Lower Operating Costs, Safer Operation, More Productive. Agilent 4100 MP-AES

Steve Wall, Agilent Technologies

Common Challenges facing Laboratories doing Elemental Analysis Today

- Increased need for <u>multi-element determination</u> over a wide dynamic range
- Desire to <u>reduce the overall cost of analysis</u> due to rising costs (instrument supplies and consumables; power; labour etc)
- <u>Difficulty in sourcing some gases</u> esp. in remote areas and emerging geographies
- <u>Availability of suitably trained personnel</u> to develop methods, perform sample measurement and interpret results
- Some laboratories under pressure to <u>improve safety</u> by removing flammable gases

Agilent 4100 Microwave Plasma-Atomic Emission Spectrometer (MP-AES)

New technique for elemental determination using atomic emission

- Microwave excited plasma source
- Nitrogen based plasma runs on air (using a N₂ generator)

Improved performance compared with flame AA:

- Higher sample throughput with fast sequential measurement
 - More than 2x faster than conventional flame AA
- Superior detection limits and improved dynamic range

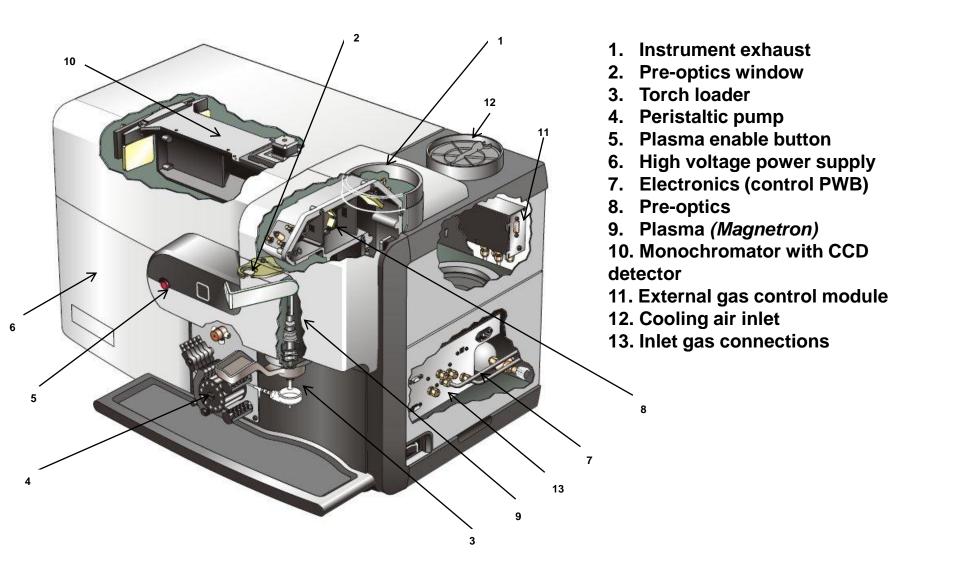
Easy to use:

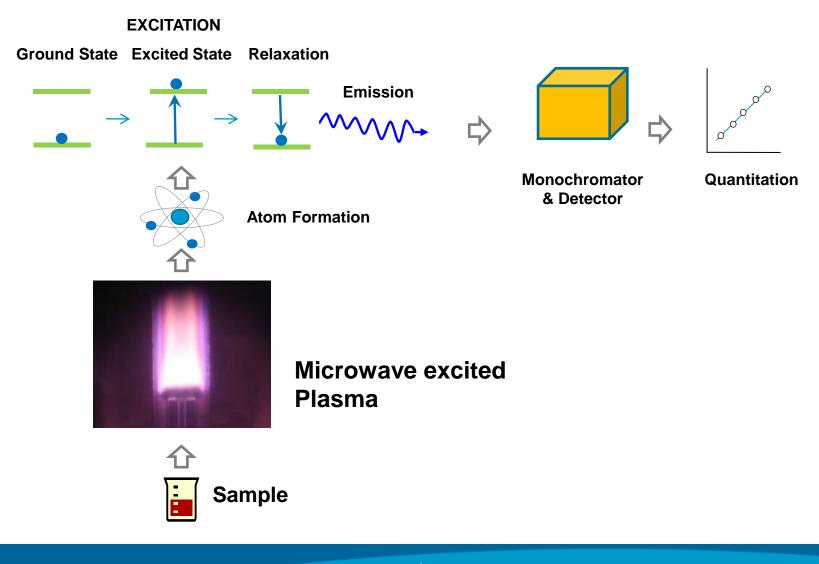
- New generation software featuring automated optimization and software applets that load a preset method
- One piece torch with easy torch removal and replacement no alignment

Reduced operating costs:

- Runs on air eliminates need for Acetylene, Argon, etc.
- · Eliminates need for source/hollow cathode lamps
- Simple installation no chiller, 10 A supply

