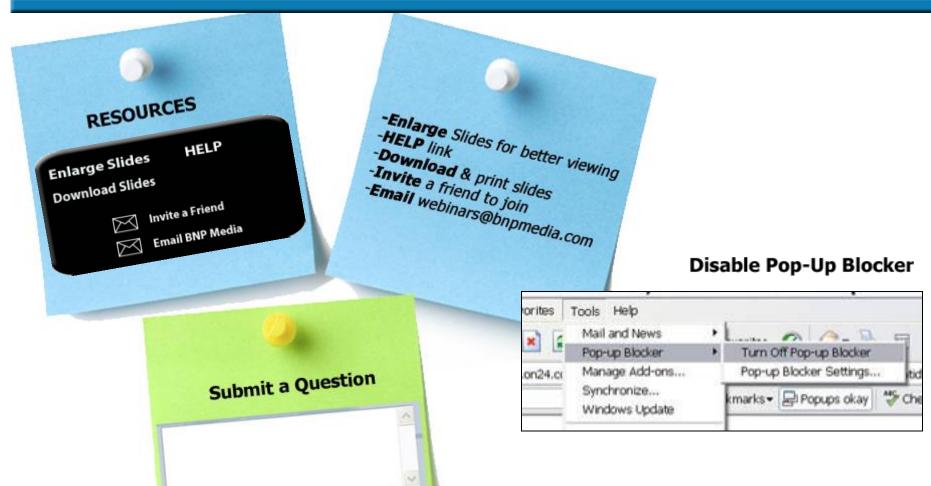


WELCOME

This event will begin soon


Music is now playing.

If you are unable to hear the audio, please take a moment to test your system by clicking HELP in the resource box.

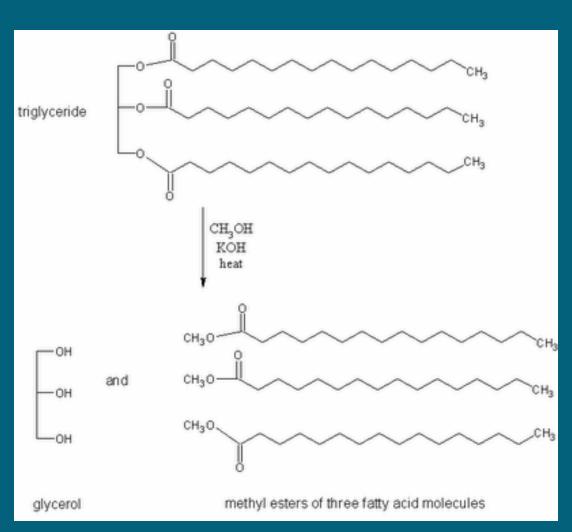
An Automated System for the analysis of fatty acid methyl esters (FAME) in edible oils

Institute for Food Safety and Health Illinois Institute of Technology, Chicago, IL

HOW TO USE YOUR CONSOLE

Archive www.foodsafetysummit.com
Add to your favorites

An Automated System for the analysis of fatty acid methyl esters (FAME) in edible oils

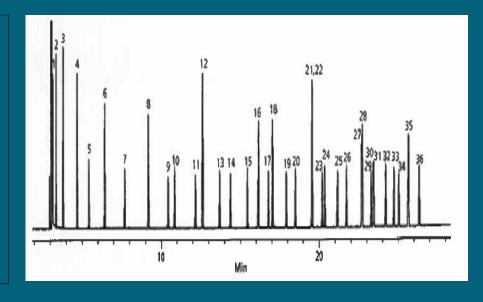

Institute for Food Safety and Health Illinois Institute of Technology, Chicago, IL

Outline

- GC/MS and GC/FID method
- WorkBench and manual sample preparation methodology
- Agilent 7696A Sample Prep WorkBench method validation
- Analysis of EVOO and adulterated EVOO
- Conclusion

Triglyceride

- 1 fat/3 fatty acid chains
- Glycerol Backbone
- Derivatization with Boron Trifluoride in methanol
- Product: 3 fatty acid methyl esters


Analysis

- AOAC 996.06
- AOCS Ce 1h-05
- Acid Hydrolysis of Sample Matrix (Mojonnier Fat Method)
- Esterification with methanol to form Fatty Acid Methyl Esters
- GC

Esterification

Esterification: RCOO-Na + CH₃OH
$$\xrightarrow{BF_3}$$
 RCOO-CH₃ + NaOH

GC

Instrumentation and Analytical Conditions for the GC/MS system

GC chromatograph	Agilent 6890A Series
Column:	HP-88, 60m x 250mm x 0.25 μm (p/n 112-8867)
GC Inlet:	250°C, Split ratio 100 : 1
Carrier gas:	Helium, constant flow mode, 1 mL/min
Oven temperature	
program:	140°C (5 min), 4°C/min to 240°C (0 min)
	1 μL
Mass selective detector:	5973 MSD
Transfer line:	280°C
Solvent delay:	4 min
Acquisition mode:	Scan (40 - 500 amu)
Liner:	Split liner, tapered, deactivated (p/n 5183-4711)

Instrumentation and Analytical Conditions for the GC/FID system

GC chromatograph	Agilent 6890A Series
Column:	HP-88, 60m x 250mm x 0.25 μm (p/n 112-8867)
GC Inlet:	250°C, Split ratio 60:1
Carrier gas:	Helium, constant flow mode, 1.3 mL/min
Oven temperature program:	140°C (5 min), 4°C/min to 240°C (0 min)
Injection volume:	ı μL
Detector:	FID @300°C
Transfer line:	280°C
Liner:	Split liner, tapered, deactivated (p/n 5183-4711)

