

iFunnel and triggered MRM

New tools for unmatched sensitivity and unequivocal confirmation of pesticides in food

> Dr. Thomas Glauner EMEA LC/MS Food Segment Scientist

The Measure of Confidence

Agenda

Pesticide residues in food and feed Introduction

- The protection of crops from pests and diseases requires the use of pesticides
- Pesticide residues in food and feed are possible and not necessarily illegal

- Tolerable concentrations are regulated e.g. in European Regulation (EG) No. 396/2005 or in the American Federal Regulations 40 CFR Part 180
- For food and feed produced or marketed in Europe there are maximum residue limits (MRLs) for more than 170 000 matrix-pesticide combinations
- Challenge for the analysis is the large variety of different matrices and physicochemical properties of the pesticides
- Typical analytical methods include generic extraction (QuEChERS) and Multiresidue methods based on gaschromatography and liquid chromatography coupled to mass spectrometry which are fit for purpose
- In Europe methods are validated according to guideline SANCO/12495/2011

"Check your scope" ranking for pesticides Published by EURL for pesticides

- Includes more than 1100 compounds
 - Pesticides currently used or used in the past
 - Pesticide metabolites of importance
- Ranking of pesticides based on:

- Toxicological data (toxicological endpoints and endocrine disruptive activity)
- Residue situation in crops (reporting from labs in Europe and RASFF notifications)
- Agricultural usage (including potential for misuse and persistent pesticides)
- Current situation
 - Around 600 compounds included in routine monitoring programs
 - Only about 150 pesticides often found in food commodities

6400 Triple Quadrupole Product Line Excellent Value and Performance

6420 Triple Quadrupole LC/MS

- Robust, Easy-to-Use
- Lowest cost of ownership
- Automate compound optimization

6430 Triple Quadrupole LC/MS

- Fast, robust,
- Targeted Protein Quantitation
- Fast polarity switching

6460 Triple Quadrupole LC/MS

- Agilent Jet Stream sub fg sensitivity
- Fast polarity switching
- Largest mass range for a premium Triple Quad

6490 Triple Quadrupole LC/MS

- iFunnel zeptomole sensitivity
- Curved hexapole collision cell reduced noise
- Perfect for the most demanding applications
- Fast polarity switching

The Measure of Confidence

Screening and quantitation for pesticides Use the Agilent G6490 for this application ...

- ... to increase the number of analytes in the method to be analyzed in a single injection (even those with lower abundancies)
- ... to lower LOQs for pesticides in complex matrices
- ... to extend your analytical scope to the analysis of baby food
- ... to minimize matrix effects by dilution of your samples

The unique package that enables this capability is:

- 1. 1290 UHPLC
- 2. Dynamic MRM
- 3. Agilent Jet Stream and Dual Ion Funnel Ion sampling
- 4. Curved Collision cell with ion focussing and Linear acceleration for speed and sensitivity

Agilent G6490A QQQ system Developments for utmost sensitivity

- Ionization and Ion Transfer Technology
 - Agilent Jet Stream Ion Generation
 - Hexabore capillary
 - Dual ion funnel (iFunnel) technology
 - Two stages for ion focusing and gas removal
 - Improvements for wide *m/z* range transmission
 - Low capacitance
- Collision Cell
 - Hexapole field axial focusing curved collision cell
 - Tapered cell structure for increased ion acceptance at entrance
 - Reduced noise
- Improved Quad Drive Electronics
 - Improved Quad DC frequency response
 - Higher RF power capability
 - Quad drive frequency increased to 1.4 MHz

Agilent iFunnel technology Two stage ion funnel manages the gas load

Offset ion funnels to prevent neutrals from going straight through to MS

Multi residue pesticide method HPLC method

Agilent 1290 Infinity LC system consisting of:

- binary pump
- wellplate sampler
- column compartment
- diode array detector (not used)

HPLC method

Separation column: ZO

Mobile phase:

Inj.Vol.:

- mn: ZORBAX Eclipse Plus C-18 RRHD column, 100 x 2.1 mm, 1.8 μm @ 25°C
 - A: 5 mM ammonium formate
 - B: methanol + 5 mM ammonium formate

0.6 ml/min 0.00 min 5 % B 0.20 min 5 % B 2.20 min 50 % B 10.50 min 100 % B 13.00 min 100 % B 13.10 min 5 % B 15.00 min 5 % B

2 µl

Flow:

