使用 Agilent 7900 ICP-MS 对牛奶和奶粉进行常规的高通量多元素分析

应用简报

食品检测与农业

前言

牛奶和乳制品是人类膳食中重要的营养来源，对婴儿和儿童更是如此。乳制品的食用范围遍布世界各地。随着人们口味的变化和收入的增加，乳制品在许多亚洲和发展中国家地区的普及程度日益提高。为了满足日益增长的需求，乳制品产量增加的同时产品质量也显得尤为重要。通过检测 Na、K、Mg、Ca 等常量元素以及 Se、P、Mn、Zn 等必需元素的浓度，可以提供有价值的营养信息。另外还需要检测动物奶中的 As、Cd、Sn、Hg 和 Pb 等潜在的有害元素，用于监测来自土壤、肥料、饲料或加工设备的潜在污染。

由于其卓越的灵敏度、快速多元素分析和广泛的元素覆盖，安捷伦 ICP-MS 仪器在环境和食品检测实验室中得到广泛使用。随着最近的技术进步，Agilent 7900 ICP-MS 的分析动态范围已扩展至 10 个数量级以上，在同一次常规分析运行中可以将牛奶中的常量元素（如 Na、
K 和 Ca) 和痕量元素进行同时检测。碰撞/反应池 (CRC) 同样经过了改进,以确保待测元素在样品基质中多原子干扰下依然能得到准确的结果。7900 ICP-MS 拥有市场领先的等离子体稳定性，利用选配的超高基质进样 (UMHI) 技术，样品耐受量可进一步拓展至高达 25% 的总溶解固体 (TDS)。结合与集成样品引入系统 (ISIS 3) 的不连续采样 (DS) 功能带来的高样品通量，7900 ICP-MS 非常适合食品样品中宽范围元素的常规、高通量检测。

本研究介绍了 Agilent 7900 ICP-MS 配合可选 UMHI 和 ISIS 3，用于牛奶和乳制品中常量和痕量元素的快速分析。通过测量全脂奶粉标准参比物质 (SRM) 对数据质量进行评估。

实验部分

样品和试剂

七种类型的市售牛奶和乳制品购自美国加利福尼亚州伯克利的一家本地商店，包括速溶脱脂奶粉、酪乳粉、全脂羊奶粉、奶油酪乳粉、脱脂奶粉、全脂牛奶和脱脂牛奶。使用美国国家标准与技术研究院 (NIST, Gaithersburg, MD) 的 1549a 全脂奶粉标准参比物质 (SRM) 对方法进行验证。

样品前处理

将牛奶样品 (0.5 g 奶粉或 1 g 液体奶) 和 NIST 1549a SRM (0.5 g) 分别加入 6 mL 硝酸 (67%-69%, BASELINE®, SeaStar Chemicals, Sidney, BC, Canada) 和 1 mL 盐酸 (32%-35%, ARISTAR® ULTRA, BDH, Westchester, PA) 中，在 UltraWAVE 的单反应室微波消解系统 (Milestone Inc., Shelton CT) 中进行消解。空白中含 6 mL HNO₃ 和 1 mL HCl。在 20 分钟内分别将温度和压力升至 240 °C 和 150 bar。将最终条件维持 15 分钟，确保完全消解。用 Millipore 超纯水 (Milli-Q™ Water System, Darmstadt, Germany) 将每个样品稀释至 10 mL。用 2% HNO₃ 和 0.5% HCl 将样品进一步稀释 10 倍，制备校准标样也用这种混合酸。每种市售样品平行配制三份，并配制七份 NIST 1549a SRM 消解样品。

仪器

分析采用配备标准镍锥、玻璃同心雾化器和 UMHI 选件的 Agilent 7900 ICP-MS。UMHI 将气溶胶稀释与等离子体温度自动优化结合, 最大程度提高了 7900 ICP-MS 的等离子体稳定性。

7900 ICP-MS 包括第 4 代碰撞/反应池 (CRC)、八极杆反应池系统 (ORS®)，使用氦碰撞模式消除了多原子干扰，从而获得了最佳操作条件。未受干扰的低质量元素通常在无气体模式下进行测量，但是，如果为了最大限度提高样品通量而要求使用一种分析模式（与本研究中的情况相同），拥有高灵敏度的 7900 ICP-MS 也可以在氦模式下测量这些分析物。可选的 ISIS 3 不连续采样附件用来将每个样品的运行时间缩短至 150 秒。