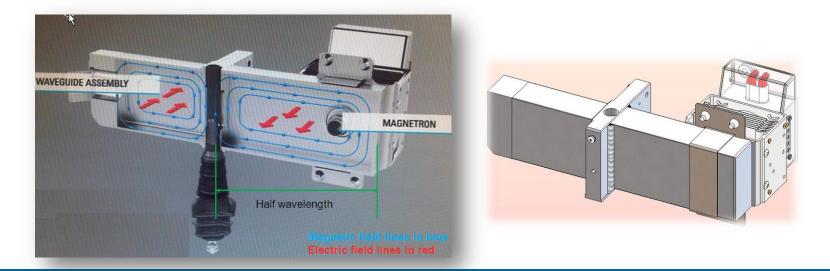
Improved Safety:


- Eliminates need for flammable gases and cylinder handling
- Safe, reliable unattended multi-element overnight operation



Schematic Diagram

Microwave Plasma Emission Overview

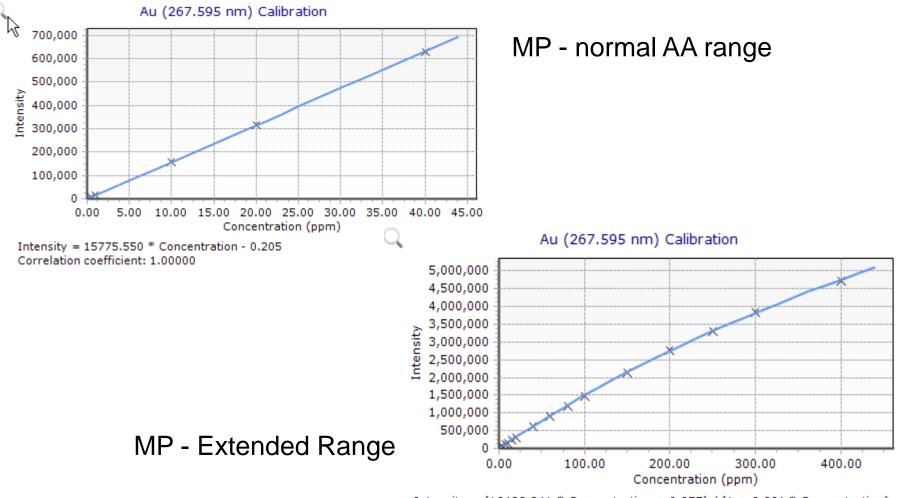

The Measure of Confidence

How Does MP-AES Work?

Agilent's patented microwave waveguide technology

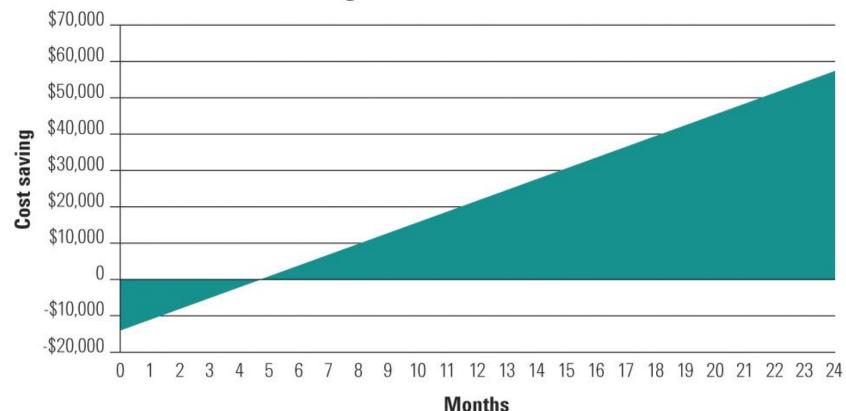
- Using nitrogen as the plasma gas gives a robust plasma with a conventional torch. Nitrogen can be supplied either via bottled gas or via nitrogen generator
- <u>Magnetic excitation</u> gives a toroidal plasma and an effective central zone for sample injection
- The microwave <u>magnetically</u> excited nitrogen plasma
 - Provides a robust, high temperature source in conventional torches (approx. 5000 K)
 - A cooler central channel suitable for sample atomization

Performance – Typical Detection Limits


DL's in ppb, clean water samples

Element	Flame AA	MP-AES	Element	Flame AA	MP-AES		
K	0.8	0.65	As*	60	45		
Ca	0.4	0.05	Cd	1.5	1.4		
Mg	0.3	0.12	Cr	5	0.5		
Na	0.3	0.12	Mn	1.0	0.25		
Au	5	1.8	Pb	14	4.4		
Pt	76	4.5	Sb	37	12		
Pd	15	3.8	Se*	500	70		
Ag	1.7	0.5	V	20	0.2		
Rh	4	0.5	* 30 second integration time used for As and Se				

3 sigma DLs using a 10 second integration time


Performance – Extended Working Range

Intensity = (16408.841 * Concentration + 0.057) / (1 + 0.001 * Concentration) Correlation coefficient: 0.99998

Reduced Cost of Ownership

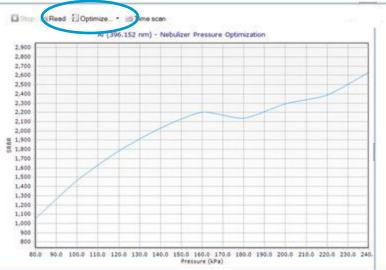
MP-AES cost savings versus flame AA

Cost savings based on reductions in gas expenses ONLY!.