Gradient:

Multi residue pesticide method MS method

Spray chamber conditions:

Gas temp.:	120°C
Dry gas:	15 l/min
Nebulizer:	35 psi
Sheath gas temp:	375°C
Sheath gas flow:	12 l/min

	Positive	Negative					
CapVoltage:	3500 V	3000 V					
Nozzle voltage	300 V	500 V					

Automatic setup of MRM tables based on selected cycle time, retention times and retention time windows for the individual compounds

Cycle time	600 ms
 Interscan delay 	3.5 ms
 Total No. of MRMs 	635
 Maximum No. Of concurrent MRMs 	74
Minimum Dwell time	4.61 ms
 Maximum Dwell time 	296.5 ms

Multi residue pesticide method Compounds included in method

Acephat Acetamiprid Acrinathrin Aldicarb Aldicarb-sulfon Aldicarb-sulfoxid Alloxydim Amidosulfuron Aminopyralid Amitraz Asulam Atrazin Avermectin B1a Metabolite Chloridazon (Pyrazon) Avermectin B1a Avermectin B1b Azimsulfuron Azinphos-ethvl Azinphos-methyl Azoxystrobin Beflubutamid Benalaxvl Benfuracarb Bensulfuron-methyl Benthiavalicarb Bifenazat Bifenox Bispyribac Bitertanol Bromaci Bromuconazol Bupirimat Buprofezin Butocarboxim Butoxycarboxim

Butocarboxim-sulfoxid Desmedipham DMSA Buturon Cadusaphos Dichlofluanid Carbaryl Dichlorvos Carbendazim Diclofop-methyl Carbofuran 3 hydroxy Dicrotophos Diethofencarb Carbofuran Carbosulfan Difenoconazol Carfentrazone-ethyl Difenoxuron Chlorantraniliprol Diflubenzuron Chlorfenvinphos Diflufenican Chlorfluazuron Dimefuron Dimethenamid Dimet hoat Chlorimuron-ethyl Chloroxuron Dimethomorph Chlorsulfuron Dimoxystrobin Chlozolinat Diniconazol Chromafenozid Dioxathion Clethodim Diuron Clofentezin FPN Clomazon Epoxyconazol Clopyralid Ethaboxam Clothianidin Ethiofencarb Cvazofamid Ethiofencarb-sulfon Cycloxydim Ethiofencarb-sulfoxid Cvhexatin Ethion Cvmoxanil Ethiprol Ethirimol Cyproconazol Cyprodinil Ethofumesat Cyromazin Ethoprophos Daminozid Etofenprox DEET Famoxadon Demeton-S-methyl Fenamidon Demeton-S-methyl-sulfon Fenamiphos

Fenamiphos-sulfon Fenamiphos-sulfoxid Fenarimol Fenazaguin Fenbuconazol Fenbutatinoxid Fenhexamid Fenobucarb Fenoxaprop free acid Fenoxycarb Fenpiclonil Fenpropimorph Fenpyroximat Fenthion Fenthion-oxon Fenthion-oxon-sulfon Fenthion-sulfon Fenthion-sulfoxid Flazasulfuron Flonicamid Florasulam Fluazifop free acid Fluazifop-P-butvl Flufenacet Flufenoxuron Flumetsulam Fluometuron Fluopicolid Fluoroglycofen-ethyl Fluoxastrobin (E) Fluguinconazol Fluroxypyr Flurtamon

Flusilazol Flutolanil Flutriafol Foramsulfuron Formetanat-Hydrochlorid Formothion Fosthiazat Fuberidazol Furathiocarb Halosulfuron-methyl Haloxyfop free acid Hexaconazol Hexaflumuron Hexythiazox Imazalil Imidacloprid Fenthion-oxon-sulfoxid Indoxacarb Ipconazol Iprodion Iprovalicarb Isoproturon Isoxaflutol Kresoxim methyl Lenacil Linuron Lufenuron Malaoxon Mandipropamid Mecarbam Mepanipyrim Mesosulfuron-methyl Mesotrione Metaflumizone Metalaxyl

Metamitron Metazachlor Metconazol Methabenzthiazuron Methacrifos Methamidophos Methidathion Methiocarb Mthiocarb-sulfon Methiocarb-sulfoxid Methomyl Methoxyfenozid Metobromuron Metolachlor Metosulam Metoxuron Metrafenon Metribuzin Metsulfuron-methyl Mevinphos Molinat Monocrotophos Monolinuron Monuron Myclobutanil Napropamid Neburon Nicosulfuron Nitenpyram Novaluron Nuarimol Ofurace Omethoat Orthosulfamuron