分析步骤

Agilent ICP-MS MassHunter 有几种预设等离子体模式，这些模式中包含了 UMHI 气溶胶稀释倍数。这有助于简化仪器使用，操作人员可以快速高效地选择固定的预设操作条件，最小化用户手动输入。对于牛奶消解物的分析，选择预设等离子体条件设置为 HMI-4 (气溶胶稀释约 4 倍)，为存在多种较高基质水平的消解样品提供适当的稳定性和耐受性。采用的仪器设置如表 1 所示。所有的透镜电压均通过仪器的自动调谐功能进行优化。
表 1. Agilent 7900 ICP-MS 和 ISIS 3 操作条件

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>等离子体模式</td>
<td>HMI-4</td>
</tr>
<tr>
<td>RF 功率 (W)</td>
<td>1600</td>
</tr>
<tr>
<td>载气流速 (L/min)</td>
<td>0.8</td>
</tr>
<tr>
<td>稀释气流速 (L/min)</td>
<td>0.15</td>
</tr>
<tr>
<td>透镜调谐</td>
<td>自动调谐</td>
</tr>
<tr>
<td>氦反应池气体流速 (mL/min)</td>
<td>4.3</td>
</tr>
<tr>
<td>动能歧视电压 (V)</td>
<td>5.0</td>
</tr>
<tr>
<td>元素数量</td>
<td>24 种分析物, 6 种 ISTD</td>
</tr>
<tr>
<td>总采集时间 (重复 3 次) (秒)</td>
<td>150</td>
</tr>
</tbody>
</table>

* 阴影部分的参数通过选择预设等离子体条件 HMI-4 进行预设定

ISIS-DS 参数

<table>
<thead>
<tr>
<th>定量环体积 (mL)</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>时间 (s)</td>
<td></td>
</tr>
<tr>
<td>泵速 (%)</td>
<td></td>
</tr>
<tr>
<td>载样</td>
<td>6</td>
</tr>
<tr>
<td>稳定</td>
<td>15</td>
</tr>
<tr>
<td>针头冲洗</td>
<td>30</td>
</tr>
<tr>
<td>针头冲洗 1</td>
<td>5</td>
</tr>
<tr>
<td>针头冲洗 2</td>
<td>5</td>
</tr>
<tr>
<td>可选的定量环针头冲洗</td>
<td>15</td>
</tr>
<tr>
<td>可选的定量环清洗</td>
<td>15</td>
</tr>
</tbody>
</table>

