Introduction
Avermectins are antibiotics used against nematode and arthropod parasites in food producing animals.1-4 While these substances are legal for use in beef cattle and salmon, only specific types of avermectins are permitted for use in lactating dairy cows.1,3 The US, EU, People’s Republic of China, and Canada monitor and regulate the level of avermectins that may be found in edible tissues of food producing animals and milk.1,2

Depending on the country and particular compound, the permitted levels range from a 20-40 ppb level or 20-600 ng/g level in tissue or milk samples.1,2,5 For this reason, it is necessary to develop sensitive and accurate methods that can detect, identify and quantitate avermectins at low levels. This LC/MS method may be used for the detection and quantitation of abamectin, one of the avermectins used to fight parasitic infections in cattle, sheep and pigs.1,2

HPLC Conditions
Column: Polaris\textregistered C18-A, 5 μm, 50 x 2 mm ID (Varian Part No. A2000050X020)
Solvent A: Water
Solvent B: Methanol
LC Program:

<table>
<thead>
<tr>
<th>Time (min:sec)</th>
<th>%A</th>
<th>%B</th>
<th>Flow (µL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>15</td>
<td>85</td>
<td>300</td>
</tr>
<tr>
<td>03:00</td>
<td>15</td>
<td>85</td>
<td>300</td>
</tr>
</tbody>
</table>

Injection Volume: 10 µL

MS Parameters
Ionization Mode: ESI Positive
API Drying Gas: 25 psi at 300 °C
API Nebulizing Gas: 55 psi
Needle: 5000 V
Shield: 600 V
Detector: 1700 V

Table 1. MS Transitions.
\begin{tabular}{|c|c|c|}
\hline
Analyte & Transition & Collision Voltage \\
\hline
Abamectin & 895.6 > 327.4 & 26 V \\
 & 895.6 > 449.3 & 15.5 V \\
 & 895.6 > 751.0 & 9 V \\
\hline
\end{tabular}

Results & Discussion
Using the above-mentioned chromatography and mass spectrometry parameters, abamectin was analyzed from 1 ppb to 1 ppm. The overlaid chromatogram of different concentration injections is shown in Figure 2. Even at 0.001 ppm, abamectin is detected at a signal-to-noise (S/N) ratio of 619:1. Figure 3 shows a close-up of the 1 ppb injection of abamectin displayed in Figure 2.

This experiment established a standard curve for the determination of abamectin, and measured a sample of unknown concentration. Quantitative analysis was performed using the MS/MS transition m/z 895.6 > m/z 751.

The calibration curve for abamectin from 1 ppb to 1 ppm had an r^2 value equal to 0.99907 and %RSD of 3.5% (See Figure 4). Using this calibration curve, it was determined that the concentration of the unknown sample of abamectin was 0.75 ppm.
Conclusion

This LC/MS/MS method is fast, sensitive and accurate for the detection and quantitation of abamectin. The calibration curve was found to be linear and precise from 1 ppb to 1 ppm, yielding a low RSD of 3.5%. The Varian 1200L triple quadrupole mass spectrometer is a reliable, sensitive and accurate instrument for the analysis of abamectin.

References

These data represent typical results.
For further information, contact your local Varian Sales Office.