成されます。この機能は、多数のサンプルを短い時間で分析する場合に便利ですが、より大量の冷媒が必要となります。オーブンが設定値に達すると、Quick Cryo Cool は直ちにオフになり、必要に応じた通常の冷媒冷却機能に変わります。

定温分析

定温分析では、オーブンは一定温度に保たれます。定温分析を実行するには、昇温速度 (℃ /min) をゼロに設定します。

オーブンを定温にセットアップするには

以下のスクリーンを表示します。

Status / Settings

定温温度
昇温速度

1. 定温温度フィールド (℃) に、分析に使用するオーブン温度を入力します。Enter を押します。
2. 定温時間（min）フィールドに、オーブンをこの温度にしておきたい時間（分）を入力します（この時間が分析時間になります。最大999.99分）。Enterを押します。

3. 升温速度（℃/min）は0.00に設定しておきます。Enterを押します。これで、定温分析のセットアップは完了します。

4. ポストラン（Post-Run）の温度と時間を入力しておくと、カラムに残っている高沸点成分をカラムから排出させることができます。

温度プログラミング

オーブン温度をプログラムして、イニシャル温度からファイナル温度までのオーブン昇温プログラムを組むことができます。1回の分析で6ランクまでの多段昇温が可能です。

1回の分析の時間は、そのオーブン温度プログラムによって決まります。1回の最長分析時間は999.99分です。この時間が経過した時点でプログラムがまだ実行中であっても、分析は終了します。

実際に昇温できる速度の上限は、多くの要因によって決まります。これらの要因には、室温、注入口と検出器の温度、オーブン内の熱容量（カラム、バルブなど）、その日最初の分析（装置が冷えている）かどうかなどがあります。表22に一般的な値を示します。

表22. オーブン昇温速度

<table>
<thead>
<tr>
<th>温度範囲（℃）</th>
<th>最大昇温速度（℃/min）</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 〜 75</td>
<td>120</td>
</tr>
<tr>
<td>75 〜 115</td>
<td>95</td>
</tr>
<tr>
<td>115 〜 175</td>
<td>65</td>
</tr>
<tr>
<td>175 〜 300</td>
<td>45</td>
</tr>
<tr>
<td>300 〜 350</td>
<td>35</td>
</tr>
</tbody>
</table>

*これらの速度は標準のGCの速度です。高速GCでは、最大昇温速度が約3倍になります。

冷媒によってオーブンを冷却する場合、高い昇温速度は利用できません。
シングルランプ（一段昇温）プログラム

シングルランプ（一段昇温）プログラム（図 20 を参照）はオープン温度をイニシャル値からファイナル値まで、指定された速度で昇温し、そのファイナル温度で指定された期間、保ちます。

図 20. シングルランプ（一段昇温）

シングルランププログラムを作成するには

次のスクリーンの例では、最初のオープン温度は 50 ℃で、2 分間その温度を保って、それから 10 ℃/min の昇温速度で 150 ℃まで温度を上げ、5 分間その温度を保ちます。

1. 以下のスクリーンを表示します。

2. 分析を開始する条件として、イニシャル温度（50 ℃）とイニシャル時間（2 min）を入力します。
3. オープンの昇温速度（10 ℃/min）を入力します。
4. ファイナル温度（150 ℃）とファイナル時間（5 min）を入力します。
カラムオーブン
温度プログラム

5. 分析後オーブンを最初の温度に冷却する前に、カラムを焼き出しする場合は、ポストラント温度とポストラント時間を入力します。
6. 最近使用された昇温プログラムで、定温または一段昇温しか使っていないことが確かな場合は、以下のステップを省略できます。確かな場合はRampsを押してセットアップを続けます。

Status / Settings / Oven / Ramps

7. Ramp 2 を選択し Enter を押します。

Status / Settings / Oven / Ramps / Ramp 2

8. このプログラムが一段昇温で終わるよう、℃/min を OFF（0℃）に設定し、OK を押します。温度プログラムは昇温速度が OFF に設定されたランプのところで終了します。

マルチランプ温度プログラムを作成するには

マルチランプ（多段昇温）プログラム（図21を参照）は、オーブン温度をインシャル値からファイナル値まで昇温しますが、その間に多段の昇温速度、時間、温度をプログラムできます。マルチランプ（多段昇温）では、昇温と同じように降温プログラムもできます。

図21. マルチランププログラム
マルチランププログラムを作成するには

前のセクションの例では、最初のオープン温度は 50 ℃ で、2 分間その温度を保って、それから 10 ℃ /min の昇温速度で 150 ℃ まで温度を上げ、5 分間その温度を保ちます。それから、次のランプに進み、4 ℃ /min の昇温速度で 200 ℃ まで温度を上げ、2 分間その温度を保ちます。

1. 最初のオープン昇温プログラムを、前のページでの説明に従ってセットアップします。
2. Ramp 2 をセットアップするとき、℃/min フィールドに 4 を、℃フィールドに 200 を、min フィールドに 2 を入力します。

3. OK を押して、1つ前のスクリーンに戻ります。
4. 最近使用した昇温プログラムは 2 段昇温までしか使っていないことが確かなら、以下のステップは省略できます。確かでない場合は Ramps を押してセットアップを続けます。Ramp 3 を選択し Enter を押します。
5. ℃/min を OFF に設定し OK を押します。温度プログラムは昇温速度が OFF に設定されたランプのところで終了します。
6. 以降、同様なやり方で最大 6 つまでのランプを追加します。

カラム補償分析

温度プログラミングによりピークの形状は改善されますが、温度プログラムでは温度が上昇するにつれてベースラインも上昇するため積分がやや困難になります。これは感度の低い TCD では問題になりませんが、FID では重要な問題になります。カラム補償では、このベースライン上昇を補正できます。

カラム補償では、あらかじめプランクラン（サンプルを注入しない分析）のプロフィールを保存しておきます。このプランクランのプロフィールを、実際のサンプル分析の結果から差し引いて、ベースライン上昇を打ち消します。図 22 にその概念を示します。

カラム補償分析（プランクラン）と実際の分析は、同一の条件（同じ検出器、同じカラム、同じ温度、同じガス流量）で分析します。
図 22. カラム補償分析

カラム補償プロフィールを作成するには
1. 以下のスクリーンを表示します。

Status / Setup

2. ブランクランプロフィールを作成するメソッドを読み込みます。COMP を押
します。

GC が安定したら、ブランクラン（サンプルを注入しない測定）を 1 回実行しま
す。得られたデータはカラム補償プロフィールとして保存されます。
カラム補償プロフィールを使用するには
以下のスクリーンを表示します。使用する検出器によってスクリーンは異なります。