表 2. 校准系数、方法检测限和背景等效浓度数据。所有元素均在 He 模式下测量

<table>
<thead>
<tr>
<th>质量</th>
<th>元素</th>
<th>R</th>
<th>DL (ppb)</th>
<th>BEC (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Be</td>
<td>0.999957</td>
<td>0.140</td>
<td>0.051</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>0.999716</td>
<td>0.283</td>
<td>1.981</td>
</tr>
<tr>
<td>23</td>
<td>Na</td>
<td>1.00000</td>
<td>18.50</td>
<td>240.9</td>
</tr>
<tr>
<td>24</td>
<td>Mg</td>
<td>0.99979</td>
<td>0.180</td>
<td>0.532</td>
</tr>
<tr>
<td>27</td>
<td>Al</td>
<td>0.999916</td>
<td>0.036</td>
<td>0.382</td>
</tr>
<tr>
<td>31</td>
<td>P</td>
<td>0.999943</td>
<td>11.50</td>
<td>5.487</td>
</tr>
<tr>
<td>39</td>
<td>K</td>
<td>0.999901</td>
<td>17.39</td>
<td>372.7</td>
</tr>
<tr>
<td>44</td>
<td>Ca</td>
<td>0.999999</td>
<td>24.39</td>
<td>85.92</td>
</tr>
<tr>
<td>47</td>
<td>Ti</td>
<td>0.999959</td>
<td>0.255</td>
<td>0.281</td>
</tr>
<tr>
<td>51</td>
<td>V</td>
<td>0.999871</td>
<td>0.028</td>
<td>0.081</td>
</tr>
<tr>
<td>52</td>
<td>Cr</td>
<td>0.999976</td>
<td>0.088</td>
<td>0.294</td>
</tr>
<tr>
<td>55</td>
<td>Mn</td>
<td>0.999950</td>
<td>0.008</td>
<td>0.055</td>
</tr>
<tr>
<td>56</td>
<td>Fe</td>
<td>0.99989</td>
<td>0.254</td>
<td>1.026</td>
</tr>
<tr>
<td>59</td>
<td>Co</td>
<td>0.999711</td>
<td>0.008</td>
<td>0.005</td>
</tr>
<tr>
<td>60</td>
<td>Ni</td>
<td>0.999941</td>
<td>0.022</td>
<td>0.093</td>
</tr>
<tr>
<td>63</td>
<td>Cu</td>
<td>0.999956</td>
<td>0.033</td>
<td>0.109</td>
</tr>
<tr>
<td>66</td>
<td>Zn</td>
<td>0.99984</td>
<td>0.085</td>
<td>0.313</td>
</tr>
<tr>
<td>75</td>
<td>As</td>
<td>0.999974</td>
<td>0.010</td>
<td>0.017</td>
</tr>
<tr>
<td>78</td>
<td>Se</td>
<td>0.999892</td>
<td>0.223</td>
<td>0.415</td>
</tr>
<tr>
<td>95</td>
<td>Mo</td>
<td>0.999879</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>107</td>
<td>Ag</td>
<td>0.999943</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>111</td>
<td>Cd</td>
<td>0.999873</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>118</td>
<td>Sn</td>
<td>0.999930</td>
<td>0.004</td>
<td>0.013</td>
</tr>
<tr>
<td>121</td>
<td>Sb</td>
<td>0.999847</td>
<td>0.005</td>
<td>0.004</td>
</tr>
<tr>
<td>137</td>
<td>Ba</td>
<td>0.999814</td>
<td>0.008</td>
<td>0.003</td>
</tr>
<tr>
<td>201</td>
<td>Hg</td>
<td>0.998411</td>
<td>0.028</td>
<td>0.029</td>
</tr>
<tr>
<td>205</td>
<td>Ti</td>
<td>0.998334</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>268</td>
<td>Pb</td>
<td>0.99904</td>
<td>0.002</td>
<td>0.018</td>
</tr>
<tr>
<td>232</td>
<td>Th</td>
<td>0.99946</td>
<td>0.002</td>
<td>0.011</td>
</tr>
<tr>
<td>238</td>
<td>U</td>
<td>0.999955</td>
<td>0.001</td>
<td>0.004</td>
</tr>
</tbody>
</table>

规律进行了 5 点校准。Na 元素在 0-200000 µg/L 的范围内进行了 6 点校准；Ca 元素在 0-100000 µg/L 的范围内进行了 6 点校准。

结果与讨论

几种元素的代表性校准曲线如图 1 和图 2 所示。
图 1. K 和 Ca 的校准曲线，表明这两种元素分别在最大 10 mg/L 和 100 mg/L 的常量元素范围内有出色的线性

图 2. 低浓度元素 Mn 和 Se 的校准曲线，表明这两种元素在 100 μg/L 的范围内有出色的线性

方法验证
在开始分析市售乳制品样品之前，将七个 NIST 1549a 样品作为仪器检查样品进行分析。表 3 的结果表明所有标准元素均达到了良好的准确度，回收率均在标准值的 ±5% 以内。对于大多数元素来说，精密度约为 3% RSD 甚至更小。这些结果证实 7900 ICP-MS 适用于进行消解牛奶样品的常规测量。

在整个分析序列中，每隔 10 个样品测量一次连续校准验证 (CCV) 标准品。如图 3 所示，所有元素的 CCV 回收率均在 ±10% 的限值内。

图 3. 3 小时序列的 CCV 回收率。红线显示的是 ±10% 对照限

实际样品的分析
这种方法可用于分析牛奶和乳制品样品消解物。样品中检测浓度高于检测限 (DL) 的元素列于表 4 中。将这些数据与已发表文献 [1] 比较后发现，市售全脂牛奶和脱脂牛奶的结果均处于此前发表的范围内。Khan 等人 [1] 对微量元素的报告值分别为 Zn 353.6-4754.3 ng/g、Se 679.1-1424.8 ng/g、Cu 84.5-718.3 ng/g、Mn 64.1-236.9 ng/g 以及 Ba 91.0-163.1 ng/g。作者指出，他们所得的牛奶样品中 Se、Mn 和 Cu 元素的值略高于引用文献中的值，这一点也与本研究中获得的结果一致。