Oxadiazon Proquinazid Oxadixyl Prosulfocarb Oxamyl Pymetrozin Oxasulfuron Pyraclost robin Oxydemeton-sulfon Pyrazophos Paclobutrazol Pyridaben Paraoxon-methyl Pyridaphenthion Penconazol Pyridat Pencycuron Pyrifenox Pendimethalin Pyrimethanil Pethoxamid Pyriproxifen Phenmedipham Pyroxsulam Phenthoat Quinalphos Phorat Quinmerac Phosalon Ouinoxvfen Phosmet Ouizalfop free acid Phosmet-oxon Ouizalofop-ethyl Phosphamidon Rimsulfuron Phoxim Rotenone Picoxystrobin Sethoxvdim Pinoxaden Siduron Piperonyl butoxid Silthiopham Pirimicarb Simeconazol Spinosad Pirimiphos-methyl Pirmicarb-desmethyl Spirotetramat Prochloraz Spiroxamin Sulfosulfuron Profenophos Promecarb Tebuconazol Tebufenozid Propamocarb Tebufenpyrad Propaguizafop Teflubenzuron Propargite Propiconazol Tembotrion Propoxur Tepraloxydim Propyzamid Terbutryn

Terbutylazin Tetraconazol Thiabendazol Thiacloprid Thiamethoxam Thifensulfuron-methyl Thiodicarb Thiofanox sulfon Thiofanox sulfoxid Thiofanox Thiophanat Thiophanat-methyl Tolclophos-methyl Tolylfluanid Topramezone Tralkoxvdim Triadimefon Triadimenol Triasulfuron Triazofos Tribenuron-methy Trichlorfon Tricvclazol Trifloxystrobin Triflumizol Triflumuron Triflusulfuron-methyl Triforin Trinexapac-ethyl Triticonazol Tritosulfuron Zoxamid

313 compounds including 9 isomers

WEBEX triagered MRM October 23, 2012

Results for tomato extract Coverage of method for tomato matrix

Results for tomato extract Avermectine B1a and B1b

🔄 Agilent Technologies

WEBEX triggered MRM October 23, 2012

Results for all matrices Coverage of method for different matrices

number of compounds detected in spiked extracts

The Measure of Confidence

Results for black tea Coverage of method for black tea

number of compounds dectected in spiked black tea

MRL

Results for black tea Oxamyl and Carbendazim (High in "Check Your Scope" ranking)

Results for black tea Avermectine B1a and B1b

_____ 18 Agilent Technologies

WEBEX triggered MRM October 23, 2012

Dilution of black tea extract Results for monocrotophos

Dilution of black tea extract Results for fuberidazole

Results for Fuberidazole

Calibration in solvent and recoveries in different matrices

- Quantifier: 185.1 → 157.1
- Qualifier: 185.1 → 156.1

27

- Peak width: 16.2 s
- Cycle time: 600 ms
- Data points:

Results for Fuberidazole

Calibration in solvent and recoveries in different matrices

Matrix	Concentration	Recovery
Solvent	0.94	
Black tea	0.25	24.6
Cucumber	0.95	94.7
Lemon	0.78	78.4
Pepper	0.97	97.0
Rocket	0.89	89.8
Tomato	1.04	104.1
Wheat flower	1.04	103.5

The Measure of Confidence

WEBEX triggered MRM October 24, 2012

Results for Fuberidazole Recoveries for dilution in black tea

Matrix	Concentration	Recovery
Black tea	0.25	24.6
Black tea 1 in 2	0.22	44.9
Black tea 1 in 5	0.14	72.2
Black tea 1 in 10	0.078	77.6

Results for Methomyl Calibration in solvent and recoveries in different matrices

- Quantifier: 162.9 → 88.1
- Qualifier: 162.9 → 106.1

21

- Peak width: 12.6 s
- Cycle time: 600 ms
- Data points:

Results for Methomyl

Calibration in solvent and recoveries in different matrices

Matrix	Concentration	Recovery
Solvent	0.94	
Black tea	0.38	38.5
Cucumber	1.00	99.8
Lemon	0.83	83.0
Pepper	0.85	85.5
Rocket	0.022	2.2
Tomato	0.99	98.9
Wheat flower	103.3	103.3