Preparation Of Fatty Acid Methyl Esters with an Acid Catalyzed Reaction Manually

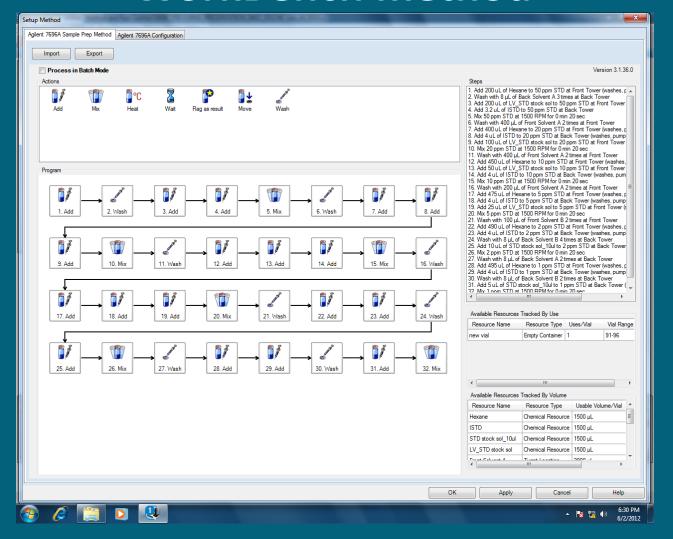
- 50 mg sample in 15 ml centrifuge tube
- Add 2 ml of 2N NaOH in methanol
- Heat 8oºC for 1 hour; Allow to cool
- Add 2 ml of 25% BF3 in methanol
- Heat 8oºC for 1 hour; Allow to cool
- Add 5 ml of water and 5 ml of hexane
- Shake well
- Allow the phase to separate or centrifuge
- Transfer supernatant to GC autosampler vial

Developing a method for WorkBench

- Calibration curve standards
- Validate the automated method
 - Convert manual AOAC method to WorkBench reduced volumes
 - Verify WorkBench method gives the same results as a manual method

Test samples with an acid catalyzed reaction:

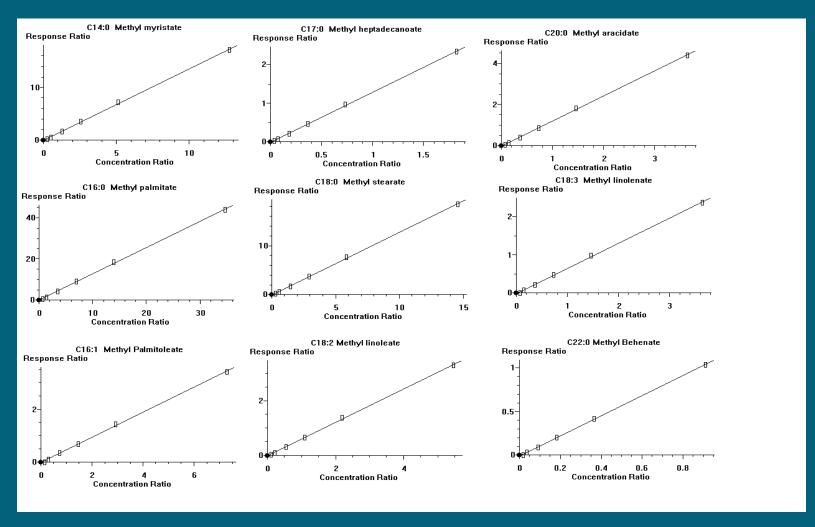
- EVOO from Spain, Italy, Greece, and California
- Refined olive oils
- Seed oil (grapeseed, sunflower, corn, canola, and vegetable)


Calibration Curve Standard Preparation on WorkBench

- GLC Reference STD 603 (from NU-CHEK PREP, INK.)
- ISTD Methyl Undecanoate (from NU-CHEK PREP, INK.)
- Six level calibration curve (o.oo1- o.1mg/ml, o.o4o 4omg/ml
 depending on the specific FAME concentration)
- Linear dilutions in 500µL of hexane
- Complete in 40 minutes
- Excellent linearity (Avg R²=0.999)

Work Bench

Calibration Curve Standard Preparation on WorkBench method

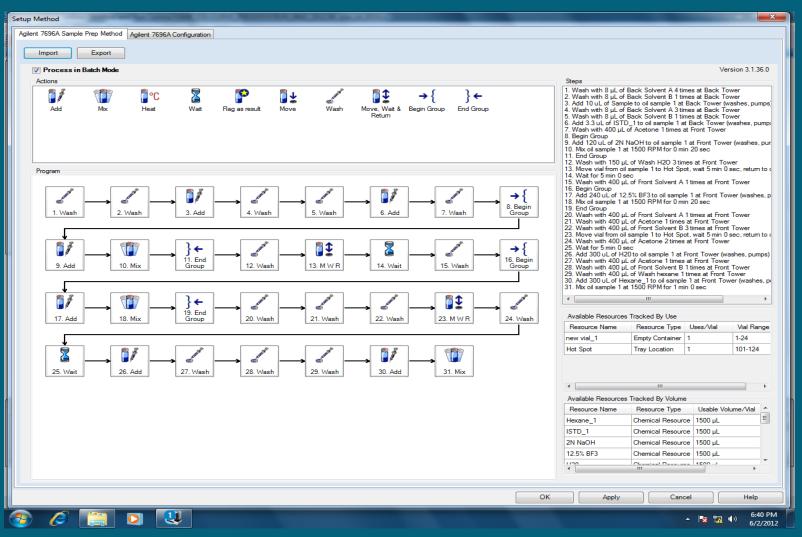

Instrument Calibration Data for FAME standards prepared with the Agilent 7696A Sample Prep WorkBench

