Characterization of fuel dependencies in multidrug resistant breast cancer cells

Yoonseok Kam, Natalia Romero, Pam Swain and Brian P. Dranka
Cell Analysis Division, Agilent Technologies, Lexington, MA.

Introduction
- Multidrug resistance (MDR), a common drug resistant mechanism of cancer cells is characterized by increased expression of ATP-dependent drug exporting pumps which remove cytotoxic compounds from the cytosol of resistant cells.
- MCF7 Dox*, an MDR variant of the MCF7 breast cancer cell line has a highly glycolytic phenotype, with an increased glucose uptake/consumption rate in vitro and in vivo that contributes to maintaining the MDR phenotype.
- However, recently studies suggest that mitochondrial modulators have a significant role in avoiding development of MDR phenotypes2.
- We have previously showed using the Seahorse XF Mito Fuel Flex Test that MCF7 and MCF7 Dox cells are both highly dependent on glucose, however the MDR cells show significantly less dependence on glutamine oxidation (Fig. 1).

Methods
- The Seahorse XF Glycolytic Rate Assay is an accurate and reliable method for measuring glycolysis, providing measurements of glycolytic rates for basal conditions and compensatory glycolysis following mitochondrial inhibition (Fig. 2A).
- The calculated rates account for contribution of CO2 to extracellular acidification derived from mitochondrial/TCA cycle activity and are directly comparable to orthogonal lactate accumulation data (Fig. 2B).

Results
- MCF7 Dox loses mitochondrial glutamine dependency. Relative dependency on glutamine oxidation by MCF7 Dox was eliminated, while maintaining a high glucose dependency and capacity when the Mito Fuel Flex test was performed (Fig. 3A). Dox cells were sensitively generated by Dr. Robert Cohen at the Dana Farber Cancer Center, Boston, MA.
- Inhibition of mitochondrial pyruvate oxidation, in addition of the MPC inhibitor, UK5099, induced a metabolic switch to glycolysis, confirming the strong dependency for glutamine as a metabolic fuel. Additionally, inhibition of glutamine oxidation has a lower impact in MCF7 Dox compared to MCF7, confirming the lack of dependency of MCF7 Dox on glutamine oxidation. XF assay conditions are the same as described in Fig. 3 above.
- Figure 5. MDR-mediated drug efflux relies on ATP generated by mitochondria. MCF7 and MCF7 Dox were incubated in the presence of calcein-AM in DMEM Base Medium without phenol red, supplemented with 10 mM glucose, 2 mM glutamine, 1 mM pyruvate, 5 mM HEPEs, pH 7.4 for 10 min at 37°C with or without pretreatment of 2-deoxy-D-glucose (2-DG, 50 mM) or oligomycin (2 µM) for 10 min. The calcein-AM retained in cells were compared by using the fluorescent images captured (A) and the whole well fluorescent intensities measured (B) by BioTek SynergyM2. (C) Total ATP formation was calculated as the sum of Glycolytic Rate formation (equivalent to glycoPER) and mitochondrial-derived ATP Rate formation that was estimated from the ATP-coupled OCR and assuming a P/O ratio of 2.79-1.
- Conclusions
  - Using the Seahorse XF Glycolytic Rate Assay, basal glycolytic rates and compensatory glycolysis (when mitochondrial ATP production is blocked) are higher in MCF7 Dox cells compared to wild type cells, confirming the highly glycolytic phenotype of the MCF7 Dox variant.
  - Addition of the MPC inhibitor, UK5099, induced a metabolic switch to glycolysis, confirming the strong dependency and low flexibility of both cell variants for glucose as mitochondrial fuel. In addition, a further glycolytic shift is induced after combined inhibition of glutamine/pyruvate oxidation in MCF7 cells that is not observed in MCF7 Dox cells, in agreement with their lack of dependency for glutamine as a metabolic fuel.
  - Calcium-efflux studies strongly suggest that the MDR mechanism relies on mitochondrial generated ATP for maintaining a chemo-resistant phenotype.
  - Fuel dependency characterization may have potential therapeutic relevance to understand therapy resistance.

References