Results for Methomyl Recoveries for dilution in black tea

Matrix	Concentration	Recovery
Black tea	0.38	38.5
Black tea 1 in 2	0.354	53.7
Black tea 1 in 5	0.175	70.1
Black tea 1 in 10	0.088	97.8

Results for Methomyl Recoveries for dilution in rocket

Matrix	Concentration	Recovery
Rocket	0.022	2.2
Rocket 1 in 2	0.397	79.3
Rocket 1 in 5	0.178	89.0
Rocket 1 in 10	0.0973	97.3

Results for Oxamyl Calibration in solvent and recoveries in different matrices

- Quantifier: 237.0 → 72.1
- Qualifier: 237.0 → 90.1

21

- Peak width: 12.6 s
- Cycle time: 600 ms
- Data points:

Results for Oxamyl Calibration in solvent and recoveries in different matrices

Matrix	Concentration	Recovery
Solvent	0.98	
Black tea	0.41	40.6
Cucumber	1.05	105.1
Lemon	0.79	78.8
Pepper	1.10	109.6
Rocket	0.60	59.6
Tomato	1.03	103.3
Wheat flower	1.06	106.0

Results for Oxamyl Recoveries for dilution in rocket

Matrix	Concentration	Recovery
Rocket	0.035**	3.5
Rocket 1 in 2	0.297	59.3
Rocket 1 in 5	0.151	75.4
Rocket 1 in 10	0.087	87.0

Why do we have triggered MRM? Quantitation with Confirmation: Fingerprinting

Full Scan Approach: Scan the entire fingerprint

<u>tMRM Approach:</u> Focus on known fingerprint features

Two possible scenarios:

- Confirmation of positive findings with additional information (spectral matching)
- Elimination of potential false detects caused by matrix interferences

tMRM Scanning

The Measure of Confidence

Triggered MRM (tMRM) Analysis

tMRM Product Ion Spectrum

The Ideal Analytical Solution

tMRM LC/MS Application Kits Targeted Screening with QQQ

Pesticides -Test Mix: 250

-Test Mix: 250+ compounds -DB: 500+ compounds -Library: 250+ compounds

Veterinary Drugs

-Test Mix: 200+ compounds -DB: 500+ compounds -Library: 200+ compounds

Forensic Toxicology

-Test Mix: 100+ compounds -DB: 500+ compounds -Library: 100+ compounds

WEBEX triggered MRM October 24, 2012

Triggered MRM database and library Optimizer database

Database Browser												- • ×	
File Edit View													
	3												
Search/Filter Import List													
Show All Records Search/Filter													
Filter Compounds Search Text													
Enable Filters									[Select Colur	nns	
							[Project	Name	=			
C Optimized Com	pounds						Compou	und Name					
Date From	n 08/08/2012	▼ To 06.				IN	MW						
🗌 Group Name							Groups						
Polarity	Positive	–	Model	-					[CAS			
Method		-								Chemic	ai Classes	~	
							Match entire v	vord for each string					
Select Transitions	_				S	et primary and trig	ger flags		Ran	k transition	s by		
Select top	ranked transitio	ns				Set top 2	ranked tran	sitions as primary	•	Abundance			
C Primary transitions			Select I ran	isitions		Set Prima	aries and Trioger	- 1	0	Response	Factor		
So Secondary danside	115												
Compound Name	Formula	MW	Polarity	Species	Precursor	Product	Frag	CE	CAV	Primary	Trigger	RT 🔺	
Acephat			Positive		184	143	60	4	7	V	V	0.3	
Acephat	-		Positive		184	49.1	60	20	7	V		0.3	
Acephat			Positive		184	125	60	16	7			0.3	
Acephat			Positive		184	111.1	60	20	7			0.3	
Acephat			Positive		184	95	60	24	7			0.3	
Acephat			Positive		184	78.9	60	36	7			0.3	
Acephat			Positive		184	47	60	56	7			0.3	
Acephat			Positive		184	42	60	24	7			0.3	
Acetamiprid			Positive		223	126	80	27	7			3.19	
Acetamiprid			Positive		223	90.1	80	45	7			3.19	
Acetamiprid			Positive		223	56.1	80	12	/			3.19	
Acetamiprid			Positive		223	73	00	40	7			3.13	
Acetaminrid			Positive		223	65.1	80	40	7			3.19	
Aclonifen			Positive		225	218	100	20	7			5.75	
•	:				200	2.0							
								- 1					
Current Database : C:\Mass	Hunter\Databases\Op	timizer					Add to Import	t List		Impor	rt	Close	

The Measure of Confidence

Triggered MRM Parameters

Primary transitions (A) with defined threshold (B) trigger additional transitions for given number of repeats (C).

