Agilent Intuvo 9000
Gas Chromatograph

Safety Manual

Agilent Technologies
Notices

© Agilent Technologies, Inc. 2017

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G4580-90002

Edition

Second edition, January 2017
First edition, September 2016
Printed in USA and China

Agilent Technologies, Inc.
2850 Centerville Road
Wilmington, DE 19808-1610 USA

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Warranty

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.
Introduction

Important Safety Warnings 4
Hydrogen Safety 6
Uncombusted Hazardous Gases 8
Micro-Electron Capture Detector (µECD) 9
Safety and Regulatory Certifications 11
Intended Use 16
Cleaning 16
Fume Hood 16
Recycling the Product 16
Introduction

Important Safety Warnings

Before moving on, there are several important safety notices that you should always keep in mind when using the Agilent GC.

WARNING

When handling/using chemicals for preparation or use within the GC, all applicable local and national laboratory safety practices must be followed. This would include, but is not limited to, correct use of Personal Protective Equipment (PPE), correct use of storage vials, and correct handling of chemicals, as defined in the laboratory’s internal safety analysis and standard operating procedures. Failure to adhere to laboratory safety practices could lead to injury or death.

Many internal parts of the GC carry dangerous voltages

If the GC is connected to a power source, even if the power switch is off, potentially dangerous voltages exist on:

- The wiring between the GC power cord and the AC power supply and the AC power supply itself.

WARNING

If the power cord insulation is frayed or worn, the cord must be replaced. Contact your Agilent service representative.

WARNING

The GC power supply uses double pole/neutral fusing. Line voltage can be present on the neutral and on the phased power leads. To prevent electric shock, always disconnect the power cord before servicing the instrument. Refer servicing to Agilent-trained personnel only. There are no user serviceable parts within the GC power supply.

Do not use an Uninterruptable Power Supply (UPS) with a GC

If the area where the GC is located suddenly looses power, an unsafe condition can result if the GC remains powered on. Do not use the GC with a UPS.
Electrostatic discharge is a threat to GC electronics

The printed circuit (PC) boards in the GC can be damaged by electrostatic discharge. Do not touch any of the boards unless it is absolutely necessary. If you must handle them, wear a grounded wrist strap and take other antistatic precautions. Wear a grounded wrist strap any time you must remove the GC right side cover.

Many parts are dangerously hot

Many parts of the GC operate at temperatures high enough to cause serious burns. These parts include but are not limited to:

• The inlets
• The detectors
• The attaching the column to an inlet or detector
• The valve box

You should always cool these areas of the GC to room temperature before working on them. They will cool faster if you first set the temperature of the heated zone to room temperature. Turn the zone off after it has reached the setpoint. If you must perform maintenance on hot parts, use a wrench and wear thermally protective gloves. Whenever possible, cool the part of the instrument that you will be maintaining before you begin working on it.

WARNING
Be careful when working behind the instrument. During cool-down cycles, the GC emits hot exhaust which can cause burns.
Hydrogen Safety

Hydrogen gas may be used as carrier gas, and/or as fuel for the FID and NPD. When mixed with air, hydrogen can form fire hazard.

WARNING

Hydrogen is flammable. Leaks may create a fire hazard. In any application using hydrogen, leak test all connections, lines, and valves before operating the instrument. Always turn off the hydrogen supply at its source before working on the instrument.

Hydrogen is a commonly used GC carrier gas. Hydrogen is potentially a fire hazard and has other dangerous characteristics.

- Hydrogen is a fire hazard over a wide range of concentrations. At atmospheric pressure, hydrogen is a fire hazard at concentrations from 4% to 74.2% by volume.
- Hydrogen has the highest burning velocity of any gas.
- Hydrogen has a very low ignition energy.
- Hydrogen that is allowed to expand rapidly from high pressure into the atmosphere can self-ignite due to an electrostatic spark.
- Hydrogen burns with a nonluminous flame which can be invisible under bright light.

Hydrogen shutdown

Hydrogen gas may be used as a carrier or as fuel for some detectors. When mixed with air, hydrogen can form fire hazard.

The GC monitors inlet and auxiliary gas streams. If a stream shuts down because it is unable to reach its flow or pressure setpoint *and* if that stream is configured to use hydrogen, the GC assumes that a leak has occurred and declares a *hydrogen safety shutdown*. The effects are:

- The offending channel and any associated channels (such as septum purge) are set off.
- The column heater turns off.
• The small heated zones are turned off.
• An alarm tone sounds.