Status / Settings / Detector / More / Signal / Enter

1. Detector - Column Comp を選択し、OK を押します。
2. 出力シグナルは、検出器出力から保存されているカラム補償プロフィールを差し引いたものになります。
炎光光度検出器（FPD）

水素使用上の注意

警告
搬送ガスや燃焼ガスとして水素（H2）を使用する場合は、水素がオープンの中に流れ出ると爆発を引き起こすおそれがあることを知っておいてください。このため、すべての接続が完了するまでは絶対に水素ガスの供給を行わないでください。また、装置に水素ガスを供給するときは、必ず注入口と検出器のカラム接続部にカラムを接続するか、キャップでふさいでおいてください。

警告
水素は可燃性です。漏れたガスが閉まれた気密な空間に閉じ込められると火事や爆発を引き起こすおそれがあります。水素を分析で使用するときは、装置を操作する前に必ずすべての接続部、ライン、およびバルブの漏れテストを実行してください。装置に対してなんらかの作業を行うときは、必ず水素（H2）をその供給源で閉じてください。

基本情報
サンプルは水素が豊富な炎で燃焼され、化学種により、還元されるものや励起されるものがあります。励起したものは、ガスの流れで炎の上にあり、温度の低い発光ゾーンに移動され、崩壊して発光します。狭帯域フィルタが、化学種に固有の光を選択し、シールドが強力な炭素放射が光電子増倍管（PMT）に達するのを防ぎます。

光がPMTの感光面に当たると、フォトンが電子を解放します。電子はPMTの内部で、全体の利得が最高100万倍まで増幅されます。

PMTから出た電流は、FPDのエレクトロニックボードで増幅され、デジタル化されます。シグナルは、通信出力のデジタル信号としても、アナログ出力の電圧信号としても利用できます。

供給元メーカーによるPMTの仕様に基づき、FPDは50℃以上で保管しないようにしてください。
炎光光度検出器（FPD）
点火オフセットを使用する

直線性

いくつかのメカニズムで硫黄が発光します。励起した化学種は2価であるため、発光強度はほぼ硫黄原子濃度の二乗に比例します。

燃焼モードにある励起した化学種は1価であり、発光強度と原子濃度が直線関係になります。

図23. 炎光光度検出器

点火オフセットを使用する

点火オフセット Lit Offset とは、FIDで炎が点火している場合と消えている場合とで期待されるFID出力の相違です。点火が正常に行われたか判断し、炎が消えた状態を検出するために使用します。

炎が付いている場合の出力から炎が消えている場合の出力をマイナスした値が、Lit offset より大きければ、炎が点火したと判断されます。
Lit Offset のデフォルト設定値は 2.0 pA です。ガスとシステムがきわめてクリーンな場合を除き、通常はこの設定で十分です。以下の場合には、この設定値を変更してください:

- 炎が点火しているのに、検出器が再点火を試みるために、シャットダウンが発生する。
- 炎が消えているのに、検出器が再点火を実行しない。

Lit Offset の設定値を変更する

1. More を押し、Lit Offset を選択します。

2. 数字を入力します。デフォルト設定値は 2.0 pA です。自動再点火機能を無効にするには、0 を入力します。設定値の範囲は、0 ～ 99.9 pA です。

3. OK を押します。

炎を点火する

次のページにある炎点火方法のどちらかを使用すると、FPD は自動的にこのシーケンスを実行します。

1. 空気、水素、メーカーアップガスなど、すべての検出器ガスをオフにします。
2. 空気流量を 200 mL/min に設定します。
3. グロウプラグ点火装置をオンにします。
4. 水素流量を 10 ～ 70 mL/min にランプします。
5. 空気流量を、空気流量の設定値にリセットします。
6. 水素流量を、水素流量の設定値にリセットします。
7. メーカアップガスをオンにします。
8. Lit Offset 値で、シグナルの変化を比較します。変化が Lit Offset よりも大きければ、炎点火（lit）を宣言します。小さい場合は、炎が消えている（not lit）ことを宣言します。

このプロセスが機能するには、空圧モジュールで 200 mL/min の流量が得られるだけの気圧が必要です。供給圧力 90 psi をお勧めします。

マニュアル点火
炎点火シーケンスを開始するには、次のスクリーンを表示して Flame を押します。

Status / Settings / Detector

<table>
<thead>
<tr>
<th>FPD</th>
<th>14:02:29 Last Sample</th>
<th>FPD/ON/MAN</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>Flame Gases</td>
<td>Constant Makeup</td>
<td>Gas</td>
</tr>
<tr>
<td>150</td>
<td>H2</td>
<td>He</td>
<td>He</td>
</tr>
<tr>
<td>141 °C</td>
<td>34.0</td>
<td>160.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

自動点火
炎点火時に FPD 出力が、炎消火時の出力に Lit Offset の値を加えたものより下がった場合、炎が消えた状態と解釈されます。FPD は、炎点火シーケンスを実行して、炎を再点火します。点火に失敗した場合、シーケンスをもう一度繰り返します。2 度目の試行にも失敗した場合、検出器は温度とメークアップガス流量を除いてすべての機能をシャットダウンします。

エレクトロメータを使用する
Configure Detector には、エレクトロメータの ON/OFF 設定値が含まれています。メンテナンス作業を行うのでなければ、エレクトロメータを ON/OFF する必要はありません。
表23. エレクトロメータの設定

<table>
<thead>
<tr>
<th>設定</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>高電圧およびシグナル処理回路がオンです。エレクトロメータがオンのときに光電子増倍管を室内光にさらすと、光電子増倍管は破壊されます。</td>
</tr>
<tr>
<td>Off</td>
<td>高電圧およびシグナル処理回路がオフです。この状態では、光電子増倍管を室内光にさらしても安全です。</td>
</tr>
</tbody>
</table>

注意
光電子増倍管を破壊しないように、PMTの筐体を外すときには常にエレクトロメータをオフにします。

シグナル選択
シグナル出力としていくつかの種類のシグナルを選択できます。選択されたシグナルはリアパネルのSIGコネクタから出力され、インテグレータ、アナログレコーダ、その他の外部デバイスに送って処理できます。選択されたシグナルはRS-232コネクタやオプションのLAN通信カードからデジタル出力することもあります。