实际样品的分析
这种方法可用于分析牛奶和乳制品样品消解物。样品中检测浓度高于检测限 (DL) 的元素列于表 4 中。将这些数据与已发表文献 [1] 比较后发现，市售全脂牛奶和脱脂牛奶的结果均处于此前发表的范围内。Khan 等人 [1] 对微量元素的报告值分别为 Zn 353.6-4754.3 ng/g、Se 679.1-1424.8 ng/g、Cu 84.5-718.3 ng/g、Mn 64.1-236.9 ng/g 以及 Ba 91.0-163.1 ng/g。作者指出，他们所得的牛奶样品中 Se、Mn 和 Cu 元素的值略高于引用文献中的值，这一点也与本研究中获得的结果一致。

实际样品的分析
这种方法可用于分析牛奶和乳制品样品消解物。样品中检测浓度高于检测限 (DL) 的元素列于表 4 中。将这些数据与已发表文献 [1] 比较后发现，市售全脂牛奶和脱脂牛奶的结果均处于此前发表的范围内。Khan 等人 [1] 对微量元素的报告值分别为 Zn 353.6-4754.3 ng/g、Se 679.1-1424.8 ng/g、Cu 84.5-718.3 ng/g、Mn 64.1-236.9 ng/g 以及 Ba 91.0-163.1 ng/g。作者指出，他们所得的牛奶样品中 Se、Mn 和 Cu 元素的值略高于引用文献中的值，这一点也与本研究中获得的结果一致。

实际样品的分析
这种方法可用于分析牛奶和乳制品样品消解物。样品中检测浓度高于检测限 (DL) 的元素列于表 4 中。将这些数据与已发表文献 [1] 比较后发现，市售全脂牛奶和脱脂牛奶的结果均处于此前发表的范围内。Khan 等人 [1] 对微量元素的报告值分别为 Zn 353.6-4754.3 ng/g、Se 679.1-1424.8 ng/g、Cu 84.5-718.3 ng/g、Mn 64.1-236.9 ng/g 以及 Ba 91.0-163.1 ng/g。作者指出，他们所得的牛奶样品中 Se、Mn 和 Cu 元素的值略高于引用文献中的值，这一点也与本研究中获得的结果一致。
表 4. 市售牛奶和奶粉中多元素的定量结果（平均实测浓度（n = 3）。阴影行中的结果单位为 mg/kg (ppm)。此外所有其他结果的单位为 µg/kg (ppb)