Assumes measuring 9 elements (4 nitrous-oxide elements) in batches of 100 samples, 3 days/week using the N₂ generator. For a detailed cost comparison, consult your local Agilent representative

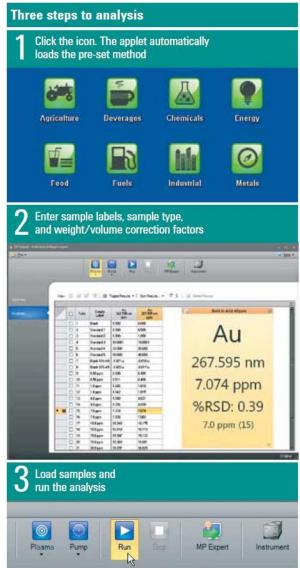
Simple Torch Installation – No Alignment

Torch installation in three easy steps



New Generation MP Expert Software

- Windows 7, worksheet based software with significant enhancements
 - Fresh, clean look
- Provides capability for:
 - Applet style operation using preset methods, or
 - Access to full capabilities
- Automated optimization tools
- Innovative and simple to use background correction
 - No correction points to select
- Extensive help with hover tips


New Generation MP Expert Software

• Retains familiar "worksheet" based approach

MP Expert - 3 MSIS DL Or	e Neb Hg	ect 2	3022011.	npws			1000		-					-								
ն <u>F</u> ile ▼																						Ø <u>H</u> elp ▼
Close	Pump Pau	ise	Stop Sw	itch Instrument Re	eport																	
Start	3 MS	IS DL	. On ×																			•
Worksheet Summary	View :			Toggle Result	s ▼ .00 *	Delete Res	ults				۵											۰
Elements			Rack: Tube	Sample Label	Sb 217.582 nm ppm	As 228.812 nm ppm	Pb 368.346 nm ppm	Cd 228.802 nm ppm	Sb 231.146 nm ppm	Sb 259.804 nm ppm	Hg 253.652 nm ppm	Q	160,000		Sb (217	.582 nm),	Standard	i 1, Rack	S1 Tube 2			
			S1:1	Blank	0.00000000 x		0.00000000	0.00000000	0.00000000	0.00000000	0.00000000		× 1									
Conditions	•	-	S1:2	Standard 1	5.0000000 x	5.0000000 x	5.00000000 x	5.00000000 x	5.0000000 x	5.0000000 x	5.0000000 x		140,000	0				Λ				
			1:1	Sample 1 Blank	-								120,000	Sp	pectr	a-		+1				
Standards			1:2 1:3	Sample 2 Blank Sample 3 Blank									100,000			-	_					
			1:4	Sample 3 Blank									\$ 80,000					4.4				
Sequence			1:5	Sample 5 Blank									Intensity 60,000									
			1:6	Sample 6 Blank																		
Autosampler			1:7	Sample 7 Blank									40,000									
		V	1:8	Sample 8 Blank			Doc	sulte	s ma	striv			20,000						(
Analysis		V	1:9	Sample 9 Blank			UG:	suite			•		0					+				
		V	1.10	Sample 10 Blank									-20,000	217.300 217.	.350 217.400	217.450 21		.550 217. elength (n		217.700 21	7.750 217.8	00 217.850
	4										Þ	a				Sb (217.	582 nm)	Calibratic	n			0
	1	1										~	150,000 -F			55 (217.	502 mmy	callor acid				
	Averag	ge 5	5.0000000	x 145075.093233	75 x	Warning	Flags						140,000									
	SD		N/A	5538.43346376		x Incomplete	1000						130,000	\sim							/	
	RSD(%		N/A	3.82									110,000		alibr	alle)N					
			Replica		Intensity								100,000						/			
	•		1		147638.8081990								80,000					/	T			
		-	2		150627.4222504 149264.2280479		Do	nlin	oto	dat	<u> </u>		란 70,000 60,000				/					
Sb	-	-	4		149789.0037702		L C C	piic	ate	ual	a		50,000			/	T					
SD			5		149478.1343917			-					40,000		/				-			
217.582 nm		-	6		145676.7305612								20,000									
5.0000000 x ppm			7	5.0000000 x	1461 <mark>40.8</mark> 856437								10,000	/								
a second care a second second			8	5.0000000 x	137623.2013332								0.0	0	1.00	2	2.00		3.00	4.00		5.00
RSD (%): N/A			9		137583.1623369								Intensity - 2	9015 * Concent	tration - 0.0		Conce	ntration (p	pm)			
Standard 1 (S1:2)		V	10	5.0000000 x	136929.3558030									oefficient: 1.000								
Worksheet running Mea	suring Sb	217	.582, rep	licate 10 of 10 🔇																		Busy
🚳 🚳 🌔																				EN 🔺 🛛	5 1 2 ()	5:23 PM 23/02/2011