出力シグナルを選択するには
1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Signal / Enter

- Detector
- Column Comp
- Detector-Column Comp
- Test Chromatogram
- Other 10

Zero: OFF
Signal: 0.00
PW: 0.01min 20Hz
2. リストされた5種類のシグナルから1つを選んでください。
 • Detector - 検出器で測定されたシグナルです。
 • Column Comp - この検出器用に保存されているカラム補償プロフィールです（150ページのカラム補償分析を参照）。
 • Detector - Column Comp - 検出器シグナルからカラム補償プロフィールを差し引いた結果です。
 • Test Chromatogram - 装置に保存されているシグナルです。外部のシグナル処理装置テスト用に再現性のあるシグナルを提供します。
 • Other - ケミステーションまたはCerity Chemicalがシグナルを設定します。

3. OKを押します。

シグナルをゼロ調整するには
 • Zeroフィールドに値を入力します。すべての出力されるシグナル値からその値が差し引かれます。次に、OKを押します。

 または

 • Zeroフィールドをプランクにして、Zeroキーを押します。GCに現在のシグナル値が保存され、すべての出力されるシグナル値からその値が差し引かれます。次に、OKを押します。

ピーク幅（PW）
このフィールドには、デジタルシグナルのサンプリング周期を表示します。

データ速度
FPDのアナログ出力は、2つの速度のどちらかで提供されます。高速では最小0.004分の狭いピークを検出できるようになり、標準スピードでは検出の最小ピーク幅は0.01分です。

Fast Peaksを利用する
Fast Peaks機能を利用する場合、GCからのデータを処理するのに十分な速さのインテグレータが必要になります。インテグレータのバンド幅は、少なくとも15Hzであることをお勧めします。
炎光光度検出器（FPD）

メークアップガスモードを選択するには

Fast Peaks を利用するには

1. More を押して、Analog output を選択します。

<table>
<thead>
<tr>
<th>Output</th>
<th>Attn</th>
<th>Range</th>
<th>Analog Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1mV</td>
<td>0</td>
<td></td>
<td>□ Fast Peaks</td>
</tr>
<tr>
<td>0-1V, 0-10V</td>
<td>0</td>
<td></td>
<td>Not For TCD</td>
</tr>
</tbody>
</table>

2. Fast Peaks を選択します。

Fast Peaks 機能は、デジタル出力には適用されません。

メークアップガスモードを選択するには

Constant Makeup（コンスタントメークアップ）モードでは、検出器に流れ るメークアップガス流量は一定です。

Constant Combo（コンスタント合計）モードでは、検出器に流れるメーク アップガス流量は変化します。カラム流量が変化するにつれて、メークアップガ スの流量はその変化を補うように変化して、検出器に流れる合計流量を一定にし ます。

1. 以下のスクリーンを表示します。

Status / Settings / Detector / More / Makeup Mode / Enter

2. メークアップモードを選択して OK を押します。
検出器を利用する

ヒーターのコンフィグレーション

FPD バーナーモジュールには、検出器本体用に加熱したゾーンがあります。

FPD パラメータ

表 24 には、水素に富み酸素に乏しい、非常に敏感な FPD 炎に対して設定する各種流量が示されています。これらの流量で炎を点火するのは難しく、硫黄モードでは特に困難です。搬送ガスまたはメークアップガスとして使用されるヘリウムは、検出器のガスを点火温度より低くする場合があります。ヘリウムより窒素の使用をお勧めします。

<table>
<thead>
<tr>
<th>搬送ガス（水素、ヘリウム、窒素、アルゴン）</th>
<th>硫黄モード流量 mL/min</th>
<th>燃焼モード流量 mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>充填カラム</td>
<td>10 ～ 60</td>
<td>10 ～ 60</td>
</tr>
<tr>
<td>毛管カラム</td>
<td>1 ～ 5</td>
<td>1 ～ 5</td>
</tr>
<tr>
<td>検出器ガス</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水素</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>空気</td>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>搬送ガス＋メークアップガス</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

供給圧力

空気供給圧力点火シーケンスには、少なくとも 90 psi。その他は、目的の流量を達せするのに適切な圧力。

検出器温度

120℃より低い場合、炎は点火しません。

オーブンの最高温度より約 25℃高く設定します。上限は 250℃です。

Lit offset

検出器の出力（点火状態）から出力（消火状態）をマイナスしてこの値より小さくなると、FPD は 2 回再点火を試行します。出力が最低でもこの値程度増加しなければ、検出器はシャットダウンします。

推奨する設定は、2.0 pA です。0 または Off を設定すると、自動点火は無効です。
表に示された硫黄モード流量で炎が点火しない場合は、輝モードの値に変更してください。炎が点火してから、徐々に流量を減らして硫黄モードの値に近づけます。使用している検出器に適した流量を知るにはある程度の試行錯誤が必要です。

FPD を使用する

検出器のガスがすべて接続されており、カラムが設置され、システムに漏れないことを確認してください。オーブンの温度、注入口の温度、カラム流量を確認します。

警告

空気または水素を ON にする前に、カラムが取り付けられているか、または FID のカラム接続部が栓でふさがれていることを確認してください。水素がオーブンに漏れると、爆発のおそれがあります。

1. 以下のスクリーンを表示します。

Status / Settings / Detector

2. 検出器温度を設定します。炎が点火するには、120 ℃ 以上の温度が必要です。

3. 水素流量を入力します。

4. 空気流量を入力します。

5. 充填カラムを使用する場合は、メークアップガスを OFF にして、手順 162 に進みます。

Released:2004 年 3 月 6850 Series コントロールモジュールユーザーサインフォメーション ページ 161 / 188
炎光光度検出器（FPD）
FPDを使用する

6. 毛管カラムを使用している場合

 a. 毛管カラムがコンフィグレーションされている場合、必要であれば、新しい流量モードを選択して、メークアップガス流量または複合ガス流量を設定します。159ページのメークアップガスモードを選択するには参照してください。

 b. 毛管カラムがコンフィグレーションされていない場合、メークアップガス流量を入力します。コンスタントメークアップガス流量のみが使用できます。

 c. 表示されているメークアップガスの種類（Gas）が、装置に配管されているガスの種類と同じであることを確認してください。必要な場合には、ガスのタイプを変更します。