<table>
<thead>
<tr>
<th>元素</th>
<th>速溶脱脂奶粉</th>
<th>烘乳粉</th>
<th>全脂羊奶粉</th>
<th>甜奶油脂乳粉</th>
<th>脱脂奶粉</th>
<th>全脂牛奶</th>
<th>脱脂牛奶</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 B</td>
<td>3053</td>
<td>2931</td>
<td>2337</td>
<td>2490</td>
<td>2182</td>
<td>443.5</td>
<td>406.4</td>
</tr>
<tr>
<td>23 Na</td>
<td>3919</td>
<td>3870</td>
<td>2804</td>
<td>4335</td>
<td>3871</td>
<td>371</td>
<td>378</td>
</tr>
<tr>
<td>24 Mg</td>
<td>1152</td>
<td>1017</td>
<td>1094</td>
<td>931</td>
<td>1091</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td>31 P</td>
<td>10215</td>
<td>90965</td>
<td>8221</td>
<td>8161</td>
<td>9845</td>
<td>965</td>
<td>985</td>
</tr>
<tr>
<td>39 K</td>
<td>15827</td>
<td>30554</td>
<td>15912</td>
<td>14590</td>
<td>17195</td>
<td>1519</td>
<td>1560</td>
</tr>
<tr>
<td>44 Ca</td>
<td>11762</td>
<td>9963</td>
<td>8486</td>
<td>7950</td>
<td>11077</td>
<td>1104</td>
<td>1123</td>
</tr>
<tr>
<td>47 Ti</td>
<td>442.5</td>
<td>221.2</td>
<td>201.3</td>
<td>256.3</td>
<td>253.2</td>
<td>< DL</td>
<td>< DL</td>
</tr>
<tr>
<td>51 V</td>
<td>24.40</td>
<td>25.55</td>
<td>27.95</td>
<td>28.97</td>
<td>15.29</td>
<td>9.51</td>
<td>9.70</td>
</tr>
<tr>
<td>52 Cr</td>
<td>< DL</td>
<td>< DL</td>
<td>< DL</td>
<td>712.7</td>
<td>< DL</td>
<td>< DL</td>
<td>< DL</td>
</tr>
<tr>
<td>55 Mn</td>
<td>170.1</td>
<td>220.3</td>
<td>292.9</td>
<td>193.7</td>
<td>219.2</td>
<td>20.20</td>
<td>19.86</td>
</tr>
<tr>
<td>56 Fe</td>
<td>1836</td>
<td>6468</td>
<td>2401</td>
<td>9760</td>
<td>1935</td>
<td>285.0</td>
<td>306.7</td>
</tr>
<tr>
<td>59 Co</td>
<td>5.90</td>
<td>5.75</td>
<td>< DL</td>
<td>8.45</td>
<td>< DL</td>
<td>< DL</td>
<td>< DL</td>
</tr>
<tr>
<td>63 Cu</td>
<td>308.1</td>
<td>609.5</td>
<td>899.6</td>
<td>485.8</td>
<td>391.7</td>
<td>35.94</td>
<td>66.12</td>
</tr>
<tr>
<td>66 Zn</td>
<td>41</td>
<td>30</td>
<td>27</td>
<td>28</td>
<td>41</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>75 As</td>
<td>< DL</td>
</tr>
<tr>
<td>78 Se</td>
<td>365.8</td>
<td>349.8</td>
<td>188.0</td>
<td>418.3</td>
<td>526.4</td>
<td>31.15</td>
<td>28.91</td>
</tr>
<tr>
<td>95 Mo</td>
<td>319.7</td>
<td>1946</td>
<td>104.7</td>
<td>2440</td>
<td>299.1</td>
<td>39.92</td>
<td>34.33</td>
</tr>
<tr>
<td>111 Cd</td>
<td>< DL</td>
</tr>
<tr>
<td>118 Sn</td>
<td>3.98</td>
<td>18.23</td>
<td>12.56</td>
<td>5.59</td>
<td>12.36</td>
<td>< DL</td>
<td>2.89</td>
</tr>
<tr>
<td>121 Sb</td>
<td>< DL</td>
</tr>
<tr>
<td>137 Ba</td>
<td>862.0</td>
<td>970.9</td>
<td>523.7</td>
<td>498.7</td>
<td>694.9</td>
<td>77.87</td>
<td>85.69</td>
</tr>
<tr>
<td>202 Hg</td>
<td>< DL</td>
</tr>
<tr>
<td>205 Tl</td>
<td>3.49</td>
<td>2.34</td>
<td>4.87</td>
<td>2.46</td>
<td>2.57</td>
<td>0.58</td>
<td>0.49</td>
</tr>
<tr>
<td>208 Pb</td>
<td>2.39</td>
<td>3.39</td>
<td>3.85</td>
<td>3.03</td>
<td>1.96</td>
<td>0.61</td>
<td>1.27</td>
</tr>
</tbody>
</table>

结论

Agilent 7900 ICP-MS 配备可选 UHMI 和 ISIS 3 不连续采样附件，可成功用于各种牛奶和乳制品样品的快速、常规分析。鉴于 7900 ICP-MS 具有高达 11 个数量级的超大动态范围、高灵敏度和低背景，Na、K 和 Ca 等常量元素可作为痕量元素，在同一次分析运行中采用同一套操作条件进行测定。7900 ICP-MS 具有以下特性：

- 自动调谐和预设等离子体模式有助于简单的方法开发与更高的简便易用性
- 针对关键元素的单分析模式和可靠的干扰消除功能：He 模式提供绝对可信的数据质量
- NIST SRM 1549a 全脂奶粉中所有标准常量和痕量元素均获得优异的准确度和精密度
- 分析速度快，分析 24 种分析物和 6 种内标元素时每个样品的运行时间为 150 秒，是高样品通量实验室的理想之选
参考文献