Compound Group	Compound Name A	ISTD?	Precursor Ion ∇	MS1 Res	Product _∇	MS2 Res	Primary $ abla$	Trigger	Threshol d	Ret Time (min)	Delta Ret Time	Fragmentor	Collision Energy	Cell Acceler	Polarity	Trigger Entrance	Trigger Delay	Trigger Window	-
1/1	Atrazine		216.1	Unit	216.1	Unit			800	6.1	0.66	120	6	4	Positive	1	1	0	
(A)	Atrazine		216.1	Unit	174.1	Unit	•			6.1	0.66	120	12	4	Positive				
	Atrazine		216.1	Unit	146	Unit						120	20	4	Positive				
	Atrazine		216.1	Unit	132	Unit		(В)				120	20	4	Positive				
	Atrazine		216.1	Unit	104	Unit						120	32	4	Positive				
	Atrazine		216.1	Unit	96.1	Unit						120	20	4	Positive				
	Atrazine		216.1	Unit	79	Unit		Г				120	32	4	Positive				
	Atrazine		216.1	Unit	71.1	Unit		Г				120	32	4	Positive				
	Atrazine		216.1	Unit	68	Unit		Г				120	40	4	Positive				
	Atrazine		216.1	Unit	62	Unit		Г				120	48	4	Positive				
	Bentazone		239.1	Unit	175	Unit	•			4.43	0.55	140	16	4	Negative				
	Bentazone		239.1	Unit	132	Unit			500	4.43	0.55	140	24	4	Negative	1	1	0	
	Bentazone		239.1	Unit	196.9	Unit		Г				140	16	4	Negative				
	Bentazone		239.1	Unit	133.1	Unit						140	24	4	Negative				
	Bentazone		239.1	Unit	117	Unit		Г				140	32	4	Negative				
	Pontozono		2201	l locit	1000	1 loait						140	24		Monstine				_

Cycle Time 400

Total MRMs = 175 Max Concurrent MRMs = 53 Min/Max Dwell = 2.54 ms/196.50 ms

✓ Enabled Repeats 5

How does triggered MRM compare with traditional MRM methods

- Method was setup with more than 120 pesticides
- In tMRM acquistion was done with 2 primary transitions
- Triggering happened above a set threshold set for every compound
- In comparison an traditional dynamic MRM was setup with the same 2 transitions to compare the quantitative performance of the method
- Analysis of real samples to test tMRM

Method parameters

UHPLC method

UHPLC column	Agilent ZORBAX Eclipse Plus C18 RRHD 2.1 x 150 mm, 1.8 μm @ 30°C				
Mobile phase	A: 5 mM NH ₄ formate + 0.1% formic acid B: 5 mM NH ₄ formate + 0.1% formic acid in methanol				
	Min % B				
	0 5				
	0.5 5				
Gradient	3.0 40				
program	17 100				
	19 100				
	19.1 5				
	Stop time 22 min				
Flow rate	0.40 ml/min				
Injection volume	3 µl				

MS method

Electrospray ionization

Triggered MRM: 2 primary transitions and up to 8 additional confirmatory ions

Dynamic MRM: 2 transitions per compound

The Measure of Confidence

UHPLC-MS/MS chromatogram at 10ng/mL in lemon extract

Real samples – Napropamide in Lemon extract

MRM chromatogram of the two primary transititions spiked at 1µg/kg

Real samples – tMRM spectra for Napropamide in Lemon at different concentrations

tMRM spectra at 1µg/kg, 10µg/kg and 100 µg/kg

Method validation – Limits of quantitation

Agilent Technologies

WEBEX triggered MRM October 23, 2012

Quantitative performance Oxamyl

dMRM calibration curve

tMRM calibration curve

Quantitative performance

Calibration curve slopes of all pesticides in the method

Real samples – Tebufenpyrad in ginger extract

WEBEX triggered MRM October 23, 2012

Real samples – Tebufenpyrad in ginger extract

Real samples – Tebuthiuron in chamomile extract

Real samples – Tebuthiuron in chamomile extract

Real samples – examples for matrix interferences

			Library match score		
Pesticide	Matrix		Target compound	Matrix interference	
Dichlovos	Lemon	S.	94.5 %	78.1 %	
Thifensulfuron-methyl	Green Tea	A A A A A A A A A A A A A A A A A A A	96.6 %	71.5 %	
Tebufenpyrad	Ginger	12	99.8 %	55.9 %	
Tebuthiuron	Chamomile	VICTOR	97.8 %	58.0 %	
Imazalil	Chamomile		99.8 %	58.1 %	
Terbutylazin	Chamomile		99.6 %	82.1 %	

