Multi Affinity Removal Column, Human-6

Part Nos. 5185-5984 (4.6 × 50 mm)
5185-5985 (4.6 × 100 mm)
For depletion of six high-abundance proteins from human samples

Instructions

Version A0, October 2016

For Research Use Only. Not for use in diagnostic procedures.

Agilent Technologies
Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
In this Guide...

This document describes how to use the Multi Affinity Removal Column, Human-6 to chromatographically remove six interfering high-abundance proteins from human samples prior to LC/MS or electrophoretic analysis of the samples.

1 Before You Begin

This chapter contains information (such as required reagents and equipment) that you should read and understand before you start an experiment.

2 Instructions

This chapter describes the protocol for chromatographic removal of the targeted proteins from human samples and includes troubleshooting information.

3 Reference

This chapter contains reference information including column specifications and a list of related products.
Contents

1 Before You Begin 5
 Safety Considerations 6
 Materials Required 6
 Storage Conditions 7
 Overview 7

2 Instructions 9
 Protocol for 4.6 × 50 mm column 10
 Step 1. Set up the column (4.6 × 50 mm column) 10
 Step 2. Prepare the sample (4.6 × 50 mm column) 11
 Step 3. Run the column (4.6 × 50 mm column) 11
 Protocol for 4.6 × 100 mm column 13
 Step 1. Set up the column (4.6 × 100 mm column) 13
 Step 2. Prepare the sample (4.6 × 100 mm column) 14
 Step 3. Run the column (4.6 × 100 mm column) 14
 Guidelines for flow-through fraction analysis 16
 Recommendations 17
 Troubleshooting 19

3 Reference 20
 Column Specifications 21
 Related Agilent Products 22
1

Before You Begin

Safety Considerations 6
Materials Required 6
Storage Conditions 7
Overview 7

Make sure you read and understand the information in this chapter and have the necessary equipment and reagents listed before you start an experiment.
Safety Considerations

When preparing biological samples using Agilent Multiple Affinity Removal Columns, follow general guidelines for handling biological materials and wear protective eyewear and gloves.

Materials Required

The Agilent Multiple Affinity Removal Columns and accessories (purchased separately) used in this protocol are shown in Table 1.

Table 1 Multiple Affinity Removal Column and Accessories

<table>
<thead>
<tr>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5185-5984</td>
<td>Multi Affinity Removal Column, Human-6,</td>
<td>LC column used to remove albumin, IgG, IgA, transferrin, haptoglobin, and antitrypsin from human samples</td>
</tr>
<tr>
<td></td>
<td>4.6 x 50 mm, 1 each</td>
<td></td>
</tr>
<tr>
<td>5185-5985</td>
<td>Multi Affinity Removal Column, Human-6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.6 x 100 mm, 1 each</td>
<td></td>
</tr>
<tr>
<td>5185-5987</td>
<td>Buffer A, 1 L</td>
<td>Ready-to-use, optimized buffer for loading, washing, and equilibrating column</td>
</tr>
<tr>
<td>5185-5988</td>
<td>Buffer B, 1 L</td>
<td>Ready-to-use, optimized buffer for elution of bound proteins from column</td>
</tr>
<tr>
<td>5185-5990</td>
<td>Spin filters, 0.22 µm, 1 pack of 25</td>
<td>For sample cleanup before loading column</td>
</tr>
<tr>
<td>5185-5991</td>
<td>Concentrators, 5 kDa MWCO, 1 pack of 25</td>
<td>For concentrating flow-through fractions</td>
</tr>
<tr>
<td>5185-5989</td>
<td>Human serum albumin</td>
<td>Dilute standard for checking column capacity (optional)</td>
</tr>
<tr>
<td>5190-7995</td>
<td>MARS Column 2 µm Replacement Frit, 2 each</td>
<td>One set of 2 frit assemblies for replacement of clogged inlet and outlet column frits</td>
</tr>
<tr>
<td>5185-5986</td>
<td>Starter Reagent Kit</td>
<td>Buffer A: 2 × 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffer B: 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spin filters 0.22 µm: 2 packs of 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protein concentrators: 1 pack of 25</td>
</tr>
</tbody>
</table>
Do not expose columns to organic solvents (like alcohols, acetonitrile, etc.), strong oxidizers, acids, reducing agents, or other protein denaturing agents.

