

Thank you for purchasing an Agilent instrument. To get you started and to assure a successful and timely installation, please refer to this specification or set of requirements.

Correct site preparation is the key first step in ensuring that your instruments and software systems operate reliably over an extended lifetime. This document is an **information guide AND checklist** prepared for you that outlines the supplies, consumables, space and utility requirements for your equipment for your site.

For additional information about our solutions, please visit our web site at http://www.chem.agilent.com/en-US/Pages/HomePage.aspx

#### **Customer Responsibilities**

| Ma | ke sure your site meets the following prior to the installation date using the checklist below. For                      |
|----|--------------------------------------------------------------------------------------------------------------------------|
|    | details, see specific sections within this document, including:                                                          |
|    | The necessary laboratory or bench space is available.                                                                    |
|    | The environmental conditions for the lab as well as laboratory gases, tubing.                                            |
|    | The power requirements related to the product (e.g. number & location of electrical outlets).                            |
|    | The required operating supplies necessary for the product and installation.                                              |
|    | Please consult Other/Special Requirements section below for other product-specific information.                          |
|    | If Agilent is delivering installation and familiarization services, users of the instrument should be present throughout |
|    | these services; otherwise, they will miss important operational, maintenance and safety information.                     |

## **Important Customer Information**

- 1 If you have questions or problems in providing anything described as **Customer Responsibilities** above, please contact your local Agilent or partner support/service organization for assistance prior to delivery. In addition, Agilent and/or its partners reserve the right to reschedule the installation dependent upon the readiness of your laboratory.
- 2 Should your site not be ready for whatever reasons, please contact Agilent as soon as possible to re-arrange any services that have been purchased.
- 3 Other optional services such as additional training, operational qualification (OQ) and consultation for user-specific applications may also be provided at the time of installation when ordered with the system, but should be contracted separately.



Identify the laboratory bench space before your system arrives based on the table below.

Pay special attention to the **total height and total weight requirements for all system components you have ordered and avoid bench space with overhanging shelves**. Also pay special attention to the total weight of the modules you have ordered to ensure your laboratory bench can support this weight.



#### **Special Notes**

- Allow at least 20 cm clearance between back of GC and wall to dissipate air.
- A simple system includes a GC, an automatic liquid sampler, and a computer would require about 153 cm (5 feet) of bench space, add an addition 41 cm for a LaserJet printer (195 cm, 6.5 feet); access to the MSD could require moving the instrument so an additional (30cm, 1 foot) should be available on the left side. A total of 244 cm (8 feet) of bench space should be available for a full GCMS system. Some repairs to the MSD or to the GC will require access to the back of the instrument so access to the rear or back of the system will be required.
- The length of the vacuum hose is 130 cm (4.24 feet) from the high vacuum pump to the foreline pump, while the length of the foreline pump power cord is 2 m (6.6 feet).

| Instrument Description     | Weight |     | Height |      | Depth |      | Width |       |
|----------------------------|--------|-----|--------|------|-------|------|-------|-------|
|                            | Kg     | lbs | cm     | in   | cm    | in   | cm    | in    |
| El SplitFlow Turbo Pump    | 59     | 130 | 43.3   | 17   | 86.4  | 34   | 34.8  | 13.75 |
| EI/CI SplitFlow Turbo Pump | 64     | 140 | 46     | 18   | 86    | 34   | 36    | 14    |
| 7890A                      | 50     | 112 | 54     | 21.3 | 54.5  | 21.4 | 54    | 21.3  |

Conversions: 1 kg = 2.2 lbs (pounds); 1 cm = 0.39 inches.







#### **Environmental Conditions**

Operating your instrument within the recommended temperature ranges insures optimum instrument performance and lifetime.