7. Flameを押します。これで、空気と水素がオンになり、点火シーケンスが開始されます。点火すると、シグナルが増加します。通常のレベルは、硫黄モードで4〜40 pA、硫黄モードで10〜70 pAです。鏡やクロムメッキしたレンチなどの冷えた金属鏡面をベント出口の上にかざして、炎が点火していることを確認します。炎が点火していれば、鏡面が曇ります。

8. OKを押します。
バルブ

6850 シリーズガスクロマトグラフはオープン上部の加熱バルブボックスにガスサンプリングバルブまたは液体サンプリングバルブを 1 つ取り付けられます。GC に外付けされたストリーム選択バルブ（マルチバルブ）もコントロールできます。

バルブは以下の方法でコントロールできます:
- 自動で、バルブシーケンスを使用してコントロールできます（53 ページのバルブパラメーターを入力するにはを参照してください）。
- マニュアルでコントロールできます（167 ページのマニュアルでバルブをコントロールするを参照してください）。
- ランテーブルイベントを使用してコントロールできます。主に、スイッチングバルブで使用（57 ページのバルブイベントを参照してください）。
- クロックテーブルイベントを使用して、無人で分析を実行できます（59 ページのクロックテーブルを参照してください）。

バルブの種類

4 種類のバルブを使用できます:
- ガスサンプルバルブ - 2 つのポジション（ロードと注入）があるバルブです。ロードポジションでは、外部からのサンプルガス（最高 300 psi）は、取り付けられているサンプリングループを経由して外に排出されます。注入ポジションに切り換わると、サンプリングループに満たされたサンプルガスは、キャリアガスの流路に挿入されます。種々のサイズのサンプル計量ループが使用できます。
- 液体サンプルバルブ - ガスサンプルバルブに類似していますが、物理的な構造はやや異なります。300 psi までの液化ガスをサンプリング可能で、グルーブ容積は 0.5 µL と 1 µL のものがあります。
- スイッチングバルブ - カラムのバックフラッシュやカラムの選択など、配管の構成によって種々の用途に利用します。
- マルチポジションバルブ（マルチバルブ）- ユーザが準備します。マルチバルブは複数のサンプルストリームから 1 つを選択して、そのストリームをサンプルバルブに供給します。この組み合わせの例は、166 ページのサンプルバルブに接続したマルチバルブを参照してください。
バルブをコンフィグレーションする

バルブをGCにコンフィグレーションするには
1. 下のスクリーンを表示します:

Status / Setup / Automation

2. Valve 1 と Valve 2 のタイプを選択します。

サンプルバルブ

配管
サンプルバルブの配管には、2つの方法があります。

- 注入口フローモジュールと注入口の間に挿入する。サンプルは、注入口からカラムの先端に流れます。
- パージ付き充填注入口フローモジュールとカラム（先端）の間に挿入する（スプリット/スプリットレス注入口では使用できません）。サンプルは注入口をバイパスします。

この配置でカラムのコンフィグレーションを行っていない場合、そのカラムの流量モードだけを設定できます。総流量の設定値および読み取り値は、通常通りに機能します。

カラムがコンフィグレーションされている場合、GCはセプタムパージ流量を読み取り、カラム流量の設定値を補正します。注入口がバイパスされているため、この値は 0 です。流量モードでは、実際のカラム流量は設定値よりも 1 〜 2 mL/分ほど小さくなります。圧力モードでは、総流量は実際のカラム流量と同じです。
サンプルバルブをコンフィグレーションするには
1. 以下のスクリーンを表示します。

Status / Setup / Automation / Sample Valve

<table>
<thead>
<tr>
<th>Sample Valve</th>
<th>Last Sample</th>
<th>Default</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Time</td>
<td>0.5 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Loop Volume</td>
<td>5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inject Time</td>
<td>0.5 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Load Time を 分単位で入力します。
3. Sample Loop Volume を入力できます。この入力値はユーザが参照するのみで、バルブの操作には影響しません。
4. Inject Time を 分単位で入力します。
5. Esc を押して値を保存し、ひとつ前のスクリーンに戻ります。

サンプルバルブのサイクル
1. サンプリングバルブを Load の状態に切り換えます。Load min が開始します。バルブは Not Ready になっています。

Load 状態 - 分析と分析の間のバルブが“レスト”のポジションにある状態です。サンプルループ内はサンプルガスが流れて置換されます。サンプリングラインに直接接続してガスを連続的に流すか、ガスシリンジや液体シリンジを使ってマニュアルでループ内のガスを置換します。カラムには搬送ガスが流れています。
2. Inject min が終了します。バルブが Ready になります。
3. その他の部分もレディになれば、GC はレディになります。
4. サンプルループをサンプルで置換します（バルブにサンプルストリームが接続されていない場合）。Start を押します。
5. サンプリングバルブは Injection 状態に切り換わります。Inject min が開始されます。分析がスタートします。

Inject 状態 - バルブが“アクティブ”のポジションにある状態です。サンプリングループがキャリアガス流路に挿入されます。ループ内のサンプルはカラムに押し流されれます。自動的に分析がスタートします。Inject min が終了すると、バルブはレストのポジションに切り換わりロード状態に復帰します。
6. Inject min が終了します。ステップ1に戻ります。
サンプルバルブに接続したマルチバルブ

サンプルバルブとマルチバルブとの両方がコンフィグレーションされている場合、GC はマルチバルブ（Valve 2: Multiposition）がサンプルバルブ（Valve 1: Sample）にサンプルを供給するものとみなします。

6850 GC で使用可能なマルチポジションバルブが、幾つかの業者から市販されています。バルブがマルチバルブとしてコンフィグレーションされ、GC に接続する BCD ポジション出力を持っているなら、サンプリングするバルブポジションは GC から直接選択できます。

GC は BCD 入力を受けて、現在のバルブポジションを読み取ります。希望するポジションと異なっている場合、ドライバを 1 回駆動して（接点を閉じて開く）ポジションを前に進め、BCD ポジション出力を再チェックします。バルブが正しいポジションに達するまでこれを繰り返します。バルブが動かなかかったり、動くのに時間がかかったり、目的のポジションに達したことをレポートしない場合は、エラーが発生します。