Before attaching the column, purge the LC system and run two method blank injections according to protocol to ensure all lines and sample loops are free of organic solvents.

For LC systems shared with other chemical applications, be sure to first purge the LC system, including the sample loop, with isopropyl alcohol, and then extensively with water (approximately 1 hour). After purging, proceed with protocol.

Storage Conditions

Upon its receipt and when you are not using it, store the column with the end-caps tightly sealed at 2°C to 8°C (35°F to 46°F). Do not freeze the column.

Overview

The Agilent Multiple Affinity Removal System comprises a family of immunodepletion products based on affinity interactions and optimized buffers for sample loading, washing, eluting, and regenerating. These columns are specifically designed to remove six high-abundance proteins from human biological fluids such as serum, plasma, and cerebrospinal fluid (CSF). This technology enables removal of albumin, IgG, IgA, transferrin, haptoglobin, and antitrypsin with a single device. The targeted high-abundance proteins are simultaneously removed when crude biological samples are passed through the column. Selective immunodepletion provides an enriched pool of low-abundance proteins for downstream proteomics analysis, as depicted in Figure 1 on page 8.

Specific removal of the six high-abundance proteins depletes approximately 85–90% of total protein mass from human serum, facilitating study of the low-abundance proteins in the flow-through fractions. Removal of high-abundance proteins enables improved resolution and dynamic range for one-dimensional gel electrophoresis (1DGE), two-dimensional gel electrophoresis (2DGE) and liquid chromatography/mass spectrometry (LC/MS). The collected flow-through fractions may need to be concentrated dependent upon the downstream applications.
Figure 1 The Multiple Affinity Removal System.
2 Instructions

Protocol for 4.6 x 50 mm column 10
 Step 1. Set up the column (4.6 x 50 mm column) 10
 Step 2. Prepare the sample (4.6 x 50 mm column) 11
 Step 3. Run the column (4.6 x 50 mm column) 11

Protocol for 4.6 x 100 mm column 13
 Step 1. Set up the column (4.6 x 100 mm column) 13
 Step 2. Prepare the sample (4.6 x 100 mm column) 14
 Step 3. Run the column (4.6 x 100 mm column) 14

Guidelines for flow-through fraction analysis 16

Recommendations 17

Troubleshooting 19
Protocol for 4.6 x 50 mm column

Column capacity: 15–20 µL human serum

Step 1. Set up the column (4.6 x 50 mm column)

1. Set up Buffer A and Buffer B as the only mobile phases.
2. Purge lines with Buffer A and Buffer B at a flow rate of 1.0 mL/min for 10 min without a column.
3. Set up LC timetable as specified in Table 2.
4. Run two method blanks by injecting 100 µL of Buffer A without a column.
5. Ensure that you are using the proper sample loop size in the autosampler, and that the sample loop has been flushed with Buffer A.
6. Attach the column and equilibrate it in Buffer A for 4 min at a flow rate of 1 mL/min at room temperature.

Table 2 LC method for 4.6 x 50 mm column*

<table>
<thead>
<tr>
<th>Step</th>
<th>Time (min)</th>
<th>%B</th>
<th>Flow Rate (mL/min)</th>
<th>Max. Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.250</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>9.00</td>
<td>0.00</td>
<td>0.250</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>9.01</td>
<td>100.00</td>
<td>1.000</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>12.50</td>
<td>100.00</td>
<td>1.000</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>12.60</td>
<td>0.00</td>
<td>1.000</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>20.00</td>
<td>0.00</td>
<td>1.000</td>
<td>120</td>
</tr>
</tbody>
</table>

* Solvent A: Buffer A
 Solvent B: Buffer B
 Detection wavelength: 280 nm
Step 2. Prepare the sample (4.6 × 50 mm column)

Before you begin, consult the Certificate of Analysis for your column to verify the column capacity.