#### **Special Notes**

- 1 Performance can be affected by sources of heat & cold e.g. direct sunlight, heating/cooling from air conditioning outlets, drafts and/or vibrations.
- The site's ambient temperature conditions must be stable for optimum performance.
- For the 7890 GC Series and the 7000 GC-QQQ Series the maximum operating altitude is 4615.38 m.

| Product                        | Operating temp range °C (F) | Operating humidity range (%) |
|--------------------------------|-----------------------------|------------------------------|
| 7890 Series Operation          | 20 – 27                     | 50 – 60                      |
| 7890 Series Storage            | 5 – 40                      | 5 – 95                       |
| 7000 GCMS-QQQ Series Operation | 15 – 35                     | 40 – 80                      |
|                                | (59 – 95)                   |                              |
| 7000 GCMS-QQQ Series Storage   | -20 – 70                    | 0 – 95                       |
|                                | (-4 – 158 )                 |                              |

The following table may help you calculate the additional BTU's of heat dissipation from this new equipment. Maximums represents the heat given off when heated zones are set for maximum temperatures.

| Oven type                            | 7890 Series            | 7000 GC-MS QQQ Series                    |
|--------------------------------------|------------------------|------------------------------------------|
| Standard oven ramp                   | 7681 BTU/hour maximum  | 3000 BTU/hour including GC/MSD interface |
| Fast oven ramp (options 002 and 003) | 10071 BTU/hour maximum | 3000 BTU/hour including GC/MSD interface |

#### **Exhaust Venting Requirements for the GCMS**

For the MS vent external to building via ambient-pressure vent system, within 460 cm (15 feet) of both GC split vent and MSD foreline pump or vent to fume hood. An exhaust vent system is not part of environmental control system of a building that recirculates air. Exhaust venting need to comply with all local environmental and safety codes.

For the GC with the deflector (outlet diameter 10 cm - 4 in) installed the exhaust is about  $1.84 \text{ m}^3/\text{min}$  (65 CuFt/min), without deflector  $2.8 \text{ m}^3/\text{min}$  (99 CuFt/min).





## **Power Consumption**

 Table 1
 Power Consumption

| Product Description                     | Outlets required                                                          | Line voltage<br>(V AC)                               | Frequency<br>(Hz) | Current rating (A) | Maximum continuous power consumption(VA) |
|-----------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|-------------------|--------------------|------------------------------------------|
| 7000 GCMS-QQQ<br>Series MSD             | 1                                                                         | 120 (-10%<br>/+5%)                                   | 50/60 ±5%         | 15                 | 1100 (400 for foreline pump only)        |
|                                         |                                                                           | 220-240<br>(-10% /+5%)                               |                   |                    |                                          |
|                                         |                                                                           | 200 (-10%<br>/+5%)                                   |                   |                    |                                          |
| Workstation PC<br>system: monitor, CPU, | 3 to 5                                                                    | 120 (1)(-10%<br>/+5%)                                | 50/60 ±5%         | 15                 | 1000                                     |
| printer                                 |                                                                           | 200 - 240<br>(-10% /+5%)                             |                   |                    |                                          |
| 7890, standard oven                     | 1                                                                         | Americas:<br>120 (3) single<br>phase (-10%<br>/ +5%) | 48-66             | 18.8               | 2250                                     |
|                                         | 7890,<br>standard<br>oven                                                 | 220/230/240<br>single/split<br>phase (-10%<br>/+5%)  |                   | 10.2 / 9.8 / 9.4   | 2250                                     |
| 7890, fast oven                         | Japan:<br>200 split<br>phase<br>(-10%<br>/+5%)                            | 14.8                                                 | 2950              |                    |                                          |
| 7890, fast oven                         | 220/230<br>/240 (4)<br>(5)<br>single/s<br>plit<br>phase<br>(-10%<br>/+5%) | 13.4 / 12.8 /<br>12.3                                | 2950              |                    |                                          |



#### **Special Notes**

- The number and type of electrical outlets depends on the size and complexity of your system. The MSD power consumption and requirements depends on the country the unit is shipping to. The electrical outlet for the unit should have a dedicated ground.
- If a computer system is supplied with your instrument, be sure to account for those electrical outlets; requires up to 5 additional outlets.
- Americas 120V requires 20 amp dedicated line, the plug is a NP5. Americas 240V requires 15 amp dedicated line, the plug is L6-15.
- Option 003, 208V fast oven, uses a 220V unit with operating range of 193 to 231V. Most labs have 4-wire service resulting in 208V at the wall receptacle. It is important to measure the line voltage at the receptacle for the GC.
- Power line conditioners should not be used with 7890 GCs.