マルチバルブをコンフィグレーションするには

1. 以下のスクリーンを表示します。

Status / Setup / Automation / Multi Valve

2. Switching Time を秒単位で入力します。粘性の高いサンプルではより長い時間が必要です。デフォルト設定値は 1.0 秒です。

3. BCD 信号の極性（Polarity）で Normal か Invert を選択します。Invert すると BCD 入力は反転されます（1 は 0 に、0 は 1 になります）。これにより、バルブ供給業者間でのコード変換の違いは解決されます。デフォルトは Normal です。
マニュアルでバルブをコントロールする

バルブを組み込んだメソッドを開発する際には、バルブをマニュアルで操作する必要があるでしょう。

マニュアルでバルブを駆動するには

1. 以下のスクリーンを表示します。

Status / Automation / Valves

<table>
<thead>
<tr>
<th>Valves</th>
<th>24:14:58 Last Sample 00 Default+ Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve 1</td>
<td>Valve 2</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>☐ Toggle Switching Valve ☐ Toggle Switching Valve</td>
<td></td>
</tr>
<tr>
<td>☐ Toggle Sampling Valve ☐ Multi-Position Valve</td>
<td>Current ?? Next 0</td>
</tr>
</tbody>
</table>

この GC には、サンプルバルブ (Valve 1: Sampling Valve) とマルチポジションバルブ (Valve 2: Multiposition Valve) が取り付けられています。

2. コントロールするバルブと動かす方向を選択します。ACTION を押すと切り換わります。RESET を押すと何もしない状態にスクリーンを設定します。

サンプルバルブとスイッチングバルブでは 2 つの状態のどちらかに切り換わります。マルチポジションバルブでは、希望ポジション (1 〜 16) を Next フィールドに入力できます。ACTION を押すとバルブはそのポジションに進みます (BCD 読み取りケーブルが接続されて外部駆動回路が正常な場合：この例ではバルブは接続されていない)。
バルブボックス温度の設定

バルブボックスには1つのバルブ取り付け場所を持つ1つの加熱ブロックがあります。温度は補助ヒーターによってコントロールされます。

1. 以下のスクリーンを表示します。

 Status / Settings / Auxiliary

 ![Auxiliary Screen]

 1. 下記の温度（範囲 10 ℃ ～ 200 ℃）を入力します。Esc を押してスクリーンを閉じます。

2. 希望する温度（範囲 10 ℃ ～ 200 ℃）を入力します。Esc を押してスクリーンを閉じます。
サービスモード

サービススクリーン

下のスクリーンにはランログが表示されています。ランログは、直前での分析で分析中に発生したエラーの詳細リストです。分析を開始する毎に、ランログは消去されます。

Status / Service

サービスモードに入るには

Service を押します。アクティブメソッドはメモリに保存され、SERVICE メソッドが読み込まれます。

サービスモードを終了するには

EXIT Service を押します。直前に保存したアクティブメソッドが読み込まれます。

ログブック

GC は実行した重要なイベントをログブックに保管しています。これらのイベントには、シャットダウン、フォルト、ファームウェア更新、リークテストの記録が含まれます。ログブックを見るには、以下のスクリーンを表示します。

Status / Service / Log Book
通常は最も新しい25のイベントがリストされます。表示されるイベントの数を50、100、または250に設定することもできます。

ログブック全体（最大のエントリ数は1024）を1つのテキストファイルとしてPCカードに保存するには、Save Logbookを押します（29ページのPCカードの使い方を参照）。

診断

診断ステータスを見るには
以下のスクリーンを表示します。

Status / Service / Diagnostics

![Diagnostics Table]

検出器によるテストは、FIDを使用している場合にだけ行うことができます。
表示される気圧は、計器によって測定された値で、すべての計算に使用されます。
リークテストとスプリットベントテストの2通りの注入口テストを行うことができます。

リークテスト（すべての注入口タイプ）

リークテストは注入口に圧力をかけて、時間経過による圧力減少をチェックします。リークテストは、注入口のメンテナンス後に、通常の動作条件（温度）の下で必ず実行してください。注入口がリークテストをパスしなかった場合、すべての接続を漏れがないか確認してください。

リークテスト結果は、ログブックに記録されます。
表 25. リークテストの交換部品

<table>
<thead>
<tr>
<th>項目</th>
<th>パーツ番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8 インチ真ちゅうナット</td>
<td>5180-4103</td>
</tr>
<tr>
<td>1/8 インチグラファイト入り</td>
<td>0100-1372</td>
</tr>
<tr>
<td>Vespel 無穴フェルール</td>
<td></td>
</tr>
<tr>
<td>カラムナット</td>
<td>5181-8830</td>
</tr>
<tr>
<td>グラファイト入り Vespel 無穴</td>
<td>5020-8294</td>
</tr>
<tr>
<td>フェルール</td>
<td></td>
</tr>
</tbody>
</table>

リークテストを実行するには

1. 以下のスクリーンを表示します。使用する注入口により内容が異なる場合があります。

Status / Service / Diagnostics / Inlet Test

<table>
<thead>
<tr>
<th>Inlet Test</th>
<th>02:14:39 Last Sample 00</th>
<th>Default+</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split vent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purge vent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Status

<table>
<thead>
<tr>
<th>Pressure value</th>
<th>0.0 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time</td>
<td>0.0 min</td>
</tr>
</tbody>
</table>

2. **Leak Test** キーを押します。

3. カラムが設置されている場合は取り外します。カラムナットおよび無穴フェルール（毛管カラムの場合）または Vespel® プラグ（充填カラムの場合）でカラムフィッティングをふさぎます。OK を押します。

<table>
<thead>
<tr>
<th>Inlet Test</th>
<th>07:46:41 Last Sample 01</th>
<th>Default</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split vent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purge vent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please cap off the COLUMN connection at the inlet to prepare for this test.