1. Dilute the serum sample four-fold with Buffer A. For example, if the recommended column loading capacity on the Certificate of Analysis is 20 µL of serum, dilute 20 µL of serum with 60 µL Buffer A for a final volume of 80 µL.

 Addition of protease inhibitors in Buffer A for sample dilution helps prevent protein degradation.

The protocol may be applied to other human biological fluids like plasma and CSF with necessary adjustments in sample volume based on albumin concentration.

2. Remove particulates with a 0.22 µm spin filter, spinning for 1 min at 16,000 × g.

Step 3. Run the column (4.6 × 50 mm column)

Use the LC timetable (Table 2 on page 10) to complete the following steps.

1. Inject the diluted serum sample at a flow rate of 0.25 mL/min.

2. Collect the flow-through fraction (like that which appears from 1.5 to 4.5 min in the typical chromatogram shown in Figure 2 on page 12). Store collected fractions at –20 °C if not analyzed immediately.

3. Elute bound proteins from the column with Buffer B (elution buffer) at a flow rate of 1 mL/min for 3.5 min.

4. Regenerate column by equilibrating it with Buffer A for an additional 7.4 min at a flow rate of 1 mL/min.

5. After equilibration with Buffer A, store the column with ends capped at 2°C to 8°C (35°F to 46°F). Do not freeze the column.

6. Analyze the flow-through fraction using the guidelines on page 16.
Step 3. Run the column (4.6 × 50 mm column)

Figure 2 Representative chromatogram for 4.6 x 50 mm column.
Protocol for 4.6 x 100 mm column

Column capacity: 30–40 µL human serum

Step 1. Set up the column (4.6 × 100 mm column)

1. Set up Buffer A and Buffer B as the only mobile phases.
2. Purge lines with Buffer A and Buffer B at a flow rate of 1.0 mL/min for 10 min without a column.
3. Set up LC timetable as specified in Table 3.
4. Run two method blanks by injecting 200 µL of Buffer A without a column.
5. Ensure that you are using the proper sample loop size in the autosampler, and that the sample loop has been flushed with Buffer A.
6. Attach the column and equilibrate it in Buffer A for 4 min at a flow rate of 1 mL/min at room temperature.

Table 3 LC method for 4.6 x 100 mm column*

<table>
<thead>
<tr>
<th>Step</th>
<th>Time (min)</th>
<th>%B</th>
<th>Flow Rate (mL/min)</th>
<th>Max. Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>10.00</td>
<td>0.00</td>
<td>0.50</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>10.01</td>
<td>100.00</td>
<td>1.00</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>17.00</td>
<td>100.00</td>
<td>1.00</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>17.01</td>
<td>0.00</td>
<td>1.00</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>28.00</td>
<td>0.00</td>
<td>1.00</td>
<td>120</td>
</tr>
</tbody>
</table>

* Solvent A: Buffer A
Solvent B: Buffer B
Detection wavelength: 280 nm
Step 2. Prepare the sample (4.6 × 100 mm column)

Before you begin, consult the Certificate of Analysis for your column to verify the column capacity.

1. Dilute the serum sample four-fold with Buffer A. For example, if the recommended column loading capacity on the Certificate of Analysis is 40 µL of serum, dilute 40 µL of serum with 120 µL Buffer A for a final volume of 160 µL.

 Addition of protease inhibitors in Buffer A for sample dilution helps prevent protein degradation.

 The protocol may be applied to other human biological fluids like plasma and CSF with necessary adjustments in sample volume based on albumin concentration.

2. Remove particulates with a 0.22 µm spin filter, spinning for 1 min at 16,000 × g.

Step 3. Run the column (4.6 × 100 mm column)

Use the LC timetable (Table 3 on page 13) to complete the following steps.