#### **Gas Supply**

Gases are supplied by tanks, internal distribution system, or gas generators. Tank supplies require two staged, pressure regulation. To connect tubing to the supply, it must have one 1/8-inch Swagelok female connector for each gas. Make sure that your regulator has the appropriate sized adapter to end with a 1/8-inch Swagelok female connector.

The following tables list minimum and maximum pressures in psi for inlets and detectors measured at the bulkhead fitting at the back of the 7890 Series GCs.

Table 2 7890 Series Inlets and Detectors

|             | FID    | NPD    | TCD    | ECD        | FPD         | S/splitle<br>ss 150<br>psi                       | S/split<br>less<br>100 psi | On-col<br>umn | Purged<br>packed | PTV |
|-------------|--------|--------|--------|------------|-------------|--------------------------------------------------|----------------------------|---------------|------------------|-----|
| Hydrogen    | 35-100 | 35-100 |        |            | 45-10<br>0  |                                                  |                            |               |                  |     |
| Air         | 55-100 | 55-100 |        |            | 100-1<br>20 |                                                  |                            |               |                  |     |
| Make up     | 55-100 | 55-100 | 55-100 | 55-10<br>0 | 55-10<br>0  |                                                  |                            |               |                  |     |
| Reference   |        |        | 55-100 |            |             |                                                  |                            |               |                  |     |
| Carrier max |        |        |        |            |             | 170                                              | 120                        | 120           | 120              | 120 |
| Carrier min |        |        |        |            |             | 20 psi<br>above<br>pressure<br>used in<br>method |                            |               |                  |     |



Conversions: 1 psi = 0.068947 bar= 6.8947 kPa = 0.068 ATM.

#### **Special Notes**

- 1 If you have not requested option 305, you must supply pre-cleaned, 1/8-inch copper tubing and a variety of 1/8-inch Swagelok fittings to connect the GC to inlet and detector gas supplies.
- 2 Cyrogenic cooling with Liquid N2 requires 1/4-inch insulated copper tubing.
- 3 Cyrogenic cooling with Liquid CO2 requires 1/8-inch heavy-walled, stainless steel tubing.
- 4 Valve actuation requires a separate pressurized, dry air at 3.792 bar (55 psi).
- **5** Never use liquid thread sealer to connect fittings. Never use chlorinated solvents to clean tubing or fittings.
- 6 Cryo cooling of the oven is not possible with CO2 due to the fitting configuration and the N2 fitting will need to be changed to a 90 deg fitting so that the instruments wil connect properly.

#### **Gas Flow Limitations**

| Feature                               | 7000               |
|---------------------------------------|--------------------|
| High Vacuum pump                      | EI SplitFlow turbo |
| Optimal gas flow ml/min <sup>1</sup>  | 1.0                |
| Maximum recommended gas flow, ml/min  | 2.0                |
| Maximum gas flow, ml/min <sup>2</sup> | 2.4                |
| Max column id                         | 0.32 mm (30 m)     |

<sup>&</sup>lt;sup>1</sup> Total gas flow into the MSD: column flow plus reagent gas flow (if applicable)

**Table 3** 7000 GC/MS QQQ Series Carrier and Collision Gases

| Carrier and Collision gas requirements           | Typical pressure range (psi) | Typical flow (ml/min) |
|--------------------------------------------------|------------------------------|-----------------------|
| Helium (required for carrier and Collision cell) | 50 to 80                     | 20 – 50               |
| Hydrogen (optional) <sup>1</sup>                 | 50 to 80                     | 20 – 50               |
| Nitrogen (required for Collision Cell)           | 15 to 25                     | 1 – 2                 |

<sup>&</sup>lt;sup>1</sup> Hydrogen gas can be used for the carrier gas but specifications are based on Helium as the carrier gas and please observe all hydrogen gas safety cautions