#	FAME name	Chain	\mathbb{R}^2
1	Methyl Myristate	C14:0	0.9994
2	Methyl Palmitate	C16:0	0.9992
3	Methyl Palmitoleate	C16:1	0.9991
4	Methyl Heptadecanoate	C17:0	0.9997
5	Methyl Stearate	C ₁ 8:0	0.9996
6	Methyl Oleate	C18:1	1.0000
7	Methyl Vaccenate	C18:1	0.9987
8	Methyl Linoleate	C18:2	0.9994
9	Methyl Arachidate	C20:0	0.9997
10	Methyl Linolenate	C18:3	0.9994
11	Methyl 11-Eicosenoate	C20:1	0.9989
12	Methyl Behenate	C22:0	0.9997
13	Methyl Lignocerate	C24:0	0.9999

Instrument Calibration Data for FAME standards prepared manually

#	FAME name	Chain	\mathbb{R}^2
1	Methyl Myristate	C14:0	0.9919
2	Methyl Palmitate	C16:0	0.9901
3	Methyl Palmitoleate	C16:1	0.9943
4	Methyl Heptadecanoate	C17:0	0.9989
5	Methyl Stearate	C18:0	0.9906
6	Methyl Oleate	C18:1	0.9912
7	Methyl Vaccenate	C18:1	0.9961
8	Methyl Linoleate	C18:2	0.9957
9	Methyl Arachidate	C20:0	0.9969
10	Methyl Linolenate	C18:3	0.9970
11	Methyl 11-Eicosenoate	C20:1	0.9976
12	Methyl Behenate	C22:0	0.9997
13	Methyl Lignocerate	C24:0	0.9989

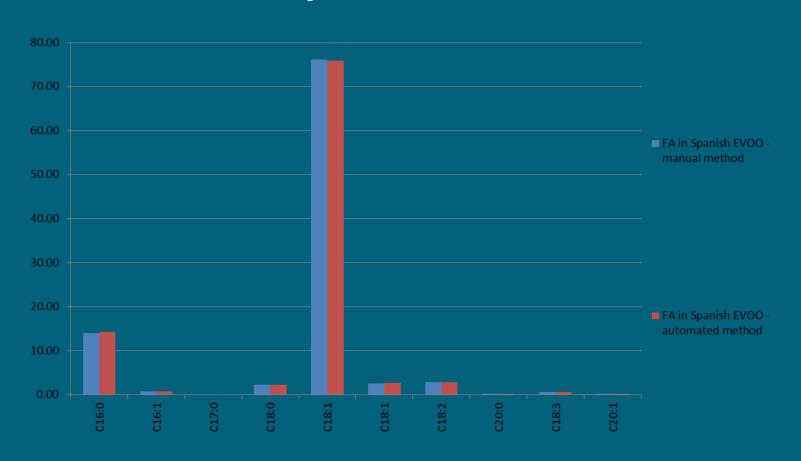
Calibration curves for FAME standards prepared with the Agilent 7696A Sample Prep WorkBench



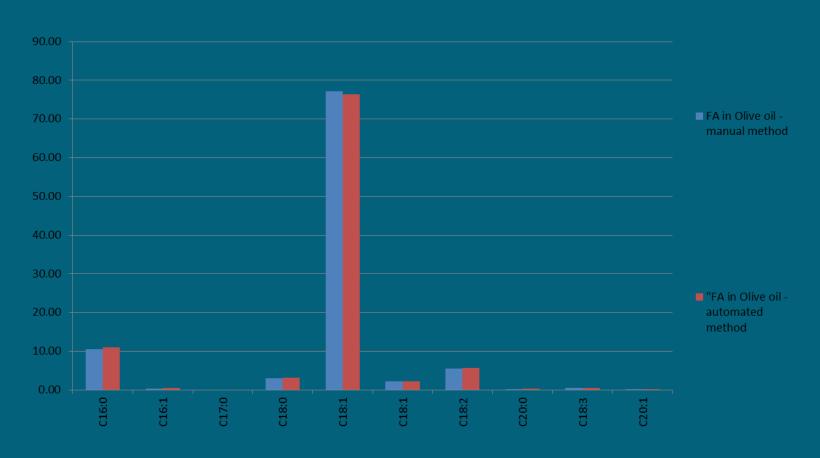
Edible oil Sample Preparation on the WorkBench

- Add 10 μL of oil sample
- Add 3.3 μL of internal standard
- Add 120 μL of 2N NaOH in methanol
- Mix 20 s at 1500 rpm
- Heat at 70°C for 5min, cool 5 min
- Add 240 μL of 12.5% BF3 in methanol
- Mix 20 s at 1500rpm
- Heat at 70°C for 5 min, cool 5 min
- Add 300 μL of water
- Add 300 µL of hexane
- Mix 20 s at 1500 rpm
- Transfer top layer (of 300 μL) to a new GC vial