1. Inject the diluted serum sample at a flow rate of 0.5 mL/min.

2. Collect the flow-through fraction (like that which appears from 2.5 to 6 min in the typical chromatogram shown in Figure 3 on page 15). Store collected fractions at −20 °C if not analyzed immediately.

3. Elute bound proteins from the column with Buffer B (elution buffer) at a flow rate of 1 mL/min for 7.0 min.

4. Regenerate column by equilibrating it with Buffer A for an additional 11.0 min at a flow rate of 1 mL/min.

5. After equilibration with Buffer A, store the column with ends capped at 2°C to 8°C (35°F to 46°F). Do not freeze the column.

6. Analyze the flow-through fraction using the guidelines on page 16.
Figure 3 Representative chromatogram for 4.6 x 100 mm column.
Guidelines for flow-through fraction analysis

Analyze the flow-through fraction, containing the low-abundance proteins, to verify removal of the targeted high-abundance proteins using the guidelines below:

- For 1D-SDS-PAGE, an aliquot of the flow-through fraction may be used directly.
- For IEF, 2D-GE, and MS analysis of the flow-through fraction, it is necessary to do buffer exchange or desalt to an appropriate buffer. The 5 kDa MWCO spin concentrators (part number 5185-5991) may be used for buffer exchange and concentration. Alternatively, the Agilent mRP-C18 column (part number 5188-5231) may be used for automated desalting and concentration.
Recommendations

- **Sample dilution using Buffer A**
 Do not load crude serum or other biological samples directly onto the column. Follow instructions for serum dilution with Buffer A in the protocol for your specific column size.

- **Preventing protein degradation**
 Addition of protease inhibitors to Buffer A for sample dilution helps prevent protein degradation.

- **Sample cleanup**
 Human serum may contain particulate materials that can be removed by a quick spin using a 0.22-µm spin filter.

- **Variation in column capacity for different samples**
 Concentrations of the proteins targeted for depletion can vary among individual serum samples and in different types of biological samples. Thus column capacity for samples may differ and you may need to adjust the loading volume for a particular sample.

 For any samples that require adjustment of the load volume, adhere to the instruction to dilute the samples four-fold with Buffer A; do not vary the proportion of crude sample and Buffer A in the diluted sample.

- **Column performance**
 Agilent Multiple Affinity Removal Columns should perform reproducibly for greater than 200 runs when handled using the recommended procedures. Buffers A and B are optimized to support column performance and longevity. We cannot guarantee column performance if other buffers are used.

 Do not expose columns to organic solvents (like alcohols, acetonitrile, etc.), strong oxidizers, acids, reducing agents, or other protein-denaturing agents.

- **Column storage**
 To minimize loss in capacity, equilibrate the column with Buffer A. Cap the ends and store at 2°C to 8°C (35°F to 46°F). **Do not freeze the column.**

- **Analysis of flow-through fractions**
 Buffer exchange to an appropriate buffer is recommended for high salt-sensitive applications such as IEF or MS. For 1D-SDS-PAGE, you can load flow-through fractions in Buffer A directly.
• **Fractionation, desalting, or concentration of flow-through fraction**
 Agilent mRP-C18 column (part number 5188-5231) is recommended for fractionation, desalting, or concentration of flow-through fractions with extremely high protein recoveries. Alternatively, spin concentrators with 5 kDa MWCO (part number 5185-5991) can be used to concentrate proteins before analysis.

• **Lyophilization of flow-through fraction**
 If lyophilization of the flow-through fraction (containing the low abundance proteins) is required after recovery from the column, first do buffer exchange to a volatile buffer (such as ammonium bicarbonate). This is recommended due to the high salt concentration of the Buffer A solvent in the flow-through fraction.

• **Bound fraction analysis**
 If you wish to analyze the bound fraction, first do buffer exchange to phosphate-buffered saline (PBS) or to another buffer compatible with your analysis. Buffer B contains compounds that may interfere with some protein assays.
Troubleshooting

Review the following information for troubleshooting your experiments.