To recover from this state, fix the cause of the shutdown (tank valve closed, serious leak, others). Turn the instrument off, then back on.

The GC cannot always detect leaks in inlet and/or detector gas streams. For this reason, it is vital that column fittings should always be either connected to a column, or have a cap or plug installed. The \(\text{H}_2 \) streams must be configured for hydrogen so that the GC is aware of hydrogen use.

WARNING

Measuring hydrogen gas flows

WARNING

Do not measure hydrogen together with air or oxygen. This can create explosive mixtures that may be ignited by the automatic ignitor.

To avoid this hazard:

Turn the automatic ignitor off before you begin.
Always measure gases separately.

When measuring gas flows on a detector using hydrogen for the detector flame or carrier gas, measure the hydrogen flow separately. Never allow an air stream to enter when hydrogen is present in the flow meter.
Introduction

Uncombusted Hazardous Gases

During normal operation of the GC with many detectors and inlets, some of the carrier gas and sample vents outside the instrument through the split vent, septum purge vent, and detector exhaust. If any sample components are toxic or noxious, or if hydrogen is used as the carrier gas, these exhausts must be vented to a fume hood. Place the GC in the hood or attach a large diameter venting tube to the outlet for proper ventilation.
Micro-Electron Capture Detector (µECD)

The µECD contains a cell plated with 63Ni, a radioactive isotope. The beta particles released at the energy level in the detector have little penetrating power—the surface layer of the skin or a few sheets of paper will stop most of them—but they may be hazardous if the isotope is ingested or inhaled. For this reason, handle the cell with care. Cap the detector inlet and outlet fittings when the detector is not in use. Never introduce corrosive chemicals into the detector. Vent detector exhaust outside the laboratory environment.

Refer to the safety documentation provided with the detector for important details about safety, maintenance, and compliance with local government regulation.

WARNING

Materials that may react with the 63Ni source, either to form volatile products or to cause physical degradation of the plated film, must be avoided. These materials include oxidizing compounds, acids, wet halogens, wet nitric acid, ammonium hydroxide, hydrogen sulfide, PCPs, and carbon monoxide. This list is not exhaustive but indicates the kinds of compounds that may cause damage to 63Ni detectors.

WARNING

In the extremely unlikely event that the oven or the detector-heated zone should go into thermal runaway (maximum, uncontrolled heating in excess of 400 °C) and the detector remains exposed to this condition for more than 12 hours, take the following steps:

1. After turning off the main power and allowing the instrument to cool to room temperature, cap the detector inlet and exhaust vent openings. Wear disposable plastic gloves and observe normal laboratory safety precautions.

2. Contact your local Agilent Technologies sales office or distributor for ECD disposal instructions.

3. Include a letter stating the condition of abuse.

It is unlikely, even in this very unusual situation, that radioactive material will escape the cell. However, permanent damage to the 63Ni plating within the cell is possible; therefore, the cell must be returned for exchange.
Introduction

When handling μECDs:

- Never eat, drink, or smoke.
- Always wear safety glasses when working with or near open μECDs.
- Wear protective clothing such as laboratory jackets, safety glasses, and gloves, and follow good laboratory practices. Wash hands thoroughly with a mild nonabrasive cleaner after handling μECDs.
- Cap the inlet and outlet fittings when the μECD is not in use.
- Connect the μECD exhaust vent to a fume hood or vent it to the outside. See the latest revision of 10 CFR Part 20 (including Appendix B), or the applicable state regulation. For other countries, consult with the appropriate agency for equivalent requirements.

Agilent Technologies recommends a vent line internal diameter of 6 mm (1/4-inch) or greater. With a line of this diameter, the length is not critical.
Safety and Regulatory Certifications

The Agilent GC conforms to the following safety standards:
• Canadian Standards Association (CSA): C22.2 No. 61010-1
• CSA/Nationally Recognized Test Laboratory (NRTL): ANSI/UL 61010-1
• International Electrotechnical Commission (IEC): 61010–1, 60101-2-010, 60101-2-081
• EuroNorm (EN): 61010–1

The Agilent GC conforms to the following regulations on Electromagnetic Compatibility (EMC) and Radio Frequency Interference (RFI):
• CISPR 11/EN 55011: Group 1, Class A
• IEC/EN 61326
• AUS/NZ

The 9000 GC complies with the following company standard:
• Q31/0115000033C005-2016-02

This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme à la norme NMB–001 du Canada.