Edible oil Sample Preparation on the WorkBench

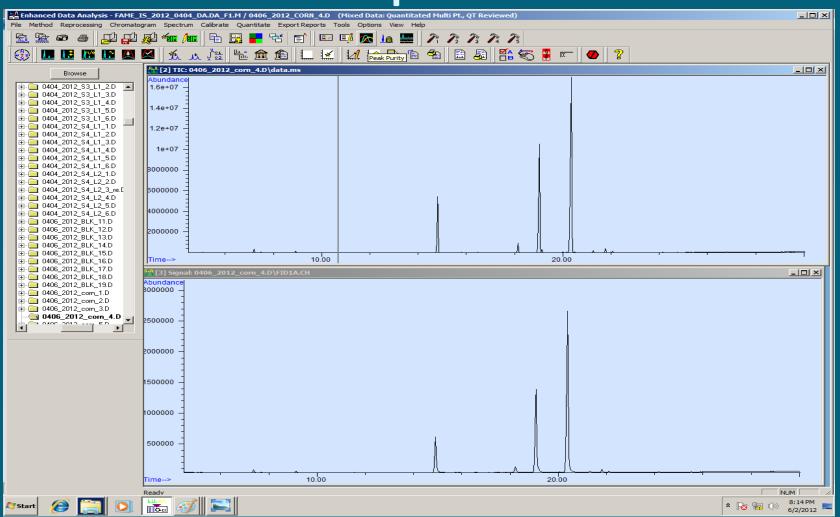

WorkBench Method Validation

- Three edible oils (refined olive oil, Spanish EVOO, and California EVOO) were prepared manually and by WorkBench and analyzed on different days
- %RSD values for 6 samples were very similar to the manual sample preparation %RSD
- Generally recoveries were greater in the WorkBench prepared samples
- WorkBench made samples are as good as manually prepared samples
- WorkBench used 17 times less solvents and reagents

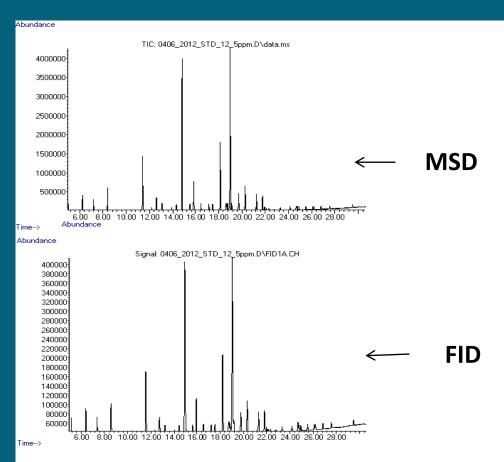

Free Fatty Acid results comparison using manual and automated sample preparation method

RT (min)	Chain	Name	Conversio n Factor (Fa)	FA (mg/ml) EV((#S6	00 -	EV	in California OOO A1_L1)	FA (mg/ml) in Olive oil (# O3_L1)	
				Manual n = 6	WorkBench n = 6	Manual n = 6	WorkBench n = 6	Manual n = 6	WorkBench n = 6
14.985	C16:0	Methyl Palmitate	0.9482	109.36	109.52	103.35	104.78	82.34	97.35
		STDEV		3.53	3.54	2.94	4.40	0.71	2.13
		%RSD		3.23	3.23	2.84	4.20	0.87	2.19
15.994	C16:1	Methyl Palmitoleate	0.9478	5.53	5.53	3.95	4.74	2.84	3.79
		STDEV		0.39	0.39	0.39	0.00	0.00	0.00
		%RSD		7.00	7.00	9.80	0.00	0.00	0.00
18.333	C18:0	Methyl Stearate	0.9531	18.11	17.31	17.31	17.63	22.87	28.12
		STDEV		0.60	0.72	0.72	0.80	0.00	0.52
		%RSD		3.33	4.14	4.14	4.52	0.00	1.86
19.182	C18:1	Methyl Oleate	0.9528	592.64	584.45	568.82	563.26	600.58	671.72
		STDEV		15.60	19.22	14.09	26.65	4.46	9.00
		%RSD		2.63	3.29	2.48	4.73	0.74	1.34
19.192	C18:1	Methyl Vaccenate	0.9528	20.17	20.17	17.94	18.26	17.31	19.06
		STDEV		0.72	0.72	0.39	0.39	0.39	0.00
		%RSD		3.56	3.56	2.17	2.13	2.25	0.00
19.826	C18:2	Methyl Linoleate	0.9525	21.91	22.07	45.56	45.56	43.34	49.37
		STDEV		0.60	0.72	1.11	1.53	0.52	1.27
		%RSD		2.75	3.25	2.44	3.35	1.20	2.56
21.467	C20:0	Methyl Arachidate	0.9571	1.91	1.91	1.91	2.87	1.91	2.87
		STDEV		0.00	0.00	0.00	0.00	0.00	0.00
		%RSD		0.00	0.00	0.00	0.00	0.00	0.00
21.964	C18:3	Methyl Linolenate	0.9521	4.92	4.92	4.13	4.44	3.81	4.13
		STDEV		0.39	0.39	0.49	0.49	0.00	0.49
		%RSD		7.90	7.90	11.92	11.07	0.00	11.92
22.273	C20:1	Methyl 11-Eicosenoate	0.9569	1.91	1.91	1.91	2.87	1.91	1.91
		STDEV		0.00	0.00	0.00	0.00	0.00	0.00
		%RSD		0.00	0.00	0.00	0.00	0.00	0.00

Comparison of Free Fatty Acids using manual and automated sample preparation methods in Spanish EVOO



Comparison of Free Fatty Acids using manual and automated sample preparation methods in Olive Oil