Table 4 Troubleshooting suggestions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>High backpressure</td>
<td></td>
<td>Remove particulates from samples with a spin filter before loading and replace plugged frits (part number 5190-7995) on both ends of the column.</td>
</tr>
<tr>
<td>Distorted peak shape</td>
<td>Clogged inlet frits</td>
<td></td>
</tr>
<tr>
<td>Diminished column lifetime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No bound fraction peak</td>
<td>Salt concentration in diluted sample is not appropriate for affinity binding to column</td>
<td>Sample must be diluted 1:4 in Buffer A to achieve the correct conditions for affinity binding. Follow the recommended sample preparation instructions.</td>
</tr>
<tr>
<td></td>
<td>Insufficient time for exposure of column to Buffer B (elution buffer)</td>
<td>Check LC timetable to ensure enough exposure time to Buffer B for complete removal of bound proteins.</td>
</tr>
<tr>
<td>Breakthrough of high-abundance proteins in flow-through fraction</td>
<td>Column serum capacity exceeded</td>
<td>Reduce serum load per sample.</td>
</tr>
<tr>
<td></td>
<td>Serum protein levels may be unusually high</td>
<td>Reduce serum load per sample.</td>
</tr>
<tr>
<td>Abnormal peak height*</td>
<td>Column may not have been regenerated well enough from previous runs, resulting in lost capacity</td>
<td>Elute bound proteins with Buffer B for an additional 3 min and re-equilibrate the column with Buffer A.</td>
</tr>
<tr>
<td></td>
<td>Biological growth in the Buffer A reservoir</td>
<td>Replace with fresh Buffer A.</td>
</tr>
</tbody>
</table>

* Approximately 85–90% of serum proteins will be removed as the bound fraction. The peak height of the bound fraction is expected to be greater than that of the flow-through fraction. If the order is reversed, consider the possible causes in the table above.
This chapter contains reference information.
Column Specifications

Table 5 Column specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Affinity depletion column</td>
</tr>
<tr>
<td>Part number</td>
<td>5185-5984 5185-5985</td>
</tr>
<tr>
<td>Size</td>
<td>4.6 mm × 50 mm (0.83 mL) 4.6 mm × 100 mm (1.66 mL)</td>
</tr>
<tr>
<td>Column capacity*</td>
<td>15–20 µL human serum 30–40 µL human serum</td>
</tr>
<tr>
<td>Column body material</td>
<td>PEEK (polyetheretherketone)</td>
</tr>
<tr>
<td>End-fitting material</td>
<td>PEEK with 2-µm frits</td>
</tr>
<tr>
<td>Maximum pressure</td>
<td>120 bar</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>18–25 °C</td>
</tr>
<tr>
<td>Column packing material</td>
<td>Affinity ligand-modified resin</td>
</tr>
<tr>
<td>Immobilized ligands</td>
<td>Affinity ligands to human albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin</td>
</tr>
<tr>
<td>Flow rate range</td>
<td>0.25–1.0 mL/min</td>
</tr>
<tr>
<td>Shipping solution</td>
<td>Buffer A with 0.02% sodium azide</td>
</tr>
<tr>
<td>Shipping temperature</td>
<td>2–8 °C (35–46 °F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>2–8 °C (35–46 °F)</td>
</tr>
</tbody>
</table>

* Consult the column Certificate of Analysis to verify capacity for serum samples
Related Agilent Products

Agilent Multiple Affinity Removal System spin cartridges and LC columns are listed in Table 6 below.

