Higher harmonic atomic force microscopy: Imaging of biological membranes in liquid

Peter Hinterdorfer
Johannes Preiner

Agilent eSeminar, May 28th, 2008
Model: 1-DIM Harmonic Oscillator

Equation of Motion (EQM):
\[m\ddot{x} + \frac{\omega_0 m}{Q} \dot{x} + kx = F_{\text{hyd}} + F_{\text{DMT}} + F_0 \cos \omega t \]

Hydrodynamic Damping:
\[F_{\text{hyd}} = F_{\text{hyd}}(d, \dot{x}) \]
C. Rankl et al. Ultramicroscopy 2004

Contact Mechanics: Derjaguin-Muller-Toporov (DMT)-model for a sphere-flat geometry:
\[
F_{\text{DMT}} = \begin{cases}
-\frac{HR}{6(d + x)^2} & d + x \geq a_0 \\
-\frac{HR}{6a_0^2} + \frac{4}{3}E^*\sqrt{R}(a_0 - d - x)^{3/2} & d + x < a_0
\end{cases}
\]

Hamaker constant for silicon nitride/Water/Mica: \(H = 3.1 \times 10^{-21} \text{ J}; \)
\(f_0 = 8.46 \text{ kHz}; \) \(Q = 2.078; \) \(m = 35 \text{ ng}; \) (obtained from thermal spectra), \(k = 0.1 \text{ N/m}; \) \(f_d = 7.184 \text{ kHz} \)

Simulation

• Numerically solving EQM

• Stepwise approach to the surface in 0.1 nm steps

• FFT analysis of the solution (timetrace) at every step => frequency spectra

Simulation of amplitude vs. distance curves

Experimental Setup:

Data Acquisition:
NI PCI-6013
200 kS/s, 16 bit

Comparison between simulation and experimental data

Simulation

Experiment

$A_0 = 4 \text{ nm}$;

$A_{sp} = 3.5 \text{ nm}$

Dependence of the 2nd harmonic amplitude on interaction parameters

Contact Mechanics (DMT-model):

\[
F_{DMT} = \begin{cases}
-\frac{HR}{6(d+x)^2} & d + x \geq a_0 \\
-\frac{HR}{6a_0^2} + \frac{4}{3}E\sqrt{R}(a_0 - d - x)^{3/2} & d + x < a_0
\end{cases}
\]

J. Preiner et al. PRL 99 2007 (046102)
Dependence of the 2nd harmonic amplitude on interaction parameters

Music: different instruments can be distinguished even when they are playing the same note

Reason: it’s not only the fundamental note what defines the timbre (color of sound) but the sum of the fundamental note and all the harmonics

Analogy to AFM: recording harmonics in the cantilever movement (timbre) enables to distinguish different interactions
Images of bacterial S-Layer
(sbpA, Bacillus sphaericus CCM 2177)

Periodicity ~14 nm

Amplitude color code: 0-5 nm

Phase

2nd Harmonic Amplitude

(A₀=10 nm, Aₛᵣ/A₀=0.85, fᵣ=7.3kHz, k=0.1 N/m, PBS Buffer)

Rhino Virus (HRV2)

Topography

2nd Harmonic Amplitude

(A₀=15 nm, Aₚ/ₐ₀=0.9, f_d 7.9 kHz, k=0.1 N/m, Ni-Tris Buffer)

Imaging Recognition using 2nd Harmonic

Simulation and experimental verification of dynamic approaching curves revealed characteristic signature of molecular recognition in 2nd harmonic amplitude.
Imaging Recognition using 2nd Harmonic

Comparison of TREC and 2nd harmonic imaging of mol. recognition

- Bacterial S-Layer SbpA
- native:Strep tagged=7:1
- Streptactin on tip
- Block with free Strep tag II
Summary

• Simulations of dynamic AFM in liquid: Amplitudes of higher harmonics are sensitive to variations in the nonlinear tip-sample interactions

• 2nd harmonic images of various samples in liquid (S-layer, HRV2,) showed detailed substructures not visible in topographical images

• 2nd harmonic images of molecular recognition
Acknowledgments

JKU Linz:
Johannes Preiner
Jilin Tang
Vasilli Pastushenko
Andreas Ebner

BOKU Vienna:
Uwe Sleytr
Nicola Ilk

Vienna Biocenter:
Dieter Blaas

Funding:
European Comission
FORCETOOL, No. NMP3-CT-2004-013684