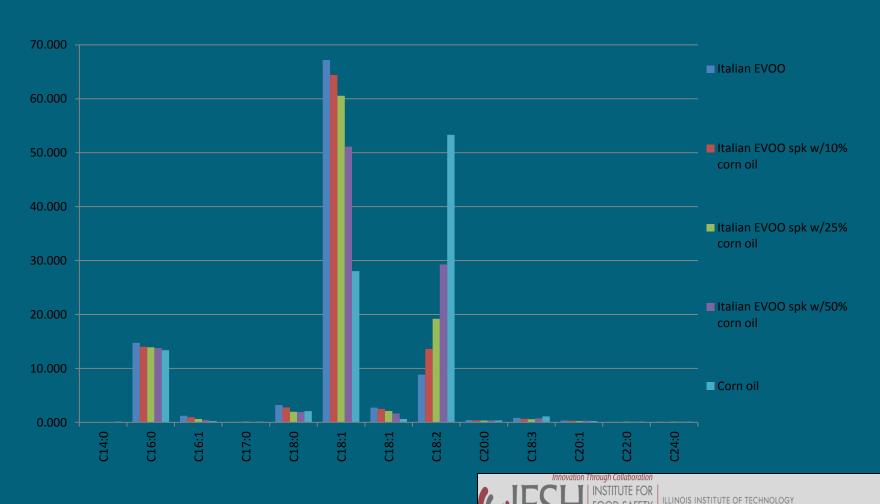


GC/MS and GC/FID chromatogram comparison

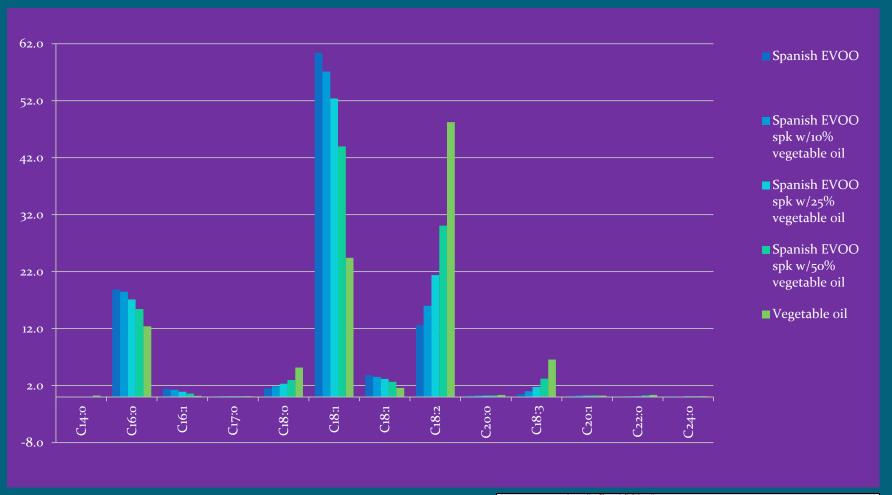
FAME standard chromatograms

% FA in Spanish EVOO and adulterated EVOO with corn oil

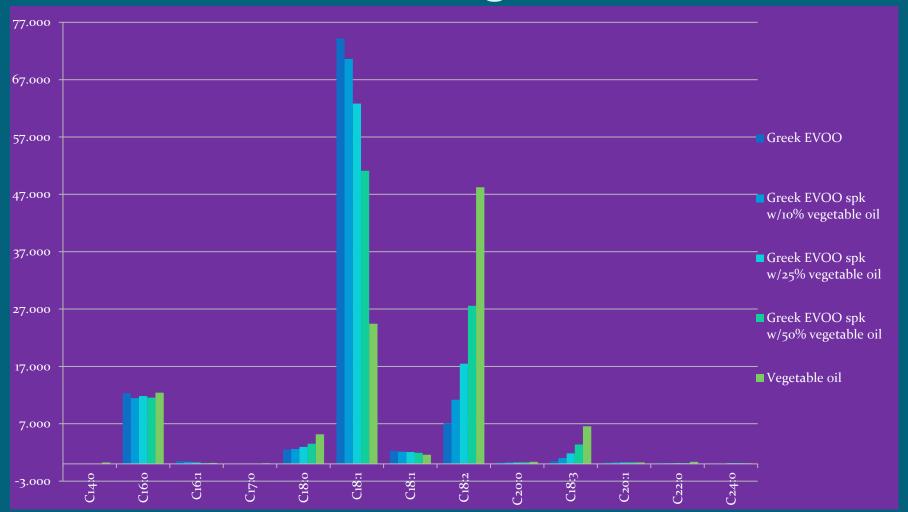
Chain	Name	S1_L1-1	\$2_L1	S3_L1	S4_L1	S4_L2	S6_L1	S5_L1	S5_L1 spk w/10% corn oil	S5_L1 spk w/25% corn oil	W/50%	EVOO
C14:0	Methyl Myristate	0.11	0.11	0.11	0.11	0.12	0.00	0.00	0.00	0.00	0.00	
C16:0	Methyl Palmitate	13.85	12.47	10.02	11.73	11.48	14.05	18.85	18.91	18.05	16.67	7.5-20
C16:1	Methyl Palmitoleate	1.15	1.07	0.57	0.76	0.69	0.71	1.45	1.29	1.03	0.66	0.3-3.5
C17:0	Methyl Heptadecanoate	0.11	0.11	0.11	0.11	0.12	0.00	0.13	0.13	0.13	0.13	
C18:0	Methyl Stearate	3.03	3.16	3.38	3.20	3.64	2.33	1.50	1.68	1.67	1.60	0.5-5
C18:1	Methyl Oleate	70.31	74.48	75.82	73.27	73.04	76.14	60.40	56.84	52.53	45.74	55.0-83.0
C18:1	Methyl Vaccenate	2.57	2.61	1.82	2.13	1.99	2.59	3.81	3.45	2.99	2.19	
C18:2	Methyl Linoleate	7.28	4.39	6.44	6.93	7.01	2.81	12.59	16.44	22.27	31.54	3.5-21.0
C20:0	Methyl Arachidate	0.36	0.33	0.34	0.36	0.40	0.25	0.26	0.25	0.26	0.27	<0.6
C18:3	Methyl Linolenate	0.79	0.77	0.82	0.82	0.92	0.63	0.51	0.51	0.54	0.66	<1.0
C20:1	Methyl 11-Eicosenoate	0.32	0.29	0.34	0.34	0.36	0.25	0.26	0.25	0.26	0.27	<0.4
C22:0	Methyl Behenate	0.11	0.11	0.11	0.12	0.12	0.12	0.13	0.13	0.13	0.13	
C24:0	Methyl Lignocerate	0.00	0.11	0.12	0.12	0.12	0.12	0.13	0.13	0.13	0.13	
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	