Table 6 Agilent Multiple Affinity Removal System spin cartridges and LC columns

<table>
<thead>
<tr>
<th>Product Group</th>
<th>Proteins Removed</th>
<th>Format</th>
<th>Capacity</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-14</td>
<td>albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin, fibrinogen, alpha2-macroglobulin, alpha1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein AII, complement C3, transthyretin</td>
<td>spin cartridge</td>
<td>8–10 µL plasma</td>
<td>5188-6560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column up to 20 µL plasma</td>
<td>5188-6557</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 100 mm LC column up to 40 µL plasma</td>
<td>5188-6558</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 x 100 mm LC column up to 250 µL plasma</td>
<td>5188-6559</td>
<td></td>
</tr>
<tr>
<td>Human-7</td>
<td>albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin, fibrinogen</td>
<td>spin cartridge</td>
<td>12–14 µL plasma</td>
<td>5188-6408</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column 30–35 µL plasma</td>
<td>5188-6409</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 100 mm LC column 60–70 µL plasma</td>
<td>5188-6410</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 x 100 mm LC column 250–300 µL plasma</td>
<td>5188-6411</td>
<td></td>
</tr>
<tr>
<td>Human-6HC</td>
<td>albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin</td>
<td>spin cartridge</td>
<td>14–16 µL serum</td>
<td>5188-5341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column 30–40 µL serum</td>
<td>5188-5332</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 100 mm LC column 60–80 µL serum</td>
<td>5188-5333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 x 100 mm LC column up to 340 µL serum</td>
<td>5188-5336</td>
<td></td>
</tr>
<tr>
<td>Human-6</td>
<td>albumin, IgG, IgA, transferrin, haptoglobin, antitrypsin</td>
<td>spin cartridge</td>
<td>7–10 µL serum</td>
<td>5188-5230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column 15–20 µL serum</td>
<td>5185-5984</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 100 mm LC column 30–40 µL serum</td>
<td>5185-5985</td>
<td></td>
</tr>
<tr>
<td>Human-HSA/IgG</td>
<td>albumin, IgG</td>
<td>spin cartridge</td>
<td>up to 50 µL serum</td>
<td>5188-8825</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column up to 100 µL serum</td>
<td>5188-8826</td>
<td></td>
</tr>
<tr>
<td>Human-HSA</td>
<td>albumin</td>
<td>spin cartridge</td>
<td>up to 75 µL serum</td>
<td>5188-5334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column up to 175 µL serum</td>
<td>5188-6562</td>
<td></td>
</tr>
<tr>
<td>Mouse-3</td>
<td>albumin, IgG, transferrin</td>
<td>spin cartridge</td>
<td>25–30 µL serum</td>
<td>5188-5289</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 50 mm LC column 37–50 µL serum</td>
<td>5188-5217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 x 100 mm LC column 75–100 µL serum</td>
<td>5188-5218</td>
<td></td>
</tr>
</tbody>
</table>
Additional related products for use with the Agilent Multiple Affinity Removal System are listed in Table 7 below.

Table 7 Additional related products

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>5185-5986</td>
<td>Starter Reagent Kit for Multiple Affinity Removal System LC columns</td>
<td>Buffer A: 2 x 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffer B: 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spin filters 0.22 µm: 2 packs of 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protein concentrators: 1 pack of 25</td>
</tr>
<tr>
<td>5185-5254</td>
<td>Starter Reagent Kit for Multiple Affinity Removal System spin cartridges</td>
<td>Buffer A: 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffer B: 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spin filters 0.22 µm: 2 packs of 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protein concentrators: 1 pack of 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luer-Lok adapters: 1 pack of 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-mL plastic Luer-Lok syringes: 1 pack of 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5-mL microtubes: 6 packs of 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spin cartridge extra caps and plugs, 1 pack of 6 each</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teflon Luer-Lok needles, 1 pack of 10</td>
</tr>
<tr>
<td>5185-5231</td>
<td>mRP-C18 High Recovery Protein Fractionation and Desalting Column</td>
<td>1 Column</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(see www.agilent.com for product details)</td>
</tr>
</tbody>
</table>
In This Book

This document describes how to use the Multi Affinity Removal Column, Human-6 to chromatographically remove interfering high-abundance proteins from human biological samples.