Applet Style Operation using MP Expert Software Three steps to analysis

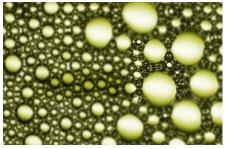
 Simplified software operation for operators

Accessory Options for the 4100 MP-AES

- Automate and simplify analysis with the SPS3 autosampler (required for unattended overnight operation)
- For organic applications, use the EGCM to bleed air into the plasma minimizing C build-up and reducing background

 also requires the OneNeb inert nebulizer (incl. with the Organics kit)

 To enable low ppb level detection of As, Se or Hg, use the Multimode Sample Introduction System (MSIS)
– also requires the 5 channel peristaltic pump option



Applications for the Agilent 4100 MP-AES

Geochemistry, Mining and Minerals

Chemical and Petrochemical

Food and Agriculture

Environmental

Applications MP-AES Can Do – by Market

GEOCHEMICAL

- Geochem samples in aqua regia digests
- Trace elements in geological samples
- Trace level gold in cyanide leach
- Analysis of high purity gold
- Platinum group elements in ore grade material
- Various elements in plating solutions

- CHEMICAL & PETROCHEMICAL Additives in lubricating oils
- Wear metal contaminants in used oils Analysis of coolant
- Analysis of petroleum and diesel fuel
- Major elements in polymers

Major elements in foods, beverages and agricultural samples Cations in soils Nutrients in soils Metals in soil extracts Metals in agricultural soil samples

F00D &

AGRICULTURE

ENVIRONMENTAL

Hg, Pb, Cd and Cr in electronics and plastics (for WEEE/RoHs compliance)

Heavy metals in soils

As, Sb and Se in sediments and waste

Analysis of waste waters, sediments and soils

Applications for the Agilent 4100 MP-AES

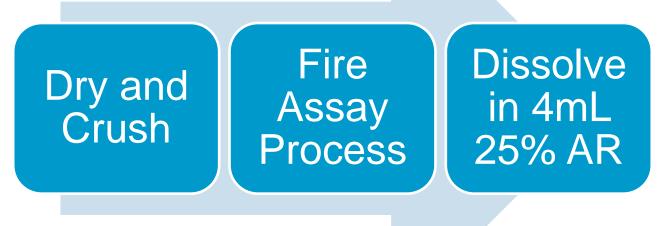
Geochemical, Metals and Mining Applications

Mining (Geochemistry) Applications

Aqua regia digests, fire assay, cyanide leaches

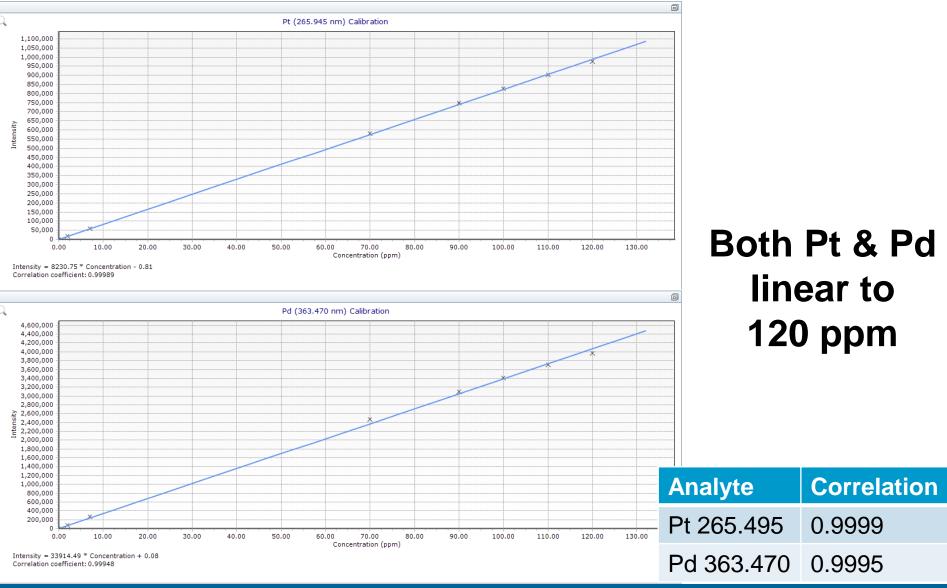
• Au, Ag, Pt, Pd, Cu, Ni, Zn

Analytical Challenges


- Low detection limits
- High levels of dissolved solids
- Linearity
- Sample throughput