Fatty Acid distribution of spiked Spanish EVOO with corn oil

Fatty Acid distribution of spiked Greek EVOO with corn oil



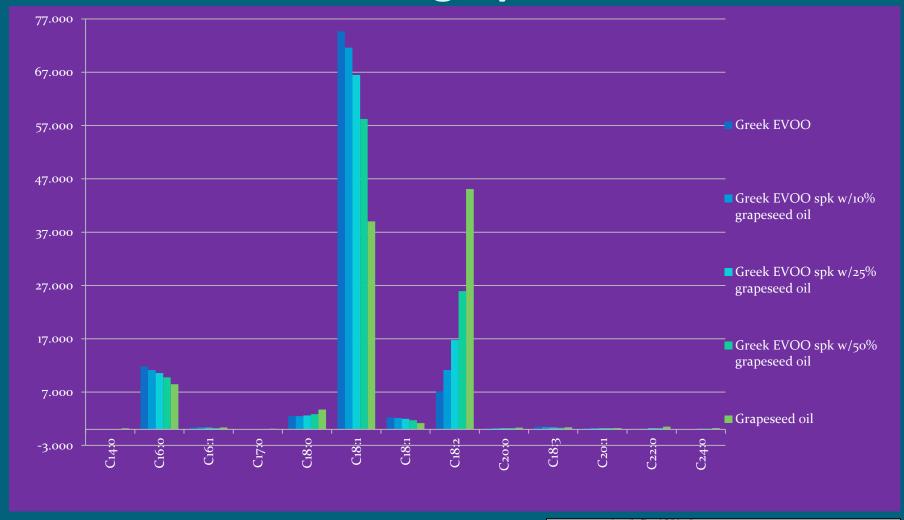
Fatty Acid distribution of spiked Italian EVOO with corn oil

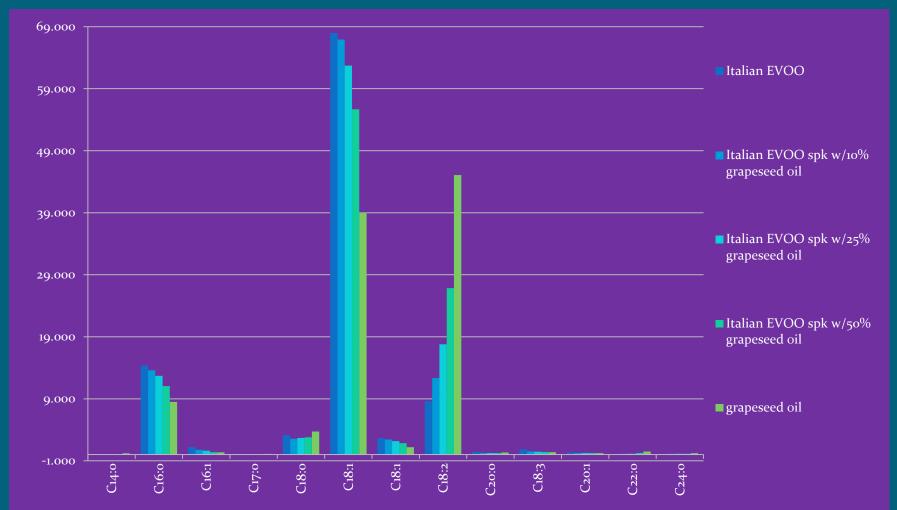


6502 South Archer Road • Summit-Argo, IL 60501 • 708 563 1576 • ifsh@iit.edu

Fatty Acid distribution of spiked Spanish EVOO with vegetable oil

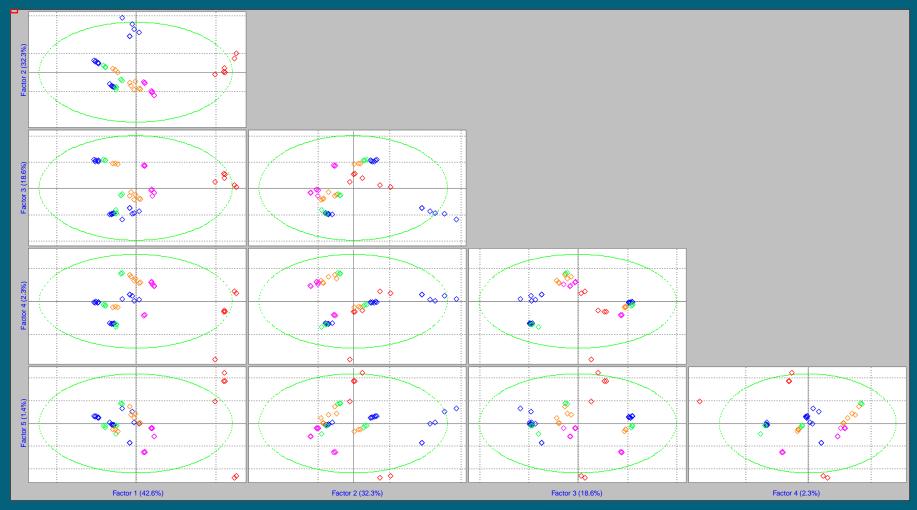
Fatty Acid distribution of spiked Greek EVOO with vegetable oil


