Seattle Proteome Center

US-HUPO 2011 Agilent lunch seminar

Revolutionizing science. Enhancing life.

Robert Moritz

Developing a Complete and Reproducible Human SRMAtlas

National Human Genome Research Institute

Outline

- What is the SRMAtlas?
- Introduction to the ISB PeptideAtlas: Compendium of peptides and inferred proteins observed by MS/MS
- Development of SRMAtlas: Unified transition resource
- Reproducibility of assay production
- Application tips for extended performance of LC-chips

Human SRMAtlas

Design multiple quantitative assays for every human protein using a robust high-throughput platform suitable for clinical applications

Understanding the terrain

Knowing the components

Ce	Pr	Nd	Pm	Sm	Eu	Gd ⁶⁴	Tb	₆₆ Dy	Ho	Er	Tm	Yb	Lu
Th ⁹⁰	91 Pa	92 U	93 Np	94 Pu	Am	96 Cm	97 Bk	98 Cf	es Es	100 Fm	101 Md	102 No	Lr

Surveying to create an Atlas

Navigating the Atlas

Selected Reaction Monitoring (SRM or MRM)

• the most sensitive mass spectrometry method known (low amole)

....you need to know what to look for!

(the mass spectrometrist's ELISA)

PeptideAtlas Workflow

Peptide Atlas

www.peptideatlas.org, TPP: Trans Proteomic Pipeline

What is a proteotypic peptide?

PeptideAtlas protein view page

PeptideAtlas Build Summary

Build	# Exps	# MS Runs	Searched Spectra	IDs P>0.9	Distinct Peptides	Distinct Proteins	Swissprot
Human All	424	54 k	49 M	5.6 M	97 k	12141	20328
Human Plasma	76	48 k	16 M	1.8 M	18 k	2486	???
Human Glycosylated	174	1731	7.1M	690K	14K	2771	7426
Yeast	53	2957	6.5 M	1.1 M	36 k	4336	6552
Mouse	59	3097	10 M	1.4 M	51 k	7686	16085
Drosophila	43	1769	7.5 M	498 k	72 k	9124	13,600
Drosophila PhosphoPep	4	448	0.9 M	170 k	10 k	4583	???
Halobacterium	88	497	0.5 M	76 k	12 k	1975	2426
S. pyogenes	5	64	215 k	52 k	7 k	1068	3729
Mouse Plasma	4	568	7 M	0.8 M	9.4 k	2075	????

Human SRMAtlas

20,333 proteins (20,277 2010 version) 32,562 proteins incl. isoforms 658,684 tryptic peptides (any length) 480,284 distinct peptides (7-30aa)

Developments at ISB - SRMAtlas

Human proteins (from natural source or synthetic)

> Develop Human PeptideAtlas (from tryptic digests or synthetic peptides)

> > Develop Human SRMAtlas (verified quantitative assays)

Synthetic "proteotypic" peptide (from cheap synthesis)

Develop optimized transitions from PeptideAtlas

Peptide hydrophobicity (SSR) spread by plate

Data Aquisition

Collision Energy Optimization: QTOF

QTOF Collision Energy brackets

SRMAtlas Agilent QTOF data acquired with 5 discrete CE values*

- 2 above and 2 below 'calculated optimal' value based on z
- > Initial spectral libraries, inclusion lists built using all above cutoff

```
+1, +2 z ions:
Base CE = (2.93*mz)/100 + 6.72 V
Step size 5.0 V
```

```
+3 z ions:
Base CE = (3.6*mz )/100 - 4.8 V
Step size 3.5 V
```

```
+4 z and above:
Base CE = (3.6*mz)/100 - 4.8 V
Step size 2.5 V
```

System reproducibility

Instrument to Instrument Chip reproducibility

Two Agilent 6420 triple quadrupole with Nano LC-Chip interface (QQQ-1 & QQQ-2) using the same chip on separate days. Chromatograms are overlaid for 5 injections of each instrument

System reproducibility

Separate Instrument Chip reproducibility

QQQ-1, 10 injections

QQQ-2, 10 injections

0.25

QTOF, 10 injections

Injection of ISB-Atlas RT standard, 3 separate vials, 3 separate chips, 3 separate instruments

