MS/MS Identification of Four Aflatoxins Using the Agilent 500 Ion Trap LC/MS

Application Note

Food Testing and Agriculture

Authors

Paul Gulyas, Mahalakshmi Rudrabhatla, and Tiffany Payne
Agilent Technologies, Inc.
5301 Stevens Creek Boulevard
Santa Clara, CA 95051
USA

Abstract

A rapid and sensitive LC/MS/MS method for the detection and analysis of aflatoxins B1, B2, G1 and G2 provides detection down to 1 ppb. The 500 Ion Trap MS/MS capabilities result in the collection of clear, baseline resolved chromatographic peaks for target compound quantitation.

Introduction

Aflatoxins are a group of structurally related carcinogenic mycotoxins produced by Aspergillus sps. The most commonly found aflatoxins in food and feed are aflatoxins B1, B2, G1 and G2. Aflatoxin B1 has been classified as a Class 1 human carcinogen by the International Agency for Research on Cancer. Globally, there are significant regulations on the presence of aflatoxins in food and feed. The U.S. Federal Government action level for aflatoxins in food for human consumption or in dairy cow feed is 20 ppb.

The European Commission has set very low action levels for aflatoxins in cereals intended for direct human consumption or for ingredients in foodstuffs. These action levels are 4 ppb total aflatoxins and 2 ppb for aflatoxin B1. So far, these compounds have been extensively analyzed by HPLC. This study developed a rapid and sensitive LC/MS/MS method for the detection and analysis of aflatoxins B1, B2, G1 and G2.
Table 1. MS Segment Parameters

<table>
<thead>
<tr>
<th>Segment</th>
<th>Analyte</th>
<th>Transition</th>
<th>Retention time (min)</th>
<th>Capillary voltage (V)</th>
<th>Excitation amplitude (V)</th>
<th>RF load %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aflatoxin G2</td>
<td>331 → 280–320</td>
<td>10.45</td>
<td>75</td>
<td>1.36</td>
<td>82</td>
</tr>
<tr>
<td>1</td>
<td>Aflatoxin G1</td>
<td>329 → 280–320</td>
<td>11.12</td>
<td>75</td>
<td>1.35</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>Aflatoxin B2</td>
<td>315 → 280–320</td>
<td>11.68</td>
<td>75</td>
<td>1.29</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>Aflatoxin B1</td>
<td>313.2 → 280–320</td>
<td>12.30</td>
<td>75</td>
<td>1.28</td>
<td>82</td>
</tr>
</tbody>
</table>

Results and Discussion

This LC/MS/MS method separates aflatoxins G2, G1, B2 and B1, and provides excellent response for each of the analytes down to 1 ppb. The Polaris C18 column provides excellent chromatographic separation and reproducible retention times. Figure 1 shows the extracted ion chromatogram (EIC) of aflatoxin G2, G1, B2 and B1 at a concentration of 1 ppb.

Calibration curves were found to be linear from 1 to 50 ppb, with %RSD values of 15.62% for aflatoxin G2, 13.64% for aflatoxin G1, 12.65% for aflatoxin B2 and 10.44% for aflatoxin B1. Figure 2 shows the calibration curve for aflatoxin G1.
Conclusion

The four aflatoxins presented in this method were separated and identified in less than 15 minutes.

The MS/MS capabilities of the Agilent 500 Ion Trap LC/MS allow for isolation of desired precursor ions followed by collision induced dissociation (CID) and characteristic product ion spectra, resulting in the collection of clear, baseline resolved chromatographic peaks for target compound quantitation. This method is fast, rugged and sensitive.

References

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

Figure 2. Calibration curve of aflatoxin G1 from 1 to 50 ppb. For this curve, %RSD is 13.64% and $r^2 = 0.998$.

Calibration Curve Report

File: ...aflatoxin_02.msm 2seg@500.008 200ul Tuscan@1hz cal_2.mth
Detector: 500 MS Mass Spec. Address: 56