Fatty Acid distribution of spiked Italian EVOO with vegetable oil

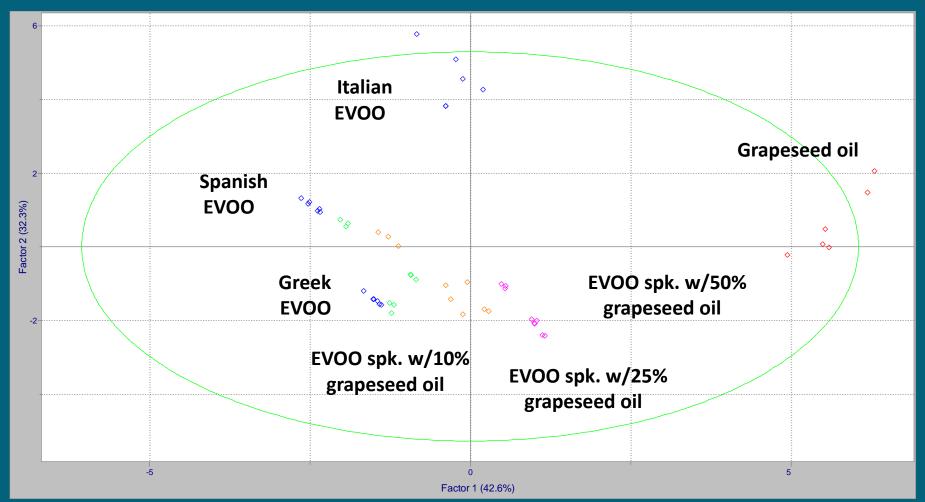

Fatty Acid distribution of spiked Spanish EVOO with grapeseed oil

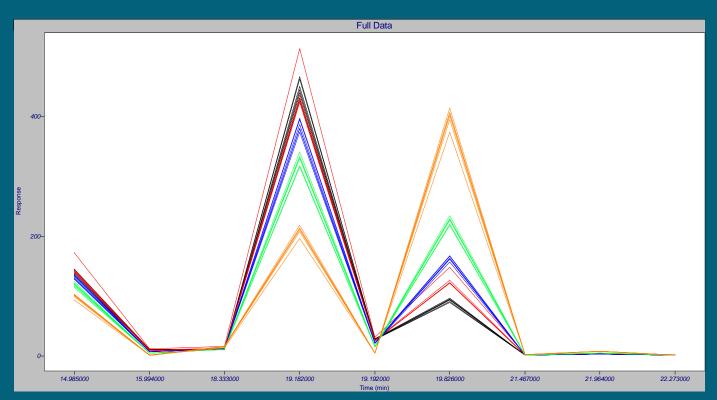
Fatty Acid distribution of spiked Greek EVOO with grapeseed oil

Fatty Acid distribution of spiked Italian EVOO with grapeseed oil

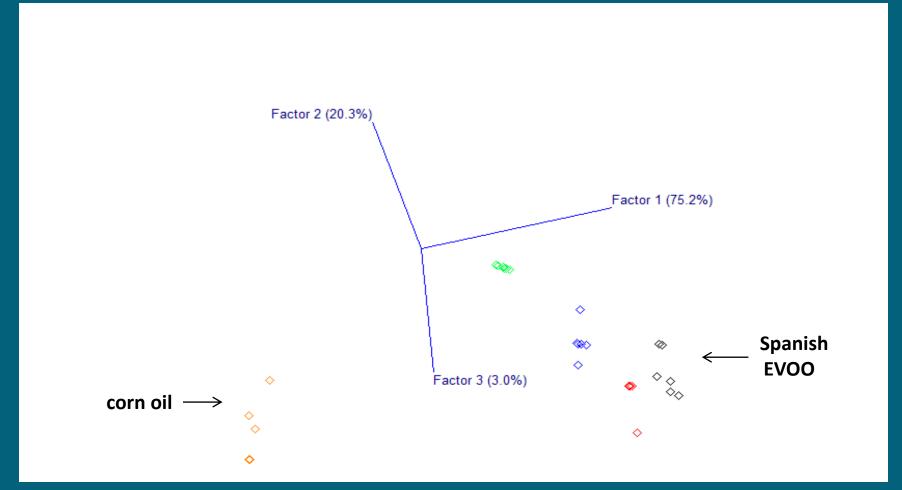

Greek, Italian and Spanish EVOO adulterated with Grapeseed oil

		1	2	3	4	5
		Variance	Percent	Cumulative	Press Cal	
1	Factor1	276.8874	42.5981	42.5981	373.1126	
2	Factor2	210.1967	32.3380	74.9360	162.9158	
3	Factor3	121.0540	18.6237	93.5597	41.8618	
4	Factor4	14.9576	2.3012	95.8609	26.9042	
5	Factor5	8.9521	1.3772	97.2381	17.9521	
6	Factor6	7.6124	1.1711	98.4093	10.3398	
7	Factor7	4.3834	0.6744	99.0836	5.9564	
8	Factor8	2.2217	0.3418	99.4254	3.7347	
9	Factor9	1.7935	0.2759	99.7014	1.9412	
10	Factor10	1.1156	0.1716	99.8730	0.8256	
11						