<sup>&</sup>lt;sup>2</sup> Expect degradation of spectral performance and sensitivity





### **Gas Selection**

### **Special Notes**

Agilent recommends that carrier and detector gases be 99.9995~% pure. Air needs to be zero grade or better. Agilent also recommends using traps to remove hydrocarbons, water, and oxygen.

| Detector          | Carrier gas   | Make up 1st choice    | Make up 2nd<br>choice | Detector, anode purge, or reference |
|-------------------|---------------|-----------------------|-----------------------|-------------------------------------|
| Electron capture  | Hydrogen      | Argon/methane         | Nitrogen              | Anode purge must be same as         |
|                   | Helium        | Argon/methane         | Argon/methane         | makeup                              |
|                   | Nitrogen      | Nitrogen              | Argon/methane 5%      |                                     |
|                   | Argon/methane | Argon/methane         | Nitrogen              |                                     |
| Flame ionization  | Hydrogen      | Nitrogen              | Helium                | Hydrogen and air for detector       |
|                   | Helium        | Nitrogen              | Helium                |                                     |
|                   | Nitrogen      | Nitrogen              | Helium                |                                     |
| Flame photometric | Hydrogen      | Nitrogen              | None                  | Hydrogen and air for detector       |
|                   | Helium        | Nitrogen              |                       |                                     |
|                   | Nitrogen      | Nitrogen              |                       |                                     |
|                   | Argon         | Nitrogen              |                       |                                     |
| Nitrogen          | Helium        | Nitrogen              | Helium                | Hydrogen and air for detector       |
| phosphorous       | Nitrogen      | Nitrogen              | Helium                |                                     |
| Thermal           | Hydrogen      | Must be same as       | Must be same as       | Reference must be same as           |
| conductivity      | Helium        | carrier and reference | carrier and reference | carrier and makeup                  |
|                   | Nitrogen      |                       |                       |                                     |

### **5975C Series Carrier and Reagent Gas Purity**

Table 4 Carrier and reagent gas

| Carrier and reagent gas requirements | Purity   | Note                  |  |
|--------------------------------------|----------|-----------------------|--|
| Helium (Carrier and Collision)       | 99.9995% | hydrocarbon free      |  |
| Hydrogen (Carrier)                   | 99.9995% | SFC Grade             |  |
| Nitrogen (Collision)                 | 99.999%  | Research or SFC grade |  |





## **Tools and Supplies**

Your GCMS-QQQ comes with a few basic tools and consumables depending on the specific inlet and detector that you ordered. Here is a general list which one will get with the instruments or should have on-hand.

#### **Basic Tools**

| Tool or consumable                        | Used for                                                                     |
|-------------------------------------------|------------------------------------------------------------------------------|
| Inlet wrench                              | Replacing inlet septa and liners.                                            |
| T10 and T20 Torx wrenches                 | Remove tray. Remove covers to access EPC modules, traps, and possible leaks. |
| 1/4-inch nut driver                       | FID jet replacement.                                                         |
| FID flow measuring insert                 | FID troubleshooting.                                                         |
| Column cutter                             | Column installation.                                                         |
| 1/8-inch Tee, Swagelok, brass             | Connect gas supplies                                                         |
| 1/8-inch nuts & ferrules, Swagelok, brass | Connect gas supplies                                                         |
| Inlet septa appropriate for type          | Injection port seal                                                          |
| Inlet insert or liner                     | Injection port                                                               |
| 1.5 mm and 2.0 mm hex driver              | Source maintenance (disassembly)                                             |
| Tool bag                                  | Used to hold GC and MS tools                                                 |
| Q-Tips                                    | Used to clean source parts                                                   |
| Cloths                                    | Used to keep surfaces clean and parts clean                                  |
| Gloves                                    | Used to reduce contamination on parts GC and MS                              |