Gold and Precious Metals by Fire Assay

Au, Pt and Pb extracted into a silver sphere



Instrument Parameters

Parameter	Setting
Nebulizer	Glass concentric
Spray chamber	Single-pass glass cyclonic
Read Time	3 s
Replicates	3
Sample uptake delay	10 s
Stabilization time	5 s
Fast Pump	On (80 rpm)
Background correction	Auto
Nebulizer Pressure	140 to 240 kPa (auto optimized)

Extended Linear Range for Platinum & Palladium

Agilent Technologies

The Measure of Confidence

Page 21

Accuracy – Platinum & Palladium in Custom CRMs

Platinum

CRM	Certified value (mg/L)	MP-AES result (mg/L)
6	0.74	0.75
7	35.6	35.9
8	9.0	9.5

Palladium

CRM	Certified value (mg/L)	MP-AES result (mg/L)
6	3.21	3.4
7	44.4	44.0
8	35.0	36.5

Page 22

Superior Performance – Detection Limits

Analyte	Wavelength (nm)	Method DL (ug/L)	Flame AA IDL (ug/L)
Au	267.595	4	11
Pt	265.945	13	76
Pd	363.469	0.7	15

MDL = 3σ , 3s read time, 20 blanks

MP-AES Improves Throughput over Flame AA

Agilent SPS 3 Autosampler

Ore analysis can be volume limited

Typical sample volume available ~4mL

- Automate analysis & reduce sample consumption using the autosampler
- Analysis time only 55s sample to sample
- Sample consumption ~1.8 mL
- Throughput 65 samples/hour, or 520 samples in 8 hours
- Plus...
- Safe unattended, multielement operation

Applications for the Agilent 4100 MP-AES

Chemical and Petrochemical Applications

Applications MP-AES Can Do – by Market

GEOCHEMICAL

- Geochem samples in aqua regia digests
- Trace elements in geological samples
- Trace level gold in cyanide leach Analysis of high purity gold
- Platinum group elements in ore grade material

The Measure of Confidence

Various elements in plating solutions

Additives in lubricating oils Wear metal contaminants in used oils

PETROCHEMICAL

CHEMICAL &

Analysis of coolant Analysis of petroleum and

diesel fuel

Major elements in polymers

Major elements in foods, beverages and agricultural samples Cations in soils

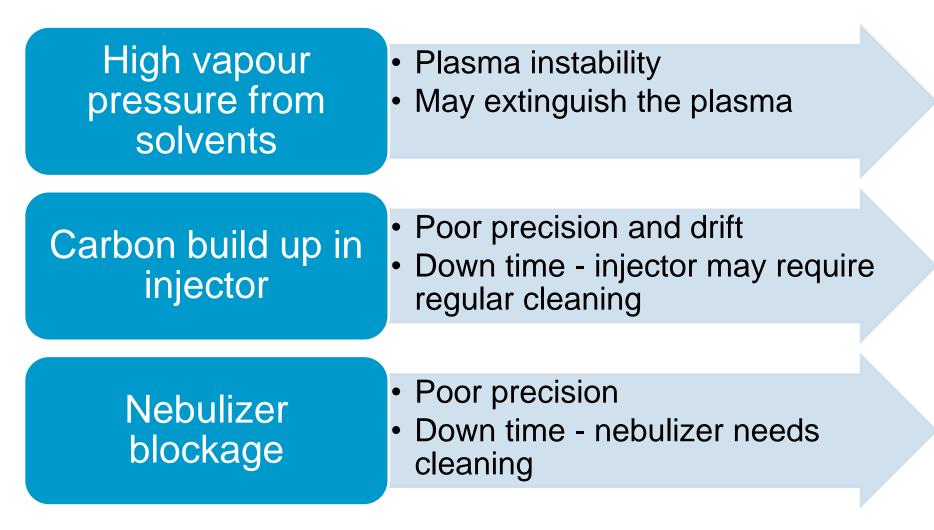
AGRICULTURE

Nutrients in soils

F00D &

- Metals in soil extracts
- Metals in agricultural soil samples

ENVIRONMENTAL


Hg, Pb, Cd and Cr in electronics and plastics (for WEEE/RoHs compliance)

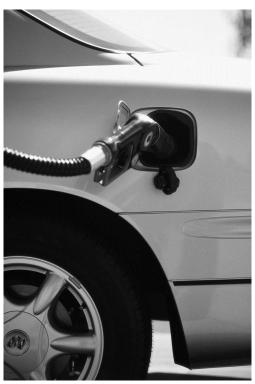
Heavy metals in soils

As, Sb and Se in sediments and waste

Analysis of waste waters, sediments and soils

Organic Applications – The Challenge

Page 27


Organics Kit - External Gas Control Module (EGCM)

- 1. Prevents carbon build up on the injector when running organics
- 2. Reduces the background emissions from the plasma
- 3. A controlled flow of air is bled into the Auxiliary gas flow through the torch