Compounds at a glance

Efficient review of results using outlier flagging

Summary and conclusions (1)

- Combination of 1290 UHPLC with the G6490 QQQ allows for short run times and large pesticide lists
- Validation resulted in excellent precision and low limits of quantitation for well over 300 priority pesticides even in challenging matrix types
- Dilution is a possible way to overcome matrix effects like ion suppression and often allows for the quantitation based on a solvent calibration
- With any dilution an improved robustness of the method can be expected due to the lower matrix amount which is introduced into the ionization source
- Increasing numbers of analytes and challenging matrices increase the probability of erroneous signals on the MRM traces of pesticides potentially causing false detects

Summary and conclusions (2)

- Triggered MRM enables spectral confirmation at LOQ levels
- Same quantitative performance than traditional MRM methods
- Seamless integration with new triggered MRM databases and libraries
- Automatic reference library matching allows efficient data review and automatic flagging of suspect cases
- By using only one primary transition triggered MRM potentially extends the scope of multi-residue methods to up to twice as many compounds

Application notes for your reference

Triggered MRM: Simultaneous Quantitation and Confirmation Using Agilent Triple Quadrupole LC/MS Systems

Technical Overview

Triggered MRM (tMRM) acquisition is an analytical method which is available for all Agitent Triple Quadrupole LC/MS systems. tMRM acquisition combines MRM with the generation of a product ion spectrum which can then be used for library identification and confirmation. As a result, tMRM analysis decreases analysis time, increases throughput, and allows for fast, sensitive quantitative and qualitative analysis on a single instrument, in a single analytical run.

How tMRM Acquisition Works

In tMRM analysis, up to 10 MRM transitions (primary and secondary) are defined for each target analyte in the method. The primary transitions are acquired for all analytes, but when the signal of one of the primary transitions exceeds a user-defined threshold, the secondary transitions are "triggered" and acquired for a specified number of scans.

Figure 1. A tMRM experiment with two primary transitions for each analyte. Secondary MRM transitions are triggered when the primary MRM signals cross a user-defined threshold.

5990-8461EN

Application of a Triggered MRM Database and Library for the Quantitation and Identification of Pesticides in Food Extracts

Application Note

Food

Authors

Thomas Glauner Agilent Technologies, Inc. Waldbronn, Germany

Bettina Schuhn, Justus-Liebig-Universität Giessen Giessen, Germany

Günther Kempe State Laboratory for Health and Veterinary Affairs Saxony Dresden, Germany

Abstract

This application note describes the development of a triggered MRM database and library for more than 300 pesticides. It illustrates its use to analyze a range of food commodities with an LC/MS method developed for a specific suite of 120 pesticide residues. An Agilent 1290 Infinity LC System was coupled to an Agilent 6460 Triple Quadrupole LC/MS System and operated in positive electrospray using Agilent Jet Stream Technology. The triggered MRM acquisition mode was used for quantitation and verification and to eliminate potential false detects. A short, in-house, validation done for three commodity groups with five representative matrices showed that the developed triggered MRM method was appropriate for the analysis of pesticides in food extracts with regards to the required limits of quantitation (LOQs), linearity, and reproducibility. Several examples are shown where a high risk of an interfering matrix peak being incorrectly assigned as a pesticide, was mitigated through triggered MRM. Automatic reference library matching, displayed alongside quantitation results allows data to be reviewed efficiently and for suspect cases to be flagged automatically.

WEBEX triggered MRM October 24, 2012

The Measure of Confidence

thomas_glauner@agilent.com

Acknowledgements

- Bettina Schuhn, Justus-Liebig-University, Gießen
- Stefan Kittlaus

sachsen.de

• Dr. Günther Kempe

Landesuntersuchungsanstalt Sachsen