The Agilent GC is designed and manufactured under a quality system registered to ISO 9001. Declaration of Conformity available.

Instructions for Disposal of Waste Equipment by Users in the European Union. This symbol on the product or its packaging indicates that this product must not be disposed of with other waste. Instead, it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for the recycling of waste electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal will help conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more
Introduction

information about where you can drop off your waste equipment for recycling, please contact your local city recycling office or the dealer from whom you originally purchased the product.

EMC Declaration for South Korea

사용자안내문

이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. ※ 사용자 안내문은 “업무용 방송통신기자재” 에만 적용한다.

This equipment has been evaluated for its suitability for use in a commercial environment. When used in a domestic environment, there is a risk of radio interference.

Detachable Power Cord Declaration for Japan

(弊社提供の電源コードセットが汎用性がない旨を示す)

電源コードセットの取扱いについて（日本国内向け）

製品には、同梱された電源コードセットをお使いください。同梱された電源コードセットは、他の製品では使用できません。

Notice - The power cords for Japanese market

Your product must only use the power cord that was shipped with the product.

Information

The Agilent Technologies Gas Chromatograph meets the following IEC (International Electro-technical Commission) classifications: Safety Class I, Transient Overvoltage Category II, Pollution Degree 2.

This unit has been designed and tested in accordance with recognized safety standards and is designed for use indoors in non-classified locations. If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired. Whenever the safety protection of the Agilent Gas Chromatograph has been compromised, disconnect the unit from all power sources and secure the unit against unintended operation.
Refer servicing to qualified service personnel. Substituting parts or performing any unauthorized modification to the instrument may result in a safety hazard.

Lifting

The GC is heavy. To avoid injury, use a two–person lift.

Proper lifting technique requires moving the GC forward until one hand can be placed under the front in the bottom handhold, and placing one hand around the handle on the back of the GC.

CAUTION

Make sure that all samplers, trays, and D2/second detectors have been removed prior to moving or relocating the GC.
Introduction

Symbols

Warnings in the manual or on the instrument must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions violates safety standards of design and the intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

See accompanying instructions for more information.

Indicates a hot surface.

Indicates hazardous voltages.

Indicates earth (ground) terminal.

Indicates potential explosion hazard.

Indicates radioactivity hazard.

Indicates electrostatic discharge hazard.

Indicates a hazard. See the Agilent GC user documentation for the item labeled.

Indicates that you must not discard this electrical/electronic product in domestic household waste

To prevent personal injury, two person lift recommended
Electromagnetic compatibility

This device complies with the requirements of CISPR 11. Operation is subject to the following two conditions:

• This device may not cause harmful interference.
• This device must accept any interference received, including interference that may cause undesired operation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try one or more of the following measures:

1 Relocate the radio or antenna.
2 Move the device away from the radio or television.
3 Plug the device into a different electrical outlet, so that the device and the radio or television are on separate electrical circuits.
4 Make sure that all peripheral devices are also certified.
5 Make sure that appropriate cables are used to connect the device to peripheral equipment.
6 Consult your equipment dealer, Agilent Technologies, or an experienced technician for assistance.
7 Changes or modifications not expressly approved by Agilent Technologies could void the user’s authority to operate the equipment.

Sound Emission Certification for Federal Republic of Germany

Sound pressure
Sound pressure Lp < 70 dB(A) according to DIN-EN 27779.

Schalldruckpegel
Schalldruckpegel LP < 70 dB(A) nach DIN-EN 27779.
Introduction

Intended Use

Agilent products must only be used in the manner described in the Agilent product user guides. Any other use may result in damage to the product or personal injury. Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

Cleaning

To clean the unit, disconnect the power and wipe down with a damp, lint-free cloth.

Fume Hood

During normal operation of the GC with many detectors and inlets, some of the carrier gas and sample vents outside the instrument through the split vent, septum purge vent, and detector exhaust. If any sample components are toxic or noxious, or if hydrogen is used as the carrier gas, these exhausts must be vented to a fume hood. Place the GC in the hood for proper ventilation.

Recycling the Product

For recycling, contact your local Agilent sales office.