Press OK when ready to proceed ----> OK

4. セプタムバージェントに1/8 インチ Swagelok® キャップをして、OK を押します。

<table>
<thead>
<tr>
<th>Inlet Test</th>
<th>19:41:29 Last Sample 00</th>
<th>Default</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split Vent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purge Vent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cap here

Press OK when ready to proceed ----> OK
5. セプタムパージベントにキャップをすると、Inlet Leak Test スクリーンが表示されます（時間がかかる場合があります）。

![Inlet Test Screen]

GCが動作条件に達したとき、テストが自動的に開始します。通常は、テストが開始するまで待ちます。注入口が動作温度に達すまで待たずにテストを開始するには、Test Now を押します。

Yes を選択すると、テストが即座に開始します。完了するには、約 5 分かかります。

6. テストが完了したとき、テスト結果が表示されます。

![Leak Test Passed Screen]

テスト結果は以下のどれかです。
- 合格 (Passed) - 動作温度で漏れがありません。
- 不合格 (Failed) - すべてのフィッティングについて、漏れがないか点検してください。詳細は、『GC ユーザーインフォメーション』を参照してください。
- 無効 (Override) - 注入口はテストに合格しましたが、注入口が動作温度に達する前に Test Now キーを使ってテストを開始しました。注入口に漏れはありませんが、動作温度では漏れが起こる可能性があります。

7. この手順の初めからメソッドをリロードしてください。
8. キャップを外し、カラムを再び設置して必要があればコンフィグレーションを行い、圧力をリセットして速度を下げます。

スプリットベントテスト（スプリット/スプリットレス注入口およびPTV注入口のみ）

スプリットベントテストは注入口ライナーとベントトラップのつまりをチェックします。長く使用すると、ベントトラップと注入口ライナーにはサンプル中の化合物が蓄積します。注入口がスプリットベントテストをパスしない場合、その原因はたいていベントトラップ、注入口ライナー、ライナードのシールにあります。詳細については、『Agilent 6850 ユーザーインフォメーション』マニュアルを参照してください。

スプリットベントテスト結果は、ログブックに記録されます。

表 26. スプリットベントテストの交換部品

<table>
<thead>
<tr>
<th>項目</th>
<th>パーツ番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>カラムナット</td>
<td>5181-8830</td>
</tr>
<tr>
<td>グラファイト入り Vespel</td>
<td>5020-8294</td>
</tr>
<tr>
<td>無穴フェルール</td>
<td></td>
</tr>
</tbody>
</table>

スプリットベントテストを実行するには

1. 以下のスクリーンを表示します。

Status / Service / Diagnostics / Inlet Test

<table>
<thead>
<tr>
<th>Inlet Test</th>
<th>17:48:41</th>
<th>Last Sample B1</th>
<th>Default</th>
<th>Not Ready</th>
</tr>
</thead>
</table>

2. Split Vent Test を押します。
3. 以下のスクリーンの指示に従います。

Please cap off the COLUMN connection at the inlet to prepare for this test.
Press OK when ready to proceed ----->
4. セプタムパージメントにキャップをすると、Inlet Leak Test スクリーンが表示されます。

GC が動作条件に達したとき、テストが自動的に開始します。通常は、テストが開始するまで待ちます。注入口が動作温度に達すまで待たずにテストを開始するには、Test Now を押します。

Yes を選択すると、テストが即座に開始します。

5. テストが完了したとき、テスト結果が表示されます。

テスト結果は以下のどれかです。

- 合格 (Passed) - 動作温度で漏れがありません。
- 不合格 (Failed) - すべてのフィッティングについて、漏れがないか点検してください。詳細は、『6850 GC ユーザーインフォメーション』を参照してください。
- 無効 (Override) - 注入口はテストに合格しましたが、注入口が動作温度に達す前に Test Now キーを使ってテストを開始しました。注入口に漏れはありませんが、動作温度では漏れが起こる可能性があります。
検出器（ジェット）テスト

FID ジェットテストは、フレームが点火しない、または分析中不必要にフレームが再点火する場合に行います。このテストではジェット先端の詰まり具合をチェックします。ジェットがこのテストをパスしない場合、ジェットチップを取り替えか、ジェットチップを掃除してください。詳細については、『6850 ユーザーインフォメーション』マニュアルを参照してください。

ジェットテスト結果は、ログブックに記録されます。

テスト結果が有効であることを確認するために、動作条件の下でテストを実行します。

表 27. ジェットテストの交換部品

<table>
<thead>
<tr>
<th>項目</th>
<th>パーツ番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>カラムナット</td>
<td>5181-8830</td>
</tr>
<tr>
<td>グラファイト入り Vespel</td>
<td>5020-8294</td>
</tr>
<tr>
<td>無穴フェルール</td>
<td></td>
</tr>
</tbody>
</table>

検出器テスト（ジェットテスト）を実行するには
1. 以下のスクリーンを表示します。

Status / Service / Diagnostics / Detector Test

2. Jet Test を押し、以下のスクリーンの指示に従います。

3. 検出器カラムフィッティングにキャップをすると、FID Jet Test スクリーン
診断

が表示されます。

GC が動作条件に達したとき、テストが自動的に開始します。通常は、テストが開始するまで待ちます。検出器が動作温度に達すまで待たずにテストを開始するには、Test Now を押します。Yes を選択すると、テストが即座に開始します。

4. テストが完了したとき、テスト結果が表示されます。

テスト結果は以下のどれかです。

- 合格 (Passed) - ジェットが十分にきれいで、詰まりがありません。
- 不合格 (Failed) - ジェットを掃除するか、交換してください。
- 無効 (Override) - ジェットはテストに合格しましたが、検出器が動作温度に達する前に、Test Now キーを使ってテストを開始しました。ジェットはテストに合格しましたが、動作温度では詰りが起こる可能性があります。
キーボードテスト

1. 以下のスクリーンを表示します。

Status / Service / Keyboard Test

2. コントロールモジュール上のそれぞれのキーを押します。キーが押されるとスクリーンのボタンは灰色になります。

較正

較正ステータスを見るには

以下のスクリーンを表示します。ユーザーが較正した日付が表示されます（工場出荷時較正はこの較正で更新されます）。

Status / Service / Calibration

工場出荷時較正に戻すには

上のスクリーンで、較正を戻したい項目を選択し Enter を押します。

流量センサと圧力センサ

これらのセンサのスロープ（感度）はきわめて安定していますが、ゼロオフセットは定期的にチェックする必要があります。

スプリット / スプリットレス注入口モジュールでは流量センサを使用しています。Enable Auto Flow Zero 機能（178 ページの注入口センサのゼロ調整をするには 参照してください）を選択すると、分析後、自動的にこのセンサはゼロ調整されます。
すべてのガスコントロールモジュールでは圧力センサを使用しています。これらの圧力センサでは、マニュアルでゼロ調整をしなくてはなりません。ゼロ調整は、表28に示した間隔を目安に行わせてください。