Determination of Impurities in Gasoline and Petro-Diesel Fuels

Limits on Target Elements in Diesel Fuel - EN14538

Property	ASTM Method	Limits	Units
Calcium & Magnesium, combined	EN 14538	5 max	ppm (ug/g)
Flash Point (closed cup)	D 93	93 min.	Degrees C
Alcohol Control (One of the following m	ust be met)		
1. Methanol Content	EN14110	0.2 Max	% volume
2. Flash Point	D93	130 Min	Degrees C
Water & Sediment	D 2709	0.05 max.	% vol.
Kinematic Viscosity, 40 C	D 445	1.9 - 6.0	mm ² /sec.
Sulfated Ash	D 874	0.02 max.	% mass
Sulfur S 15 Grade S 500 Grade	D 5453 D 5453	0.0015 max. (15) 0.05 max. (500)	% mass (ppm) % mass (ppm)
Copper Strip Corrosion	D 130	No. 3 max.	
Cetane	D 613	47 min.	
Cloud Point	D 2500	Report	Degrees C
Carbon Residue 100% sample	D 4530*	0.05 max.	% mass
Acid Number	D 664	0.50 max.	mg KOH/g
Free Glycerin	D 6584	0.020 max.	% mass
Total Glycerin	D 6584	0.240 max.	% mass
Phosphorus Content	D 4951	0.001 max.	% mass
Distillation, T90 AET	D 1160	360 max.	Degrees C
Sodium/Potassium, combined	EN 14538	5 max	ppm
Oxidation Stability	EN 14112	3 min	nours

Workmanship Free of undissolved water, sediment, & suspended matter BOLD = BQ-9000 <u>Critical Specification Testing</u> Once <u>Production Process Under Control</u>

The carbon residue shall be run on the 100% sample.

Sample Preparation – Method EN14538

A commercial diesel sample was analysed

1:10 dilution with Shellsol

Standards made from Conostan S21+K

• 0.5 ppm, 1 ppm, 5 ppm, 10 ppm

All samples and standards matrix matched with blank oil

Instrument Parameters

Parameter	Setting
Nebulizer	Inert OneNeb
Spray chamber	Double-pass glass cyclonic
Sample tubing	Orange/green solvent resistant
Waste tubing	Blue/blue solvent resistant
Read Time	3 s
Replicates	3
Stabilization time	15 s
Fast Pump (80 rpm)	On
Background correction	Auto
Pump speed	5 rpm

Method Detection Limits

3σ , 3s read time, 10 blanks

Element	Wavelength (nm)	MDL (ppb)
Mg	285.213	2.7
Са	422.673	8.2
Na	588.995	18.7
К	766.491	2.7

Spike Recoveries on Diesel Fuel

Diesel fuel sample spiked with 0.55 ppm S21+K

Element	Sample (ppm)	Spiked Sample (ppm)	Recovery (%)
Mg 285.213 nm	< MDL	0.53	97
Ca 422.673 nm	< MDL	0.51	93
Na 588.995 nm	< MDL	0.51	93
K 766.491 nm	< MDL	0.51	93

Applications for the Agilent 4100 MP-AES

Food and Agricultural Applications

Applications the MP-AES can do – by Market

- Geochem samples in aqua regia digests
- Trace elements in geological samples
- Trace level gold in cyanide leach Analysis of high purity gold
- Platinum group elements in ore grade material
- Various elements in plating solutions

Additives in lubricating oils Wear metal contaminants in used oils

CHEMICAL &

PETROCHEMICAL

Analysis of coolant Analysis of petroleum and diesel fuel

Major elements in polymers

Major elements in foods, beverages and agricultural samples

AGRICULTURE

Cations in soils

F00D &

Nutrients in soils

- Metals in soil extracts
- Metals in agricultural soil samples

ENVIRONMENTAL

Hg, Pb, Cd and Cr in electronics and plastics (for WEEE/RoHs compliance)

Heavy metals in soils

As, Sb and Se in sediments and waste

Analysis of waste waters, sediments and soils

Food Applications – Types of Measurement

Which Elements are Monitored in Foods?

Toxic trace elements

- Low level analysis typically ppb levels
- As, Cd, Hg, Pb, Tl, Cr

Common elements that are toxic in excess

- Typically range from ppb to ppm level
- Al, Ni, Cu, Zn, Se, Mo, Sn

Essential minerals

The Measure of Confidence

- Can cover a wide range from ppm to % levels
- Na, Mg, P, S, K, Ca, Fe

Sample Types

Wide Range of Matrices

- Dairy, Meat, Fish, Grain, Vegetables, Fruit, etc
- Processed goods
 - Canned, frozen, dried and preserved food
 - Drinks (soda, tea, coffee, alcoholic beverages etc.)
 - Preservatives, "fillers" and additives such as calcium carbonate
- "Nutraceuticals"

Other Important Samples

- Water (used for irrigation)
- Soil
- Fertilizer
- Food additives / flavors / colors
- Packaging material

Food and Agriculture Applications – The Challenge

Major, Minor and Trace Analysis in Foodstuffs

A range of samples

- 1. NIES CRM No.7 Tea Leaves
- 2. NIES CRM No.10c Rice Flour
- 3. NIST SRM 1577 Bovine Liver:

Plus pre-prepared sample solutions in 4 % HNO₃ (High Purity Standards)

- 4. CRM-Wheat Flour
- 5. CRM-Milk Powder
- 6. CRM-Oyster Tissue

Instrument Parameters

Parameter	Setting
Nebulizer	Glass concentric
Spray chamber	Single pass glass cyclonic
Sample tubing	White/white
Waste tubing	Blue/blue
Read Time	10 s
Replicates	3
Stabilization time	10 s
Fast Pump	On (80 rpm)
Pump speed	12 rpm
Nebulizer pressure	160 – 180 kpa (auto optimized)
Background Correction	Auto

Measured Results for CRM Food Samples

NIES No. 7 Tea Leaves

High Purity Stds CRM Milk Powder

Element	Measured values	Certified values	Element	Measured values (mg/kg)	Certified values (mg/kg)
	wt%	wt%	AI	nd	0.020 ± 0.002
Са	0.314 ± 0.013	0.320 ± 0.012	Са	131 ± 9	130 ± 1
Mg	0.150 ± 0.004	0.153 ± 0.006	Со	nd	0.0004*
ĸ	1.861 ± 0.074	1.86 ± 0.07	Cr	nd	0.0003*
	mg/kg	mg/kg	Cu	0.006 ± 0.001	0.007 ± 0.001
Ва	5.76 ± 0.57	5.7*	Fe	0.018 ± 0.002	0.020 ± 0.001
Cd	nd	0.03 ± 0.03	К	178 ± 6	170 ± 2
Со	nd	0.12*	Р	98.7 ± 1.3	100 ± 1
Cr	nd	0.15*	Pb	nd	0.002*
Cu	7.13 ± 0.81	7 ± 0.3	Mg	11.9 ± 0.2	12 ± 0.1
Pb	nd	0.8 ± 0.03	Mn	0.003 ± 0.002	0.003*
Ni	6.03 ± 0.63	6.5 ± 0.3	Na	48.7 ± 2.6	50 ± 1
Sr	3.63 ± 0.43	3.7*	Zn	0.48 ± 0.05	0.50 ± 0.01
Zn	34 ± 3	33 ± 3			

*

Reference values only

Measured Results for CRM Food Samples

NIES	No. 10c Rice F	lour	High	Purity Stds CRM	I Wheat Flour
Element	Measured values	Certified values	Element	Measured values (mg/kg)	Certified values (mg/kg)
	wt%	wt%	AI	0.83 ± 0.02	0.85 ± 0.01
Mg	0.127 ± 0.006	0.125 ± 0.008	Ca	9.64 ± 0.97	9.5 ± 0.1
к	0.279 ± 0.012	0.275 ± 0.010	Cd	nd	0.0015*
Ρ	0.300 ± 0.010	0.335 ± 0.008	Co	nd	0.001*
	mg/kg	mg/kg	Cr	0.013 ± 0.001	0.014*
AI	1.49 ± 0.13	1.5*	Cu	0.09 ± 0.008	0.1 ± 0.002
Ca	95.4 ± 7.0	95 ± 2	Fe	0.81 ± 0.04	0.90 ± 0.01
Cd	1.83 ± 0.14	1.82 ± 0.06	K	62.5 ± 0.5	65 ± 0.7
Co	nd	0.007*	Р	61.1 ± 1.7	65 ± 0.7
Cr	nd	0.08*	Pb	0.05 ± 0.001	0.050 ± 0.003
Cu	4.03 ± 0.32	4.1 ± 0.3	Mg	20.8 ± 0.1	20.0 ± 0.2
Fe	106 ± 0.15	11.4 ± 0.8	Mn	0.36 ± 0.02	0.4 ± 0.008
Mo	nd	1.6 ± 0.1	Ni	nd	0.009 ± 0.001
Ni	nd	0.30 ± 0.03	Zn	0.47 ± 0.05	0.50 ± 0.01
Sr	0.2	0.2*			
Zn	21.8 ± 1.0	23.1 ± 0.8	* Refer	ence values only	

Reference values only

Measured Results for CRM Food Samples

NIS	ST 1577 Bovin	e Liver	High	Purity Stds CRN	l Oyster Tissue
Element	Measured values	Certified values	Element	Measured values (mg/kg)	Certified values (mg/kg)
	wt%	wt%	AI	2.92 ± 0.07	3*
Na	0.247 ± 0.006	0.243 ± 0.013	Ca	15.0 ± 0.49	15*
К	1.00 ± 0.08	0.97 ± 0.06	Cd	nd	0.03*
	mg/kg	mg/kg	Co	nd	0.004*
Ca	131	123*	Cr	nd	0.007*
Cd	nd	0.27 ± 0.04	Cu	0.56 ± 0.05	0.6*
Co	nd	0.18*	К	100 ± 0.96	100*
Cu	185 ± 6	193 ± 10	Р	79.1 ± 0.9	80*
Fe	266 ± 5	270 ± 20	Pb	nd	0.005*
Pb	nd	0.34 ± 0.08	Mg	12.1 ± 0.2	12*
Mg	625 ± 45	605*	Mn	0.18 ± 0.01	0.2*
Mn	10.4 ± 1.41	10.3 ± 1	Na	48.9 ± 0.8	50*
Мо	nd	3.2*	Ni	nd	0.01*
Sr	0.15 ± 0.07	0.14*	Zn	8.3 ± 0.4	9*
Zn	125 ± 4	130 ± 10	* Refer	ence values only	