### **MSD Maintenance Supplies**

| Description                       | Part number |
|-----------------------------------|-------------|
| Abrasive paper, 30 μm             | 5061-5896   |
| Alumina powder sample             | 393706201   |
| Cloths, clean (package of 300)    | 05980-60051 |
| Cloths, cleaning (package of 300) | 9310-4828   |
| Cotton swabs (package of 100)     | 5080-5400   |

| Description                    | Part number |
|--------------------------------|-------------|
| Foreline pump oil, inland 45   | 6040-0834   |
| Gloves, clean, large           | 8650-0030   |
| Gloves, clean, small           | 8650-0029   |
| Grease, Apiezon L, high vacuum | 6040-0289   |

#### **Ferrules**

| Where used                                                        | Description                                                               | Part number                                                       |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
| Leak testing                                                      | Blank, Graphite-Vespel                                                    | 5181-3308                                                         |
| GC/MSD interface                                                  | 0.3-mm id, 85% Vespel 15% graphite, for 0.10-mm id columns                | 5062-3507                                                         |
|                                                                   | 0.4-mm id, 85% Vespel 15% graphite, for 0.20-mm id and 0.25-mm id columns | 5062-3508                                                         |
|                                                                   | 0.5-mm id, 85% Vespel 15% graphite, for 0.32-mm id columns                | 5062-3506                                                         |
|                                                                   | 0.8-mm id, 85% Vespel 15% graphite, for 0.53-mm id columns                | 5062-3538                                                         |
|                                                                   | 0.27-mm id, 90% Vespel 10% graphite, for 0.10-mm id columns               | 5062-3518                                                         |
| "><br>5062-3516                                                   | Injection port                                                            | 0.37-mm id, 90% Vespel 10%<br>graphite, for 0.20-mm id<br>columns |
| 0.40-mm id, 90% Vespel 10%<br>graphite, for 0.25-mm id<br>columns |                                                                           | 5181-3323                                                         |
| 0.47-mm id, 90% Vespel 10%<br>graphite, for 0.32-mm id<br>columns |                                                                           | 5062-3514                                                         |
| 0.74-mm id, for 0.53-mm id<br>columns                             |                                                                           | 5062-3512                                                         |

### **Miscellaneous Parts and Samples**

| Description                                           | Part number |
|-------------------------------------------------------|-------------|
| Electron multiplier horn for the Triple Axis Detector | G3170-80103 |
| Filament assembly (EI)                                | G7005-60061 |
| Filament assembly (CI)                                | G7005-60072 |



# 7000 GCMS QQQ Site Preparation Checklist

| Description                                         | Part number |
|-----------------------------------------------------|-------------|
| Foreline pump oil (1 liter)                         | 6040-0621   |
| Octafluoronaphtalene (OFN), 1 pg/ul                 | 5188-5348   |
| Octafluoronaphtalene (OFN), 100 fg/ul               | 5188-5347   |
| 10 fg/ul OFN GC/MS Checkout std 3 x 1 mL            | 5190-0585   |
| 1 pg/ul OFN _ 5pg/ BZP                              | 393065201   |
| 100 pg/ul Benzophene in Isooctane                   | 8500-5440   |
| Perfluorotributylamine (PFTBA), certified (10 gram) | 8500-0656   |
| Perfluorotributylamine (PFTBA) sample kit           | 05971-60571 |
| PFHT                                                | 5188-5357   |
| Sample, evaluation A, hydrocarbons                  | 05970-60045 |



## **Other Requirements**

#### **Important Customer Web Links**

For additional information about our solutions, please visit our web site at http://www.chem.agilent.com/en-US/Pages/HomePage.aspx

Need to get information on your product? Literature Library - http://www.agilent.com/chem/library

Need to know more? Customer Education - http://www.agilent.com/chem/education

Need technical support, FAQs? - http://www.agilent.com/chem/techsupp

Need supplies? - http://www.agilent.com/chem/supplies

7000 GCMS QQQ
Site Preparation Checklist



# **Agilent Technologies**

## **Document Control Logs**

Issued: 4-Jun-2014 Revision: 3.0 Copyright: 2013 Agilent Technologies Page 11 of 11