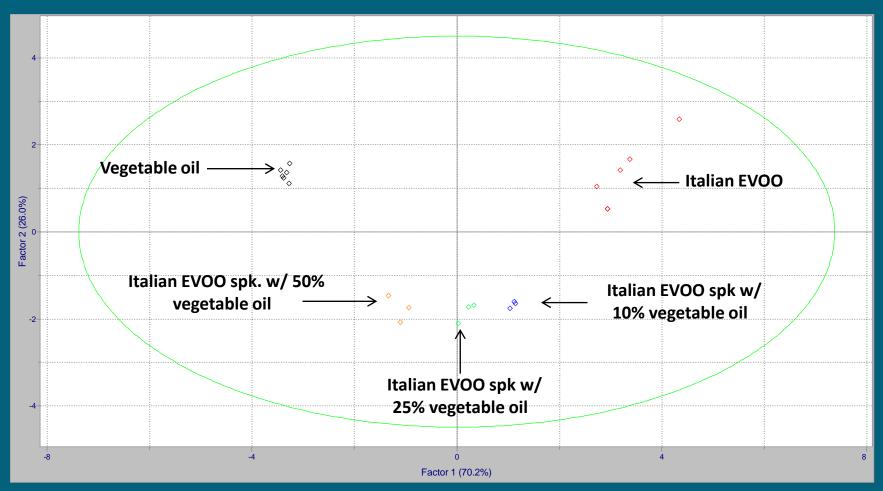

[■]PCA Factor Variance Analysis


Italian, Spanish, and Greek EVOO spiked with grapeseed oil

Italian, Spanish, and Greek EVOO spiked with grapeseed oil (cont.)

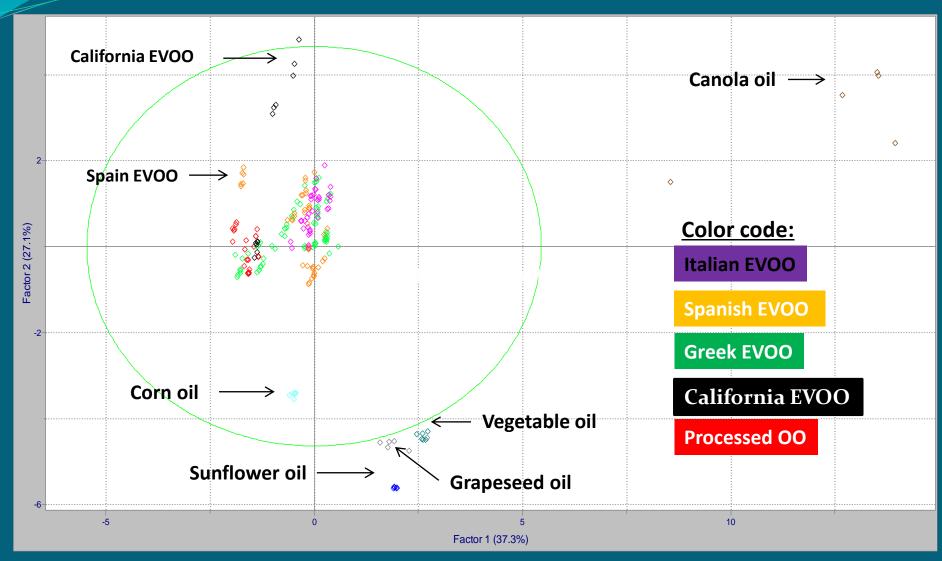


Spanish EVOO spiked with corn oil at 10%, 25%, and 50%

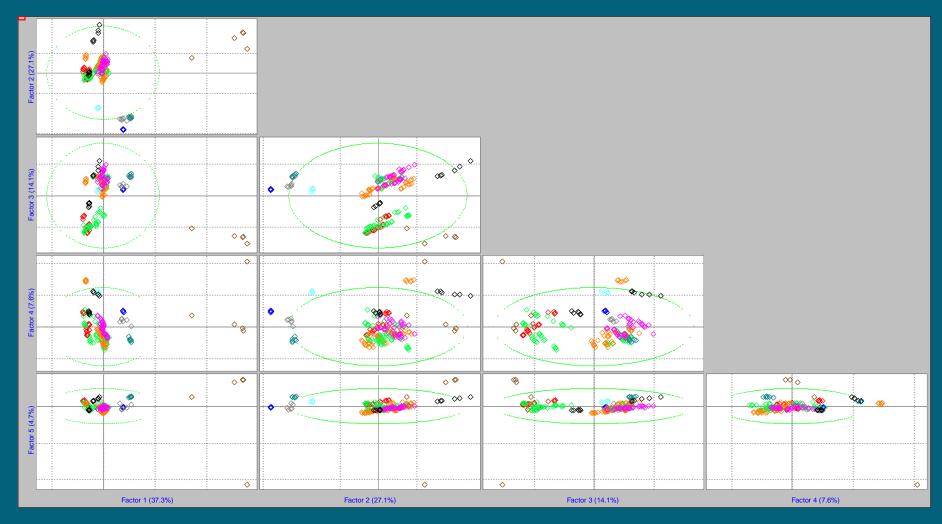


■Full data line plot view adulterated Spanish EVOO with corn oil

PCA Scores plot of Spanish EVOO adulterated with corn oil (10%, 25% and 50%)

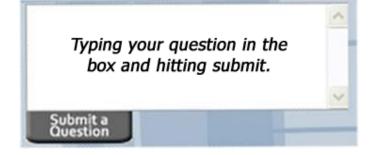


Italian EVOO spiked with vegetable oil

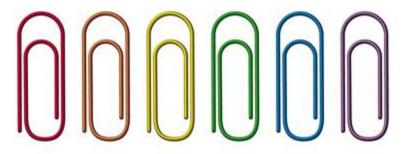

PCA Scores, all samples model, no cross validation

Edible oils distribution

Edible oils distribution (cont.)


Conclusions

- The Agilent 7696A Sample Prep WorkBench, derivatization reactions were easily converted to automated method
- Samples prepared with WorkBench are reproducible compared to manual preparation
- Calibration standard preparation is fast and yields excellent results (r²)
- WorkBench used 17 times less solvents and reagents
- This study demonstrates an efficient and economical GC/MS /FID method for determination of fatty acids in edible oils


QUESTIONS?

Please Submit your questions by:

THANK YOU!

We apologize for this brief interruption but we are experiencing technical difficulties and will resume shortly.