表28. 流量センサと圧力センサのゼロ調整をする周期

<table>
<thead>
<tr>
<th>センサ種類</th>
<th>カラム内径</th>
<th>ゼロ調整をする周期</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>すべて</td>
<td>Enable Auto Flow Zeroを使用</td>
</tr>
<tr>
<td>壓力</td>
<td>細い毛管カラム（内径320μm以下）</td>
<td>1年ごと</td>
</tr>
<tr>
<td></td>
<td>太いキャピラリカラム（内径320μmを超える）</td>
<td>3ヵ月目、6ヵ月目、それ以 後は1年ごと</td>
</tr>
<tr>
<td>充填カラム</td>
<td>1年ごと</td>
<td></td>
</tr>
</tbody>
</table>

注入口センサのゼロ調整をするには
1. 以下のスクリーンを表示します。

Status / Service / Calibration / Inlet Cal

2. Enable Auto Flow Zeroを選択します。分析後に毎回、自動的にゼロ調整が行われます。
3. 流量センサのゼロ調整をマニュアルで行なうには、ZERO FLOWキーを押します。注入口に流れるガスが、一時的に止められます。このプロセスには約2秒かかります。
4. 圧力センサのゼロ調整をするには、搬送ガスを供給源から止めます。供給 配管の接続をはずして、配管中に圧力が掛かっていないようにします。ZERO PRESSキーを押します。
5. 通常の搬送ガス流量に戻します。

注入口センサを較正するには
1. 注入口の圧力（70 〜 100 psi、すなわち480 〜 690 kPa）、または流量（500 〜 1000 mL/min）を正確に測定します。
2. 測定した圧力、または流量をスクリーンの該当するフィールドに入力します。
3. Enterを押すと、注入口センサは再較正されます。
オープン温度センサを再較正するには

1. 次に示すように熱電対をカラムハンガーに取り付けます。これは、出荷調整で使用されている熱電対の取り付け位置です。熱電対が空中にあること、オープンのどこにも触れていないことを確認します。

図24．熱電対とカラムハンガー

2. 通常よく使用する温度にオープン温度をセットします。少なくとも5分間はオープン温度を安定させます。

3. 装置が読み取ったオープン温度から、熱電対で測定された温度を引いて補正値を求めます。

4. 以下のスクリーンを表示し、Correction に補正値（-10.00 ～ +10.00）を入力します。

5. OK を押します。
カラムを較正するには
カラム寸法の内径や長さが不明で、測定するのが困難な場合は、この機能を使用して、不明な情報を補ってください。
1. 以下のスクリーンを表示します。

Status / Service / Calibration / Column Cal

2. オーブンにカラムを取り付けます。搬送ガスを流します。
3. スクリーンの左側で、知りたい情報をチェックします。
 • カラムの長さまたは内径のどちらかを計算するには、カラム流量の測定値か保持されないピークのリテンションタイムのどちらかを入力しなければなりません。
 • カラムの長さと内径の両方を計算するには、カラム流量の測定値と保持されないピークのリテンションタイムの両方を入力しなければなりません。
4. Measured Flow（流量測定値）を決定するには - カラム出口の流量です。検出器出口で測定できます。（忘れずに検出ガスをオフにしてください）電子式フローメータを使用するのが便利ですが、石鹸膜流量計とストップウォッチでもこの流量は測定できます。何度か測定し結果を平均してください。測定した流量を、標準状態（NTP）の値に換算することを忘れないでください。
5. Unretained Peak（保持されないピーク）を決定するには - カラムに保持されないピークが、注入してから検出器に現れるまでの時間（分）です。
6. 各フィールドに該当する値を入力し、入力する度に Enter を押します。装置はカラム寸法を自動的に計算して表示します。
7. OK を押してスクリーンを閉じます。
検出器流量のゼロ調整をするには

1. 以下のスクリーンを表示します。

```
Status / Service / Calibration / Detector Cal
```

```
<table>
<thead>
<tr>
<th>Calibration</th>
<th>13:39:08 Last Sample</th>
<th>Default+</th>
<th>Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>FID Gas Calibrations</td>
<td>Zero FUEL</td>
<td>Zero UTILITY</td>
<td>Zero MAKEUP</td>
</tr>
<tr>
<td>H2 Fuel</td>
<td>Reading</td>
<td>Zero</td>
<td>Oxidizer (utility)</td>
</tr>
<tr>
<td>mL/min</td>
<td>0.0</td>
<td>0.0</td>
<td>mL/min</td>
</tr>
</tbody>
</table>
```

2. ガスが流れている状態で、それぞれの ZERO キー（ZERO FUEL, ZERO UTILITY, ZERO MAKEUP）を別々に押します。キーを押す間隔は充分時間をかけて、ひとつのゼロ計算が終了するまで待ってください。少なくとも 10 秒間は待つことをお勧めします。

メンテナンス

6850 GC には、Early Maintenance Feedback (EMF) という機能が組み込まれています。この機能を使って、注入口セプタム、注入口ライナー、カラム、およびシリンジの使用状態を追跡できます。これらの部品について使用限度を設定しておけば、GC はそれらの部品の交換または保守が必要になったときそれを指示します。たとえば、200 回の注入ごとに、GC がセプタムの交換を指示します。

EMF は、各部品について最後に交換／保守した後に行われた自動注入の回数を追跡します。マニュアル注入はカウントされません。各部品について上限値を設定します（たとえば、セプタムの使用限度を設定する）。この制限回数に達したとき、GC のフロントディスプレイに「サービス警告」メッセージが表示されます。このメッセージは GC の使用可能状態には影響しません。これは単なる情報をメッセージです。GC は正常に使用できます。また、それぞれの EMF 対象部品を個別に起動および設定することができます。
EMFの使い方

EMFを使用するには、以下のスクリーンを表示します。

Status/Service/Maintenance

追跡可能な部品と、残余の耐用期間の割合（%）を示すインディケータが表示されます。ここでは、セプタムのサービスリミット値を設定します。

1. Service Limitsを押します。

2. Septumフィールドを選択し、キーボードを使って値を入力します。この例では、注入回数の上限を200に設定します。
3. 前のスクリーンに戻ります。セプタムのステータスバーに 100% と表示されています。これは残りの注入回数が 200 であることを表します。

GC はセプタムの使用回数の追跡を開始します。

サービスリミット値のリセット

部品の使用回数がサービスリミット値に達したとき、GC のディスプレイとコントロールモジュールに警告メッセージが表示されます。このメッセージをクリアするためには、その部品について EMF をオフにするか、またはカウンタをリセットする必要があります。