Reference values only

Applications the MP-AES can do – by Market

- Geochem samples in aqua regia digests
- Trace elements in geological samples
- Trace level gold in cyanide leach Analysis of high purity gold
- Platinum group elements in ore grade material
- Various elements in plating solutions

Additives in lubricating oils Wear metal contaminants in used oils Analysis of coolant

- Analysis of petroleum and diesel fuel
- Major elements in polymers

Major elements in foods, beverages and agricultural samples Cations in soils Nutrients in soils Metals in soil extracts Metals in agricultural soil samples

AGRICULTURE

F00D &

ENVIRONMENTAL

Hg, Pb, Cd and Cr in electronics and plastics (for WEEE/RoHs compliance)

Heavy metals in soils

As, Sb and Se in sediments and waste

Analysis of waste waters, sediments and soils

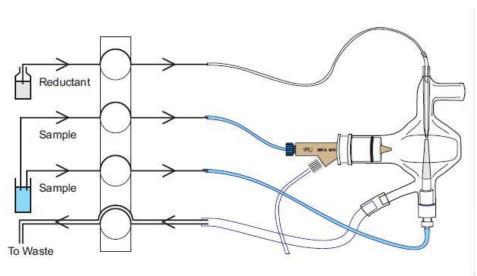
Instrument Parameters

Parameter	Setting
Nebulizer	Glass concentric
Spray chamber	Single pass glass cyclonic
Sample tubing	Black/black
Waste tubing	Blue/blue
Read Time	3 s
Replicates	3
Stabilization time	10 s
Fast Pump (80 rpm)	On
Pump speed	15 rpm
Viewing position	-20 to 20 steps (auto optimized)
Nebulizer pressure	120 – 240 kpa (auto optimized)

The Measure of Confidence

Measured Results for NIST SRM 2710 Montana Soil

Analyte	MP-AES Results Average (mg/kg)	NIST Reference Range (mg/kg)
AI	24300 ± 400	12000 - 26000
As	550 ± 20	490 - 600
Cr	21 ± 1	15 - 23
Cu	2800 ± 20	2400 - 3400
Fe	28000 ± 300	22000 - 32000
Mn	8500 ± 200	6200 - 9000
Ni	9.5 ± 0.6	8.8 - 15
Pb	5600 ± 300	4300 - 7000
Zn	6100 ± 200	5200 - 6900


Measured Results for NIST SRM 2711 Montana Soil

MP-AES Results Average (mg/kg)	NIST Reference Range (mg/kg)
20000 ± 200	12000 - 23000
90 ± 15	88 - 110
21 ± 3	15 - 25
90 ± 1	91 - 110
23000 ± 2000	17000 - 26000
600 ± 10	400 - 620
17 ± 3	14 - 20
1400 ± 30	930 - 1500
300 ± 10	290 - 340
	Average (mg/kg) 20000 ± 200 90 ± 200 90 ± 15 21 ± 3 90 ± 1 23000 ± 2000 600 ± 10 17 ± 3 1400 ± 30

The Measure of Confidence

Improving Detection Limits for As, Se, Hg with MSIS

Analyte	MSIS in Simultaneous Mode ug/L
As	1.0
Se	2.0
Hg	0.5

Application Notes Available

Geochemical

- New methodology for analysis of gold and precious metals
- Analysis of base metals in geochemical samples

Chemical & Petrochemical

- Analysis of wear metals and contaminants in engine oils
- Analysis of lubricating oil additives
- Analysis of trace elements in petroleum and diesel fuels

Food & Agriculture

- Analysis of soil extracts
- Cost-effective analysis of major, minor, and trace elements in foodstuffs

Environmental

Determination of metals in industrial wastewaters

Agilent 4100 MP-AES

Runs on air – the most significant advance in atomic spectroscopy

- Lowest running cost of any atomic spectroscopy technique due to capability to run on air – ideal for remote and at site operation
- Improved safety capability to run on air means no flammable gases and no manual handling of cylinders
- Easy-to-use software with MP applets and plug and play torch which simplify operation and maximize uptime
- Superior performance to flame AA, with capability to run unattended overnight

Agilent's Atomic Spectroscopy Portfolio

Flame AAS

Graphite Furnace AAS

4100 MP-AES

QUESTIONS?