Transition ion transportability

Spectra Comparer Software

butterfly view

Peptide Atlas

- value vs percent intensity
- create sptxt from SRM
- →compare SRM & MS2

Spectra Comparer - Comparison of Abundance

Green: y-ions Peptide Atlas Red: b-ions

m/z 100-1000

SRMAtlas interface

ISB Home

ARM ATLAS HOME		61 . 0 M	Barriel	n		are 1	BURN	18 million	8000	ragment Spe	ectrum (QQ
BACKGROUND	Search	Select Build	Blowse	Peptides	Pept	de	Protein	Browse	1000 -		
Project Home Data Contributors	Summarize Peptide										
External Links Contacts SRM/MRM Assavs	Note: masses are mono-isotopic; results are from query to PeptideAtlas followed by peptide										
BRM/MRM Glossary							_	Downlo	ad as TSV		T
ATA ACCESS Search Peptides Identified Proteins	Protein	Sequence	Chg q1_mz	q3_mz	Intensity I	on CE	SSRCalc	n_obs Annot	Spectrum		
	YOR230W	AAEAATTDLTYR	2 641.82	869.44	10000.00	7 33.7	4 18.83	5 Best	dadab.		
athway Search	YOR230W	AAEAATTDLTYR	2 641.82	940.47	7154.20	/8 33.7	4 18.83	5 Best	dablah		
IRM Transitions	YOR230W	AAEAATTDLTYR	2 641.82	768.39	6543.40	/6 33.7	4 18.83	5 Best	dalah		
ogin	YOR230W	AAEAATTDLTYR	2 641.82	1011.51	4643.40	/9 33.7	4 18.83	5 Best	dalah -		
	YOR230W	AAEAATTDLTYR	2 641.82	667.34	3979.60	/5 33.7	4 18.83	5 Best	dalate		
	YOR230W	AAEAATTDLTYR	2 641.82	552.31	3015.20	(4 33.7	4 18.83	5 Best	dablah		
rrent Organism:	YOR230W	AAEAATTDLTYR	2 641.82	439.23	2561.80	G					
stems Biology	-				-		Sugge Collisi	sted tran on Ener	sitions, zv plots.		

Chip Spray degradation

Dripping spray at high voltage

Split and spitting spray

Good spray

Chip Snuggie

Care! Chip should not be bumped or snagged with tip exposed

Materials for cleaning: Kimwipes, Gloves

Step 1. With gloved hands, gently press down the clip and with your other hand hold the polyimide while slowly and carefully pushing it forward to expose the tip.

Step 2. Gently sweep the left side of the tip across a folded Kimwipe twice. Repeat Step 2 for the right side of the tip.

Step 3. Gently sweep the top surface of the tip across a folded Kimwipe twice. RepeatStep 3 for the bottom surface of the tip.

Step 4. Carefully press the clip and with your other hand gently pull the polyimide back into the chip holder until the polyimide clicks back into place.

Chip is now ready for use. Lowering the Vcap voltage back to ~1750 may be necessary for achieving stable spray.

Chip Snuggie

After tip cleaning, you will experience many hours of enjoyment......

Chip: 3275 injections, 5207 hours Nanopump at 0.3 uL/min at 52.0 bar Cappump at 3.0 uL/min at 40.0 bar

Extended lifetime of the LC-Chip

Chip Snuggie

June 2010

March 2011

Acknowledgements

Revolutionizing science. Enhancing life.

Ulrike Kusebauch Eric Deutsch David Campbell Mi-Youn Brusniak **Douglas Spicer** Caroline Chu Jeffrey Stevens Zhi Sun Joe Slagel Luis Mendoza Terry Farrah David Shteynberg Mike Hoopmann Meg Kapousouz **Barbara** Grimes

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Ruedi Aebersold Christine Carapito Paola Picotti Oliver Rinner Bernd Wollscheid

Leroy Hood

SRM Atlas www.srmatlas.org

Ken Miller

Christine Miller

ORIGENE Your Gene Company

Wei-wu He and colleagues

OpenBiosystems

Joel Louette Theracode

Holger Wenschuh

National Human Genome Research Institute

ARRA 1RC2HG005805-01