カウンタをリセットするには、以下の手順を実行します。
1. ランまたはシーケンスが終了し、部品を交換/保守できるようになるまで待ってから、以下のスクリーンを表示します。

Status/Service/Maintenance/Start Service

2. 保守する部品を選択し、OK を押します。
3. 以下のスクリーンが表示されます。Yes または No を選択します。

![Start Service Screen](image)

- Yes - GC は SERVICE メソッドを読み込み、注入口およびオーブンが手で触れても安全な温度まで冷却されるようにします（適切な SERVICE メソッドの設定の詳細については、6850 GC Information の CD-ROM を参照）。
- No - SERVICE メソッドを読み込みません。たとえば、通常はシリンジを保守するときに GC を冷却する必要はありません。高温部に触れる場合には、火傷をしないように注意してください。

4. 以下のスクリーンが表示されます。部品の保守が完了したとき、Yes を押して上で選択したカウンタをリセットします。No を押した場合（たとえば、何も変更しなかった場合）、カウンタはリセットされず、サービスメッセージが表示されつづけます。

![Maintenance Screen](image)

サービスリミット値の決定

セプタム、シリンジ、注入口ライナー、およびカラムのサービスリミット値は、使用方法によって異なります。セプタムまたはシリンジの漏れによる性能の低下や、セプタムのクラッシングによる汚れが発生する前に GC が部品の交換または保守を指示するようにリミット値を選択します。
アップデート機能

現在のGC、インジェクタ、およびコントロールモジュールのモデル番号、シリアル番号、およびファームウェア情報を見るには、以下のスクリーンを表示します。

Status/Service/Update

この情報をどこかにコピーしておいて、Agilentにサービスを依頼するときに利用できるようにしておくことをお勧めします。

ファームウェアのアップデートについてはAgilentのサービス担当にお問い合わせください。ファームウェアをアップデートするには、コントロールモジュールとアップデートファイルが入っているPCカードが必要です。

ラン中はファームウェアをアップデートしてはいけません。

GCのアップデート

GCファームウェアをアップデートすると、保存されているすべてのメソッドおよびローカルLANアドレス指定情報が失われます。アップデートを開始する前に、以下のことを実行します。

- すべてのGCメソッドを記録して再入力できるようにしておくか、または、コントロールモジュールを使ってそれらをPCカードに保存します。30ページのGCからPCカードにメソッドをコピーするにはを参照してください。
- ローカルLANアドレス指定コントロール（17ページのIPアドレス設定を参照）を使用している場合、Status/Service/LANCommに進み、LAN情報を記録して再入力できるようにしておきます。
GC ファームウェアをアップデートするには
1. GC からコントロールモジュールの接続を外します。
2. GC ファームウェアが入っている PC カードをコントロールモジュールに挿入し、コントロールモジュールを GC に接続します。
3. 以下のスクリーンを表示します。

Status / Service / Update / GC Update

<table>
<thead>
<tr>
<th>GC Update</th>
<th>22:12:21</th>
<th>Last Sample</th>
<th>Service Mo</th>
<th>Not Ready</th>
</tr>
</thead>
</table>

- PC Card Files
 - No files

 > Select a file to update the GC firmware;
 > Press the EXECUTE button;
 > The update will be sent to the GC;
 > The GC will reboot with new firmware.

4. GC アップデートファイル（拡張子.asc）を選択し、Execute を押します。

注意
アップデートプロセスが完了するか、プロセスをキャンセルするまで、GC の電源をオフにしたり、GC 電源コードをはずしたり、GC からコントロールモジュールをはずしてはいけません。ファームウェアのアップデートの途中でそのようなことをすると、コントロールモジュールのプログラムが壊れてしまい、GC が使用できなくなります。

5. 確認スクリーンが表示されます：
 - Yes で新しい GC ファームウェアが読み込まれます。このプロセスには約 10 分かかります。
 - No でファームウェアの読み込みはキャンセルされます。既存のファームウェアがそのまま残ります。
6. 読み込みが完了したら、GC は新しいファームウェアを使用してリスタートします。
7. メソッドおよびローカル LAN アドレス指定情報（使用している場合）を復元します。

インジェクタファームウェアをアップデートするには
インジェクタをアップデートするには、コントロールモジュールファームウェアバージョン A.03.00 以上が必要です。お手元にない場合、Agilent にご連絡ください。
1. GC からコントロールモジュールの接続を外します。
2. コントロールモジュールファームウェアが入っている PC カードをコントロールモジュールに挿入し、コントロールモジュールを GC に接続します。
3. 以下のスクリーンを表示します。

Status / Service / Update / Injector Update

4. インジェクタアップデートファイルを選択し、Execute を押します。

注意
アップデートプロセスが完了するまで、または取り消されるまで、GC 電源をオフにしたり、GC からインジェクタ電源コードを外したり、GC からコントロールモジュールを外してはいけません。ファームウェアのアップデート中にそれらのことをすると、コントロールモジュールが壊れて、インジェクタが使用できなくなります。

5. 確認スクリーンが表示されます:
 - Yes - 新しいインジェクタファームウェアを読み込みます。このプロセスには約 2 分かかります。
 - No でファームウェアの読み込みはキャンセルされます。既存のファームウェアがそのまま残ります。

6. 読み込みが完了したら、インジェクタは新しいファームウェアを使用してリスタートします。

コントロールモジュールファームウェアをアップデートするには
1. GC からコントロールモジュールの接続を外します。
2. コントロールモジュールファームウェアが入っている PC カードをコントロールモジュールに挿入し、コントロールモジュールを GC に接続します。
3. 以下のスクリーンを表示します。

Status / Service / Update / Mod Update

Released:2004 年 3 月 6850 Series コントロールモジュールユーザーインフォメーション ページ 187 / 188
4. コントロールモジュールアップデートファイルを選択し、Execute を押します。

注意
アップデートプロセスが完了するか、プロセスをキャンセルするまで、GC からコントロールモジュールを外したり、GC をオフにしたり、または GC をオンにしてはいけません。そのようなことをすると、コントロールモジュールのプログラムが壊れて、コントロールモジュールが使用できなくななる場合があります。

5. 確認スクリーンが表示されます：
 • Yes で新しいコントロールモジュールファームウェアが読み込まれます。このプロセスには約 2 分かかります。
 • No でファームウェアの読み込みはキャンセルされます。既存のファームウェアがそのまま残ります。

6. 読み込みが完了したら、コントロールモジュールは新しいファームウェアを使用してリスタートします。